Global Sources and Pathways of Mercury in the Context of Human Health
Abstract
:1. Introduction
2. Global Sources of Mercury Emissions
2.1. Anthropogenic Emissions
2.2. Natural and Re-Emitted Emissions
2.3. Future Emissions
3. Atmospheric Transport and Deposition
3.1. Air Concentration Levels and Atmospheric Deposition of Mercury
3.2. Future Change in Deposition Levels
3.3. Climate Changes
4. Human Health Impacts
4.1. Human Exposure
4.2. Future Environmental Impacts
5. Final Discussion—Uncertainties and Research Needs
5.1. Global Sources of Mercury Emissions
5.2. Atmospheric Transport and Deposition
5.3. Climate Change
5.4. Human Health Impacts
6. Conclusions
- Assessing global sources and pathways of mercury in the context of human health is considered important for being able to monitor the effects from the implementation of the Minamata Convention targets.
- Anthropogenic mercury emissions globally have been estimated to about 1960 tonnes·year−1 in 2010. Artisanal and small-scale gold mining (37%) and combustion of coal and other fossil fuels for energy and heat production in power plants and in industrial and residential boilers (25%) were identified as the major global anthropogenic emission sources to the atmosphere. Primary natural emissions and re-emissions processes of historically-deposited mercury over land and sea surfaces has recently been assessed to the amount of 5207 tonnes·year−1. The oceans are the most important natural and re-emission sources, contributing 36% of the natural and re-emitted emissions of mercury.
- Future mercury emissions are dependent upon many variables, including the development of national and regional economies, development and implementation of technologies for reducing emissions and possible regulatory changes. These can, to a large degree, be reduced as a co-benefit from the use of air pollution control devices, from reducing greenhouse gas emissions, and through the use of targeted mercury emission controls.
- Atmospheric mercury transport and deposition models based on global emission inventories have high associated uncertainties from poor understanding of emissions from natural emissions, artisanal and small-scale gold mining, biomass burning, and legacy impacts of anthropogenic emissions.
- No scientific information currently available is in the position to clearly answer whether climate change will increase or decrease the risk of global human exposure to mercury.
- New research is needed on the improvement of emission inventory data, the chemical and physical behaviour of mercury in the atmosphere, the improvement of monitoring network data, predictions of future emissions and speciation, and on the subsequent effects on the environment, human health, as well as the economic costs and benefits of reducing these aspects.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sanfeliu, C.; Sebastia, J.; Cristofol, R.; Rodriguez-Farre, E. Neurotoxicity of organomercurial compounds. Neurotox. Res. 2003, 5, 283–305. [Google Scholar] [CrossRef] [PubMed]
- Crespo-Lopez, M.E.; De Sa, A.L.; Herculano, A.M.; Burbano, R.R.; Do Nascimento, J.L.M. Methylmercury genotoxicity: A novel effect in human cell lines of the central nervous system. Environ. Int. 2007, 3, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Tchounwou, P.B.; Ayensu, W.K.; Ninashvili, N.; Sutton, D. Environmental exposure to mercury and its toxicopathologic implications for public health. Environ. Toxicol. 2003, 18, 149–175. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, M.C.N.; Oikawa, T.; Vieira, J.L.; Gomes, M.S.; Guimaraes, G.A.; Crespo-Lopez, M.E. Comparative study of human exposure to mercury in riverside communities in the Amazon region. Braz. J. Med. Biol. Res. 2006, 39, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Castoldi, A.F.; Johansson, C.; Onishchenko, N.; Coccini, T.; Roda, E.; Vahter, M.; Ceccatelli, S.; Manzo, L. Human developmental neurotoxicity of methylmercury: Impact of variables and risk modifiers. Regul. Toxicol. Pharm. 2008, 51, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Arctic Monitoring and Assessment Programme (AMAP). AMAP Assessment 2002: Human Health in the Arctic; AMAP: Oslo, Norway, 2003. [Google Scholar]
- Mergler, D.; Anderson, H.A.; Chan, H.M.; Mahaffey, K.R.; Murray, M.; Sakamoto, M.; Stern, A.H. Methylmercury exposure and health effects in humans: A worldwide concern. Ambio 2007, 36, 3–11. [Google Scholar] [CrossRef]
- Rae, D.; Graham, L. Benefits of Reducing Mercury in Saltwater Ecosystems: A Case Study; BiblioBazaar: Charleston, SC, USA, 2012. [Google Scholar]
- Arctic Monitoring and Assessment Programme (AMAP). AMAP Assessment 2009: Human Health in the Arctic; AMAP: Oslo, Norway, 2009. [Google Scholar]
- Hong, C.; Yu, X.; Liu, J.; Cheng, Y.; Rothenberg, S.E. Low-level methylmercury exposure through rice ingestion in a cohort of pregnant mothers in rural China. Environ. Res. 2016, 150, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Gibb, H.; O’Leary, K.G. Mercury Exposure and Health Impacts among Individuals in the Artisanal and Small-Scale Gold Mining Community: A Comprehensive Review. Environ. Health Perspect. 2014, 122, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Pirrone, N.; Mason, R. (Eds.) Mercury Fate and Transport in the Global Atmosphere: Emissions, Measurements and Models; Springer: Dordrecht, The Netherlands, 2009.
- Arctic Monitoring and Assessment Programme (AMAP), United Nations Environment Programme (UNEP). Global Mercury Assessment: Sources, Emissions, Releases and Environmental Transport; UNEP Chemicals Branch: Geneva, Switzerland, 2013. [Google Scholar]
- Lindberg, S.E.; Brooks, S.; Lin, C.-J.; Scott, K.J.; Landis, M.S.; Stevens, R.K.; Goodsite, M.; Richter, A. Dynamic oxidation of gaseous mercury in the Arctic troposphere at polar sunrise. Environ. Sci. Technol. 2002, 36, 1245–1256. [Google Scholar] [CrossRef] [PubMed]
- Sunderland, E.M.; Mason, R.P. Human impacts on open ocean mercury concentrations. Glob. Biogeochem. Cycle 2007. [Google Scholar] [CrossRef]
- Mason, R. Mercury emissions from natural sources and their importance in the global mercury cycle. In Mercury Fate and Transport in the Global Atmosphere; Pirrone, N., Mason, R., Eds.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Pacyna, E.G.; Pacyna, J.M.; Sundseth, K.; Munthe, J.; Kindbom, K.; Wilson, S.; Steenhuisen, F.; Maxson, P. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos. Environ. 2010, 44, 2487–2499. [Google Scholar] [CrossRef]
- Amos, H.M.; Jacob, D.J.; Holmes, C.D.; Fisher, J.A.; Wang, Q.; Yantosca, R.M.; Corbitt, E.S.; Galarneau, E.; Rutter, A.P.; Gustin, M.S.; et al. Gas-particle partitioning of atmospheric Hg(II) and its effect on global mercury deposition. Atmos. Chem. Phys. 2012, 12, 591–603. [Google Scholar] [CrossRef] [Green Version]
- Lei, H.; Liang, X.-Z.; Wuebbles, D.J.; Tao, Z. Model analyses of atmospheric mercury: Present air quality and effects of transpacific transport on the United States. Atmos. Chem. Phys. 2013, 13, 10807–10825. [Google Scholar] [CrossRef]
- Driscoll, C.T.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a global pollutant: Sources, pathways, and effects. Environ. Sci. Technol. 2013, 47, 4967–4983. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, H.H.; Liu, J.F.; Tong, Y.D.; Ou, L.B.; Zhang, W.; Hu, D.; Chen, C.; Wang, X.J. Intercontinental transport and deposition patterns of atmospheric mercury from anthropogenic emissions. Atmos. Chem. Phys. 2014, 14, 10163–10176. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Selin, N.E.; Soerensen, A.L.; Angot, H.; Artz, R.; Brooks, S.; Brunke, E.-G.; Conley, G.; Dommergue, A.; Ebinghaus, R.; et al. Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling. Atmos. Chem. Phys. 2015, 15, 7103–7125. [Google Scholar] [CrossRef] [Green Version]
- Cohen, M.D.; Draxler, R.R.; Artz, R.S.; Blanchard, P.; Gustin, M.S.; Han, Y.; Holsen, T.M.; Jaffe, D.A.; Kelley, P.; Lei, H.; et al. Modeling the global atmospheric transport and deposition of mercury to the Great Lakes. Elementa Sci. Anthropocene 2016. [Google Scholar] [CrossRef]
- Gustin, M.S.; Evers, D.C.; Bank, M.S.; Hammerschmidt, C.R.; Pierce, A.; Basu, N.; Blum, J.; Bustamante, P.; Chen, C.; Driscoll, C.T.; et al. Importance of integration and implementation of emerging and future mercury research into the Minamata Convention. Environ. Sci. Technol. 2016, 50, 2767–2770. [Google Scholar] [CrossRef] [PubMed]
- Karagas, M.; Choi, A.L.; Oken, E.; Horvat, M.; Schoeny, R.; Kamai, E.; Grandjean, P.; Korrick, S. Evidence on the human health effects of low level methylmercury exposure. Environ. Health Perspect. 2012, 120, 799–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundseth, K.; Pacyna, J.M.; Banel, A.; Pacyna, E.G.; Rautio, A. Climate change impacts on environmental and human exposure to mercury in the Arctic. Int. J. Environ. Res. Public Health 2015, 12, 3579–3599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambio. Mercury pollution, special issue. Ambio 2007, 1, 1–116. [Google Scholar]
- Sundseth, K.; Pacyna, J.M.; Pacyna, E.G.; Munthe, J.; Belhaj, M.; Åström, S. Economic Benefits from Decreased Mercury Emissions: Projections for 2020. J. Clean. Prod. 2010, 18, 386–394. [Google Scholar] [CrossRef]
- Stern, G.; Macdonald, R.W.; Outridge, P.M.; Wilson, S.; Chételat, J.; Cole, A.; Hintelmann, H.; Loseto, L.L.; Steffen, A.; Wang, F.; et al. How does climate change influence arctic mercury? Sci. Total Environ. 2012, 414, 22–42. [Google Scholar] [CrossRef] [PubMed]
- Arctic Monitoring and Assessment Programme (AMAP). AMAP Assessment 2011: Mercury in the Arctic; AMAP: Oslo, Norway, 2011. [Google Scholar]
- Pacyna, J.M. Report on Policy Evaluation and Strategies for Adaptation and Abatement; The EU ArcRisk Project; The Norwegian Institute for Air Research (NILU): Kjeller, Norway, 2013. [Google Scholar]
- Arctic Monitoring and Assessment Programme (AMAP), United Nations Environment Programme (UNEP). The Global Atmospheric Mercury Assessment: Sources, Emissions and Transport; UNEP Chemical Branch: Geneva, Switzerland, 2008. [Google Scholar]
- Pacyna, J.M.; Travnikov, O.; De Simone, F.; Hedgecock, I.M.; Sundseth, K.; Pacyna, E.G.; Steenhuisen, F.; Pirrone, N.; Munthe, J.; Kindbom, K. Current and future levels of mercury atmospheric pollution on global scale. Atmos. Chem. Phys. 2016, 16, 12495–12511. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). Study on Mercury Sources and Emissions, and Analysis of Cost and Effectiveness of Control Measures “UNEP Paragraph 29 Study”; UNEP, Division of Technology, Industry and Economics (DTIE) Chemicals Branch: Geneva, Switzerland, 2010. [Google Scholar]
- Nriagu, J.O.; Pacyna, J.M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 1988, 333, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R.B.; Friedli, H.R.; Leaner, J.; Mason, R.; Mukherjee, A.B.; Stracher, G.B.; Streets, D.G.; et al. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos. Chem. Phys. 2010, 10, 5951–5964. [Google Scholar] [CrossRef]
- Pacyna, J.M.; Pacyna, E.G.; Steenhuisen, F.; Wilson, S. Mapping 1995 global anthropogenic emissions of mercury. Atmos. Environ. 2003, 37, 109–117. [Google Scholar] [CrossRef]
- Pacyna, E.G.; Pacyna, J.M.; Steenhuisen, F.; Wilson, S. Global anthropogenic mercury emission inventory for 2000. Atmos. Environ. 2006, 40, 4048–4063. [Google Scholar] [CrossRef]
- Streets, D.G.; Devane, M.K.; Lu, Z.; Bond, T.C.; Sunderland, E.M.; Jacob, D.J. All-Time Releases of Mercury to the Atmosphere from Human Activities. Environ. Sci. Technol. 2011, 45, 10485–10491. [Google Scholar] [CrossRef] [PubMed]
- Rafaj, P.; Cofala, J.; Kuenen, J.; Wyrwa, A.; Zysk, J. Benefits of European climate policies for mercury air pollution. Atmosphere 2014, 5, 45–59. [Google Scholar] [CrossRef] [Green Version]
- Wilson, S.; Munthe, J.; Sundseth, K.; Kindbom, K.; Maxson, P.; Pacyna, J.; Steenhuisen, F. Updating Historical Global Inventories of Anthropogenic Mercury Emissions to Air; AMAP Technical Report No. 3 (2010); Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway, 2010. [Google Scholar]
- Pacyna, J.M.; Sundseth, K.; Pacyna, E.G.; Jozewicz, W.; Munthe, J.; Belhaj, M.; Astrom, S. An Assessment of costs and Benefits Associated with Mercury Emission Reductions from Major Anthropogenic Sources. J. Air Waste Manag. Assoc. 2010, 60, 302–315. [Google Scholar] [CrossRef] [PubMed]
- Mason, R.P.; Sheu, G.R. Role of the Ocean in the Global Mercury Cycle. Glob. Biogeochem. Cycles 2002. [Google Scholar] [CrossRef]
- Seigneur, C.; Vijayaraghavan, K.; Lohman, K.; Karamchandani, P.; Scott, C. Global source attribution for mercury deposition in the United States. Environ. Sci. Technol. 2004, 38, 555–569. [Google Scholar] [CrossRef] [PubMed]
- Mason, R.P.; Choi, A.L.; Fitzgerald, W.F.; Hammerschmidt, C.R.; Lamborg, C.H.; Soerensen, A.L.; Sunderland, E.M. Mercury biogeochemical cycling in the ocean and policy implications. Environ. Res. 2012, 119, 101–117. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.; Wuebbles, D.J.; Liang, X.-Z.; Tao, Z.; Olsen, S.; Artz, R.; Ren, X.; Cohen, M. Projections of atmospheric mercury levels and their effect on air quality in the United States. Atmos. Chem. Phys. 2014, 14, 783–795. [Google Scholar] [CrossRef] [Green Version]
- Selin, N.E.; Jacob, D.J.; Yantosca, R.M.; Strode, S.; Jaegle, L.; Sunderland, E.M. Global 3-D land-ocean-atmosphere model for mercury: Present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition. Glob. Biogeochem. Cycle 2008. [Google Scholar] [CrossRef]
- Amos, H.M.; Jacob, D.J.; Streets, D.G.; Sunderland, E.M. Legacy impacts of all-time anthropogenic emissions on the global mercury cycle. Glob. Biogeochem. Cycle 2013, 27, 410–421. [Google Scholar] [CrossRef] [Green Version]
- Streets, D.G.; Zhang, Q.; Wu, Y. Projections of Global Mercury Emissions in 2050. Environ. Sci. Technol. 2009, 43, 2983–2988. [Google Scholar] [CrossRef] [PubMed]
- Rafaj, P.; Bertok, I.; Cofala, J.; Schöpp, W. Scenarios of global mercury emissions from anthropogenic sources. Atmos. Environ. 2013, 79, 472–479. [Google Scholar] [CrossRef]
- Giang, A.; Stokes, L.C.; Streets, D.G.; Corbitt, E.S.; Selin, N.E. Impacts of the Minamata Convention on Mercury Emissions and Global Deposition from Coal-Fired Power Generation in Asia. Environ. Sci. Technol. 2015, 49, 5326–5335. [Google Scholar] [CrossRef] [PubMed]
- Travnikov, O.; Ilyin, I. The EMEP/MSC-E Mercury Modeling System. In Mercury Fate and Transport in the Global Atmosphere: Emissions, Measurements, and Models; Pirrone, N., Mason, R.P., Eds.; Springer: New York, NY, USA, 2009; pp. 571–587. [Google Scholar]
- Corbitt, E.S.; Jacob, D.J.; Holmes, C.D.; Streets, D.G.; Sunderland, E.M. Global source-receptor relationships for mercury deposition under present-day and 2050 emissions scenarios. Environ. Sci. Technol. 2011, 45, 10477–10484. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, R.W. Beaufort Sea. In Encyclopedia of the Arctic; Nuttall, M., Ed.; Taylor & Francis: New York, NY, USA, 2005; pp. 219–221. [Google Scholar]
- Goodsite, M.E.; Plane, J.M.C.; Skov, H. A theoretical study of the oxidation of Hg0 to HgBr2 in the troposphere. Environ. Sci. Technol. 2004, 38, 1772–1776. [Google Scholar] [CrossRef] [PubMed]
- Christensen, J.H.; Brandt, J.; Frohn, L.M.; Skov, H. Modelling of Mercury in the Arctic with the Danish Eulerian Hemispheric Model. Atmos. Chem. Phys. 2004, 4, 2251–2257. [Google Scholar] [CrossRef]
- Mahaffey, K.R.; Clickner, R.F.; Bodurow, C.C. Blood organic mercury and dietary mercury intake: National Health and Nutrition Examination Survey, 1999 and 2000. Environ. Health Perspect. 2004, 112, 562–670. [Google Scholar] [CrossRef] [PubMed]
- Mahaffey, K.R.; Clickner, R.F.; Jeffries, R.A. Adult women’s blood mercury concentrations vary regionally in USA: Association with patterns of fish consumption (NHANES 1999–2004). Environ. Health Perspect. 2009, 117, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Sunderland, E.; Corbitt, E.; Cossa, D.; Evers, D.; Friedli, H.; Krabbenhoft, D.; Levin, L.; Pirrone, N.; Rice, G. Impacts of intercontinental mercury transport on human & ecological health. In Hemispheric Transport of Air Pollution 2010 Part B: Mercury; Air Pollution Studies No. 16; Pirrone, N., Keating, T., Eds.; United Nations: Geneva, Switzerland, 2010; pp. 97–144. [Google Scholar]
- Bandtsaeter, A.; Knutsen, H. ArcRisk Deliverable D39. Effects of Climate/Global Change on Future Dietary Exposure in ArcRisk Study Groups; Norwegian Institute of Public Health: Oslo, Norway, 2013. [Google Scholar]
- Cain, A.; Jacobson, D. Great Lakes Mercury Emission Reduction Strategy. Available online: http://www.glrppr.org/glmst/Mercury-Emissions-Reduction-Strategy.pdf (accessed on 20 January 2017).
- Wayland, M.; Hobson, K.A.; Sirois, J. Environmental Contaminants in Colonial Water birds from Great Slave Lake, NWT: Spatial, Temporal and Food-chain Considerations. Arctic 2000, 53, 221–233. [Google Scholar] [CrossRef]
- Riget, F.; Braune, B.; Bignert, A.; Wilson, S.; Aars, J.; Born, E.; Dam, M.; Dietz, R.; Evans, M.; Evans, T.; et al. Temporal trends of Hg in Arctic biota, an update. Sci. Total Environ. 2011, 409, 3520–3526. [Google Scholar] [CrossRef] [PubMed]
- Sundseth, K.; Pacyna, J.M.; Pacyna, E.G.; Pirrone, N.; Cinirella, S. GMOS (Global Mercury Observation System) Deliverable D2.1. Report and Database for Current Emissions and Emission Factors for the 2005, Including Mapping of Total Mercury Emissions and Its Chemical Forms; Norwegian Institute for Air Research (NILU): Kjeller, Norway, 2011. [Google Scholar]
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sundseth, K.; Pacyna, J.M.; Pacyna, E.G.; Pirrone, N.; Thorne, R.J. Global Sources and Pathways of Mercury in the Context of Human Health. Int. J. Environ. Res. Public Health 2017, 14, 105. https://doi.org/10.3390/ijerph14010105
Sundseth K, Pacyna JM, Pacyna EG, Pirrone N, Thorne RJ. Global Sources and Pathways of Mercury in the Context of Human Health. International Journal of Environmental Research and Public Health. 2017; 14(1):105. https://doi.org/10.3390/ijerph14010105
Chicago/Turabian StyleSundseth, Kyrre, Jozef M. Pacyna, Elisabeth G. Pacyna, Nicola Pirrone, and Rebecca J. Thorne. 2017. "Global Sources and Pathways of Mercury in the Context of Human Health" International Journal of Environmental Research and Public Health 14, no. 1: 105. https://doi.org/10.3390/ijerph14010105
APA StyleSundseth, K., Pacyna, J. M., Pacyna, E. G., Pirrone, N., & Thorne, R. J. (2017). Global Sources and Pathways of Mercury in the Context of Human Health. International Journal of Environmental Research and Public Health, 14(1), 105. https://doi.org/10.3390/ijerph14010105