Effects of Long-Term Exposure to 60 GHz Millimeter-Wavelength Radiation on the Genotoxicity and Heat Shock Protein (Hsp) Expression of Cells Derived from Human Eye
Abstract
:1. Introduction
2. Materials and Methods
2.1. Millimeter-Wave Exposure Set-Up
2.2. Cell Culture
2.3. Micronucleus (MN) Frequency
2.4. Comet Assay
2.5. Hsp Expression
2.6. Statistical Analysis
3. Results
3.1. MN Formation
3.2. Comet Assay
3.3. Hsp Expression
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
GHz | Gigahertz |
THz | Terahertz |
HCE-T | Human corneal epithelial |
SRA01/04 | Human lens epithelial |
MN | Micronucleus |
Hsp | Heat shock protein |
References
- Beneduci, A.; Chidichimo, G.; De Rose, R.; Filippelli, L.; Straface, S.V.; Venuta, S. Frequency and irradiation time-dependent antiprolifirative effect of low-power millimetre waves on RPMI 7932 human melanoma cell line. Anticancer Res. 2005, 25, 1023–1028. [Google Scholar] [PubMed]
- Korenstein-Ilan, A.; Barbul, A.; Hasin, P.; Eliran, A.; Gover, A.; Korenstein, R. Terahertz radiation increases genomic instability in human lymphocytes. Radiat. Res. 2008, 170, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, B.S.; Rasmussen, K.Ø.; Bishop, A.R.; Usheva, A.; Alexandrov, L.B.; Chong, S.; Dagon, Y.; Booshehri, L.G.; Mielke, C.H.; Phipps, M.L.; et al. Non-thermal effects of terahertz radiation on gene expression in mouse stem cells. Biomed. Opt. Express 2011, 2, 2679–2689. [Google Scholar] [CrossRef] [PubMed]
- Hintzsche, H.; Jastrow, C.; Kleine-Ostmann, T.; Stopper, H.; Schmid, E.; Schrader, T. Terahertz radiation induces spindle disturbances in human-hamster hybrid cells. Radiat. Res. 2011, 175, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Scarfì, M.R.; Romanò, M.; Di Pietro, R.; Zeni, O.; Doria, A.; Gallerano, G.P.; Giovenale, E.; Messina, G.; Lai, A.; Campurra, G.; et al. THz exposure of whole blood for the study of biological effects on human lymphocytes. J. Biol. Phys. 2003, 29, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Bourne, N.; Clothier, R.H.; D’Arienzo, M.; Harrison, P. The effects of terahertz radiation on human keratinocyte primary cultures and neural cell cultures. Altern. Lab. Anim. 2008, 36, 667–684. [Google Scholar] [PubMed]
- Hintzsche, H.; Jastrow, C.; Heinen, B.; Baaske, K.; Kleine-Ostmann, T.; Schwerdtfeger, M.; Shakfa, M.K.; Kärst, U.; Koch, M.; Schrader, T.; et al. Terahertz radiation at 0.380 THz and 2.520 THz does not lead to DNA damage in skin cells in vitro. Radiat. Res. 2013, 179, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Pikov, V.; Arakaki, X.; Harrington, M.; Fraser, S.E.; Siegel, P.H. Modulation of neuronal activity and plasma membrane properties with low-power millimeter waves in organotypic cortical slices. J. Neural Eng. 2010, 7. [Google Scholar] [CrossRef] [PubMed]
- Beneduci, A.; Cosentino, K.; Romeo, S.; Massa, R.; Chidichimo, G. Effect of millimetre waves on phosphatidylcholine membrane models: A non-thermal mechanism of interaction. Soft Matter 2014, 10, 5559–5567. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, K.; Beneduci, A.; Ramundo-Orlando, A.; Chidichimo, G. The influence of millimeter waves on the physical properties of large and giant unilamellar vesicles. J. Biol. Phys. 2013, 39, 395–410. [Google Scholar] [CrossRef] [PubMed]
- Romanenko, S.; Siegel, P.H.; Wagenaar, D.A.; Pikov, V. Effects of millimeter wave irradiation and equivalent thermal heating on the activity of individual neurons in the leech ganglion. J. Neurophysiol. 2014, 112, 2423–2431. [Google Scholar] [CrossRef] [PubMed]
- Ramundo-Orlando, A.; Longo, G.; Cappelli, M.; Girasole, M.; Tarricone, L.; Beneduci, A.; Massa, R. The response of giant phospholipid vesicles to millimeter waves radiation. Biochim. Biophys. Acta 2009, 1788, 1497–1507. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, O.P.; Hagmann, M.J.; Hill, D.W.; Partlow, L.M.; Bush, L. Millimeter wave absorption spectra of biological samples. Bioelectromagnetics 1980, 1, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, O.P. Some basic properties of biological tissues for potential biomedical applications of millimeter waves. J. Microw. Power 1983, 18, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Shiina, T.; Suzuki, Y.; Watanabe, S.; Taki, M. High-efficiency applicator based on printed circuit board in millimeter-wave region. IEEE Trans. Microw. Theory Tech. 2015, 63, 3311–3318. [Google Scholar] [CrossRef]
- Koyama, S.; Isozumi, Y.; Suzuki, Y.; Taki, M.; Miyakoshi, J. Effects of 2.45-GHz electromagnetic fields with a wide range of SARs on micronucleus formation in CHO-K1 cells. Sci. World J. 2004, 4, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Countryman, P.I.; Heddle, J.A. The production of micronuclei from chromosome aberrations in irradiated cultures of human lymphocytes. Mutat. Res. 1976, 41, 321–332. [Google Scholar] [CrossRef]
- Sakurai, T.; Kiyokawa, T.; Kikuchi, K.; Miyakoshi, J. Intermediate frequency magnetic fields generated by an induction heating (IH) cooktop do not affect genotoxicities and expression of heat shock proteins. Int. J. Radiat. Biol. 2009, 85, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Chidichimo, G.; Beneduci, A.; Nicoletta, M.; Critelli, M.; De Rose, R.; Tkatchenko, Y.; Abonante, S.; Tripepi, S.; Perrotta, E. Selective inhibition of tumoral cells growth by low power millimeter waves. Anticancer Res. 2002, 22, 1681–1688. [Google Scholar] [PubMed]
- Beneduci, A.; Chidichimo, G.; Tripepi, S.; Perrotta, E.; Cufone, F. Antiproliferative effect of millimeter radiation on human erythromyeloid leukemia cell line K562 in culture: Ultrastructural- and metabolic-induced changes. Bioelectrochemistry 2007, 70, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Beneduci, A. Evaluation of the potential in vitro antiproliferative effects of millimeter waves at some therapeutic frequencies on RPMI 7932 human skin malignant melanoma cells. Evaluation of the potential in vitro antiproliferative effects of millimeter waves at some therapeutic frequencies on RPMI 7932 human skin malignant melanoma cells. Cell Biochem. Biophys. 2009, 55, 25–32. [Google Scholar] [PubMed]
- Nicolaz, C.N.; Zhadobov, M.; Desmots, F.; Sauleau, R.; Thouroude, D.; Michel, D.; Le Drean, Y. Absence of direct effect of low-power millimeter-wave radiation at 60.4 GHz on endoplasmic reticulum stress. Cell Biol. Toxicol. 2009, 25, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Le Quément, C.; Nicolaz, C.N.; Zhadobov, M.; Desmots, F.; Sauleau, R.; Aubry, M.; Michel, D.; Le Dréan, Y. Whole-genome expression analysis in primary human keratinocyte cell cultures exposed to 60 GHz radiation. Bioelectromagnetics 2012, 33, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Le Quément, C.; Nicolaz, C.N.; Habauzit, D.; Zhadobov, M.; Sauleau, R.; Le Dréan, Y. Impact of 60-GHz millimeter waves and corresponding heat effect on endoplasmic reticulum stress sensor gene expression. Bioelectromagnetics 2014, 35, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Haas, A.J.; Le Page, Y.; Zhadobov, M.; Sauleau, R.; Le Dréan, Y. Effects of 60-GHz millimeter waves on neurite outgrowth in PC12 cells using high-content screening. Neurosci. Lett. 2016, 618, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Habauzit, D.; Le Quément, C.; Zhadobov, M.; Martin, C.; Aubry, M.; Sauleau, R.; Le Dréan, Y. Transcriptome analysis reveals the contribution of thermal and the specific effects in cellular response to millimeter wave exposure. PLoS ONE 2014, 9, e109435. [Google Scholar] [CrossRef] [PubMed]
- Vijayalaxmi; Logani, M.K.; Bhanushali, A.; Ziskin, M.C.; Prihoda, T.J. Micronuclei in peripheral blood and bone marrow cells of mice exposed to 42 GHz electromagnetic millimeter waves. Radiat. Res. 2004, 161, 341–345. [Google Scholar] [PubMed]
- Belyaev, I. Dependence of non-thermal biological effects of microwaves on physical and biological variables: Implications for reproducibility and safety standards. Eur. J. Oncol. Libr. 2010, 5, 187–218. [Google Scholar]
- IARC (International Agency for Research on Cancer). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Non-Ionizing Radiation, Part 2: Radiofrequency Electromagnetic Fields; IARC Press: Lyon, France, 2013; Volume 102, pp. 1–406. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koyama, S.; Narita, E.; Shimizu, Y.; Suzuki, Y.; Shiina, T.; Taki, M.; Shinohara, N.; Miyakoshi, J. Effects of Long-Term Exposure to 60 GHz Millimeter-Wavelength Radiation on the Genotoxicity and Heat Shock Protein (Hsp) Expression of Cells Derived from Human Eye. Int. J. Environ. Res. Public Health 2016, 13, 802. https://doi.org/10.3390/ijerph13080802
Koyama S, Narita E, Shimizu Y, Suzuki Y, Shiina T, Taki M, Shinohara N, Miyakoshi J. Effects of Long-Term Exposure to 60 GHz Millimeter-Wavelength Radiation on the Genotoxicity and Heat Shock Protein (Hsp) Expression of Cells Derived from Human Eye. International Journal of Environmental Research and Public Health. 2016; 13(8):802. https://doi.org/10.3390/ijerph13080802
Chicago/Turabian StyleKoyama, Shin, Eijiro Narita, Yoko Shimizu, Yukihisa Suzuki, Takeo Shiina, Masao Taki, Naoki Shinohara, and Junji Miyakoshi. 2016. "Effects of Long-Term Exposure to 60 GHz Millimeter-Wavelength Radiation on the Genotoxicity and Heat Shock Protein (Hsp) Expression of Cells Derived from Human Eye" International Journal of Environmental Research and Public Health 13, no. 8: 802. https://doi.org/10.3390/ijerph13080802
APA StyleKoyama, S., Narita, E., Shimizu, Y., Suzuki, Y., Shiina, T., Taki, M., Shinohara, N., & Miyakoshi, J. (2016). Effects of Long-Term Exposure to 60 GHz Millimeter-Wavelength Radiation on the Genotoxicity and Heat Shock Protein (Hsp) Expression of Cells Derived from Human Eye. International Journal of Environmental Research and Public Health, 13(8), 802. https://doi.org/10.3390/ijerph13080802