Toward an Assessment of the Global Inventory of Present-Day Mercury Releases to Freshwater Environments
Abstract
:1. Introduction
2. Methods
2.1. Primary Anthropogenic Release Estimates
2.2. Background Releases from Terrestrial Systems
2.3. Remobilization from Terrestrial Systems
3. Results and Discussion
3.1. Releases of Hg to Aquatic Systems
3.1.1. Primary Releases of Anthropogenic Hg
3.1.2. Background Terrestrial Releases
3.1.3. Remobilization of Hg from Contaminated Terrestrial Systems
3.1.4. Releases Associated with Land Management Practices
3.2. Freshwater Releases in the Context of Global Hg Cycle
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Amos, H.M.; Jacob, D.J.; Streets, D.G.; Sunderland, E.M. Legacy impacts of all-time anthropogenic emissions on the global mercury cycle. Glob. Biogeochem. Cycles 2013, 27, 410–421. [Google Scholar] [CrossRef] [Green Version]
- Amos, H.M.; Sonke, J.E.; Obrist, D.; Robins, N.; Hagan, N.; Horowitz, H.M.; Mason, R.P.; Witt, M.; Hedgecock, I.M.; Corbit, E.S.; et al. Observational and Modeling Constraints on Global Anthropogenic Enrichment of Mercury. Environ. Sci. Technol. 2015, 49, 4036–4047. [Google Scholar] [CrossRef] [PubMed]
- Hsu-Kim, H.; Kucharzyk, K.H.; Zhang, T.; Deshusses, M.A. Mechanisms Regulating Mercury Bioavailability for Methylating Microorganisms in the Aquatic Environment: A Critical Review. Environ. Sci. Technol. 2013, 47, 2441–2456. [Google Scholar] [CrossRef] [PubMed]
- Pacyna, E.G.; Pacyna, J.M.; Sundseth, K.; Munthe, J.; Kindbom, K.; Wilson, S.; Steenhuisen, F.; Maxson, P. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos. Environ. 2010, 44, 2487–2499. [Google Scholar] [CrossRef]
- Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R.B.; Friedli, H.T.; Leaner, J.; Mason, R.; Mukherjee, A.B.; Stracher, G.B.; Streets, D.G.; et al. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos. Chem. Phys. 2010, 10, 5951–5964. [Google Scholar] [CrossRef]
- Streets, D.G.; Devane, M.K.; Lu, Z.F.; Bond, T.C.; Sunderland, E.M.; Jacob, D.J. All-time releases of mercury to the atmosphere from human activities. Environ. Sci. Technol. 2011, 45, 10485–10491. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, H.M.; Jacob, D.J.; Amos, H.M.; Streets, D.G.; Sunderland, E.M. Historical Mercury Releases from Commercial Products: Global Environmental Implications. Environ. Sci. Technol. 2014, 48, 10242–10250. [Google Scholar] [CrossRef] [PubMed]
- Cossa, D.; Coquery, M.; Gobeil, C.; Martin, J.M. Mercury Fluxes at the Ocean Margins. In Global and Regional Mercury Cycles: Sources, Fluxes and Mass Balances; Baeyens, W., Ebinghaus, R., Vasiliev, O., Eds.; Springer: Dordrecht, The Netherlands, 1996; pp. 229–247. [Google Scholar]
- Sunderland, E.M.; Mason, R. Human impacts on open ocean mercury concentrations. Glob. Biogeochem. Cycles 2007, 21. [Google Scholar] [CrossRef]
- Amos, H.M.; Jacob, D.J.; Kocman, D.; Horowitz, H.M.; Zhang, Y.; Dutkiewicz, S.; Horvat, M.; Corbitt, E.S.; Krabbenhoft, D.P.; Sunderland, E.M. Global Biogeochemical Implications of Mercury Discharges from Rivers and Sediment Burial. Environ. Sci. Technol. 2014, 48, 9514–9522. [Google Scholar] [CrossRef] [PubMed]
- Kocman, D.; Horvat, M.; Pirrone, N.; Cinnirella, S. Contribution of contaminated sites to the global mercury budget. Environ. Res. 2013, 125, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, C.T.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environ. Sci. Technol. 2013, 47, 4967–4983. [Google Scholar] [CrossRef] [PubMed]
- Barringer, J.L.; Szabo, Z.; Reilly, P.M. Occurrence and Mobility of Mercury in Groundwater. In Current Perspectives in Contaminant Hydrology and Water Resources Sustainability; InTech: Rijeka, Croatia, 2013; pp. 117–149. [Google Scholar]
- Horvat, M.; Covelli, S.; Faganeli, J.; Logar, M.; Mandič, V.; Rajar, R.; Širca, A.; Žagar, D. Mercury in contaminated coastal environments, a case study: The Gulf of Trieste. Sci. Total Environ. 1999, 238, 43–56. [Google Scholar] [CrossRef]
- Carroll, R.W.H.; Warwick, J.J.; James, A.I.; Miller, J.R. Modeling erosion and overbank deposition during extreme flood conditions on the Carson River, Nevada. J. Hydrol. 2004, 297, 1–21. [Google Scholar] [CrossRef]
- Liu, M.; Chen, L.; Wang, X.; Zhang, W.; Tong, Y.; Ou, L.; Xie, H.; Shen, H.; Ye, X.; Deng, C.; et al. Mercury Export from Mainland China to Adjacent Seas and Its Influence on the Marine Mercury Balance. Environ. Sci. Technol. 2016, 50, 6224–6232. [Google Scholar] [CrossRef] [PubMed]
- Holmes, C.D.; Jacob, D.J.; Corbitt, E.S.; Mao, J.; Yang, X.; Talbot, R.; Slemr, F. Global atmospheric model for mercury including oxidation by bromine atoms. Atmos. Chem. Phys. 2010, 10, 12037–12057. [Google Scholar] [CrossRef] [Green Version]
- AMAP/UNEP. Technical Background Report for the Global Mercury Assessment 2013; Arctic Monitoring and Assessment Program: Oslo, Norway; UNEP Chemicals Branch: Geneva, Switzerland, 2013. [Google Scholar]
- UNEP. Toolkit for Identification and Quantification of Mercury Sources, Guideline for Inventory Level 1, version 1.2; UNEP Chemicals Branch: Geneva, Switzerland, 2013. [Google Scholar]
- UNEP. Toolkit for Identification and Quantification of Mercury Sources, Reference Report and Guideline for Inventory Level 2, version 1.2; UNEP Chemicals Branch: Geneva, Switzerland, 2013; p. 328. [Google Scholar]
- Steenhuisen, F.; Wilson, S. Identifying and characterizing major emission point sources as a basis for geospatial distribution of mercury emissions inventories. Atmos. Environ. 2015, 112, 167–177. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, W.; Wang, X.; Chen, L.; Wang, H.; Luo, Y.; Zhang, H.; Shen, H.; Tong, Y.; Ou, L.; et al. Mercury Release to Aquatic Environments from Anthropogenic Sources in China from 2001 to 2012. Environ. Sci. Technol. 2016, 50, 8169–8177. [Google Scholar] [CrossRef] [PubMed]
- GWSP. Digital Water Atlas, Map 46: Domestic Water Use (V1.0). Available online: http://atlas.gwsp.org (accessed on 30 January 2017).
- UNEP. The State of the Marine Environment—Trends and Processes; United Nations Environment Programme and the Global Programme of Action for the Protection of the Marine Environment from Land-based Activities (GPA) of the United Nations Environment Programme (UNEP); UNEP/GPA Coordination Office: The Hague, Netherlands, 2006. [Google Scholar]
- Sato, T.; Qadir, M.; Yamamoto, S.; Endo, T.; Zahoor, A. Global, regional, and country level need for data on wastewater generation, treatment, and use. Agric. Water Manag. 2013, 130, 1–13. [Google Scholar] [CrossRef]
- Mugan, T.J. Quantification of total mercury discharges from publicly owned treatment works to Wisconsin surface waters. Water Environ. Res. 1996, 68, 229–234. [Google Scholar] [CrossRef]
- Balogh, S.J.; Nollet, Y.H. Mercury mass balance at a wastewater treatment plant employing sludge incineration with offgas mercury control. Sci. Total Environ. 2008, 389, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Dean, J.D.; Mason, R. Estimation of Mercury Bioaccumulation Potential from Wastewater Treatment Plants in Receiving Waters: Phase 1; WERF Report 05-WEM-1CO; IWA Publishing: London, UK, 2009. [Google Scholar]
- Telmer, K.H.; Veiga, M.M. World emissions of mercury from artisanal and small scale gold mining. In Mercury Fate and Transport in the Global Atmosphere: Emissions, Measurements and Models; Mason, R., Pirrone, N., Eds.; Springer: New York, NY, USA, 2009; pp. 131–172. [Google Scholar]
- Fekete, B.M.; Vörösmarty, C.J.; Grabs, W. Global Composite Runoff Fields Based on Observed River Discharge and Simulated Water Balances; UNH/GRDC Composite Runoff Fields v1.0; Complex Systems Research Center, University of New Hampshire: Durham, NH, USA, 2000. [Google Scholar]
- Grigal, D.F. Inputs and outputs of mercury from terrestrial watersheds: A review. Environ. Rev. 2002, 10, 1–39. [Google Scholar] [CrossRef]
- Brigham, M.E.; Wentz, D.A.; Aiken, G.R.; Krabbenhoft, D.P. Mercury Cycling in Stream Ecosystems. 1. Water Column Chemistry and Transport. Environ. Sci. Technol. 2009, 43, 2720–2725. [Google Scholar] [CrossRef] [PubMed]
- Schuster, P.F.; Striegl, R.G.; Aiken, G.R.; Krabbenhoft, D.P.; Dewild, J.F.; Butler, K.; Kamark, B.; Dornblaser, M. Mercury Export from the Yukon River Basin and Potential Response to a Changing Climate. Environ. Sci. Technol. 2011, 45, 9262–9267. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, W.; Amiotte-Suchet, P.; Probst, J.L. ISLSCP Initiative II Collection. Data Set. In ISLSCP II Global River Fluxes of Carbon and Sediments to the Ocean; Hall, F.G., Collatz, G., Meeson, B., Los, S., Brown de Colstoun, E., Landis, D., Eds.; Oak Ridge National Laboratory Distributed Active Archive Center: Oak Ridge, TN, USA, 2011. [Google Scholar]
- USGS. Mineral Resources Data System; US Geological Survey: Reston, VA, USA, 2005. Available online: http://mrdata.usgs.gov/mrds (accessed on 30 January 2017).
- Gosselin, P.; Dube, B. Gold Deposits of the World: Distribution, Geological Parameters and Gold Content; Open File 4895; Geological Survey of Canada: Quebec City, QC, Canada, 2005. [Google Scholar]
- Selin, N.E.; Jacob, D.J.; Yantosca, R.M.; Strode, S.; Jaeglé, L.; Sunderland, E.M. Global 3-D land-ocean-atmosphere model for mercury: Present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition. Glob. Biogeochem. Cycles 2008, 22. [Google Scholar] [CrossRef]
- Lacerda, L.D.; de Souza, M.; Ribeiro, M.G. The effects of land use change on mercury distribution in soils of Alta Floresta, Southern Amazon. Environ. Pollut. 2004, 129, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Millán, R.; Gamarra, R.; Schmid, T.; Sierra, M.J.; Quejido, A.J.; Sánchez, D.M.; Cardona, A.I.; Fernández, M.; Vera, R. Mercury content in vegetation and soils of the Almadén mining area (Spain). Sci. Total Environ. 2006, 368, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Tomiyasu, T.; Matsuyama, A.; Imura, R.; Kodamatani, H.; Miyamoto, J.; Kono, Y.; Kocman, D.; Kotnik, J.; Fajon, V.; Horvat, M. The distribution of total and methylmercury concentrations in soils near the Idrija mercury mine, Slovenia, and the dependence of the mercury concentrations on the chemical composition and organic carbon levels of the soil. Environ. Earth Sci. 2012, 65, 1309–1322. [Google Scholar] [CrossRef]
- Dai, Z.H.; Feng, X.B.; Zhang, C.; Shang, L.H.; Qiu, G.L. Assessment of mercury erosion by surface water in Wanshan mercury mining area. Environ. Res. 2013, 125, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Tetra Tech. Guadalupe River Watershed Mercury TMDL Project; Final Conceptual Model; Prepared for San Francisco Bay Regional Water Quality Control Board: Lafayette, CA, USA, 2005.
- Feng, X.; Qiu, G. Mercury pollution in Guizhou, Southwestern China—An overview. Sci. Total Environ. 2008, 400, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Trip, L.; Thorleifson, M. The Canadian Mercury Cell Chlor-alkali Industry: Mercury Emissions and Status of Facilities 1935–1996; Report to Transboundary Air Issues Branch; Environment Canada: Hull, QC, Canada, 1998. [Google Scholar]
- Mahan, S.; Savitz, J. Cleaning up: Taking Mercury-Free Chlorine Production to the Bank; Oceana: Washington, DC, USA, 2007. [Google Scholar]
- UNEP. Global Estimate of Global Mercury Cell Chlorine Capacity for 2010. Available online: http://web.unep.org/chemicalsandwaste/global-mercury-partnership/mercury-reduction-chlor-alkali-sector/reports-and-publications (accessed on 30 January 2017).
- Ludwig, W.; Amiotte-Suchet, P.; Probst, J.L. ISLSCP Initiative II Collection. Data set. In ISLSCP II Atmospheric Carbon Dioxide Consumption by Continental Erosion; Hall, F.G., Collatz, G., Meeson, B., Los, S., Brown de Colstoun, E., Landis, D., Eds.; Oak Ridge National Laboratory Distributed Active Archive Center: Oak Ridge, TN, USA, 2011. [Google Scholar]
- Biester, H.; Muller, G.; Scholer, H.F. Estimating distribution and retention of mercury in three different soils contaminated by emissions from chlor-alkali plants: Part I. Sci. Total Environ. 2002, 284, 177–189. [Google Scholar] [CrossRef]
- Sterckeman, T.; Douay, F.; Proix, N.; Fourrier, H.; Perdrix, E. Assessment of the contamination of cultivated soils by eighteen trace elements around smelters in the North of France. Water Air Soil Pollut. 2002, 135, 173–194. [Google Scholar] [CrossRef]
- Li, G.H.; Feng, X.B.; Qiu, G.L.; Bi, X.Y.; Li, Z.G.; Zhang, C.; Wang, D.Y.; Shang, L.H.; Guo, Y.N. Environmental mercury contamination of an artisanal zinc smelting area in Weining County, Guizhou, China. Environ. Pollut. 2008, 154, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Crawford, D.W.; Bonnevie, N.L.; Wenning, R.J. Sources of Pollution and Sediment Contamination in Newark Bay, New-Jersey. Ecotoxicol. Environ. Saf. 1995, 30, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Sunderland, E.M.; Amirbahman, A.; Burgess, N.M.; Dalziel, J.; Harding, G.; Jones, S.H.; Kamai, E.; Karagas, M.R.; Shi, X.; Chen, C.Y. Mercury sources and fate in the Gulf of Maine. Environ. Res. 2012, 119, 27–41. [Google Scholar] [CrossRef] [PubMed]
- OSPAR. Mercury Losses from the Chlor-alkali Industry in 2009, Including an Assessment of 2008 and 2009 Data and Trends; OSPAR Commission: London, UK, 2011. [Google Scholar]
- WCC. World Chlorine Council Report to UNEP on Chlor-Alkali Partnership—Data 2013. Available online: http://web.unep.org/chemicalsandwaste/global-mercury-partnership/mercury-reduction-chlor-alkali-sector/reports-and-publications (accessed on 30 January 2017).
- ANPI. Australian National Pollution Inventory. Available online: www.npi.gov.au (accessed on 30 January 2017).
- NPRI. National Pollution Release Inventory. Available online: www.ec.gc.ca/inrp-npri (accessed on 30 January 2017).
- E-PRTR. European Pollutant Release and Transfer Register. Available online: http://prtr.ec.europa.eu (accessed on 30 January 2017).
- OGJ. Oil & Gas Journal 2006 Worldwide Refining Survey. Available online: http://bbs.keyhole.com/ubb/showthreaded.php/Cat/0/Number/1197575/page (accessed on 30 January 2017).
- Winch, S.; Fortin, D.; Lean, D.R.S.; Parsons, M. Factors affecting methylmercury levels in surficial tailings from historical Nova Scotia gold mines. Geomicrobiol. J. 2008, 25, 112–129. [Google Scholar] [CrossRef]
- Parsons, M.B.; Hall, G.E.M.; Dalziel, J.; Tordon, R.; Winch, S.; Doe, K.G.; Mroz, M.; Palace, V.P. Environmental impacts of historical mercury amalgamation at gold mines in Halifax, Nova Scotia, Canada. In Proceedings of the 10th International Conference on Mercury as a Pollutant, Halifax, NS, Canada, 25 July 2011.
- Telmer, K.; Costa, M.; Simões Angélica, R.; Araujo, E.S.; Maurice, Y. The source and fate of sediment and mercury in the Tapajós River, Pará, Brazilian Amazon: Ground- and space-based evidence. J. Environ. Manag. 2006, 81, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Smith-Downey, N.V.; Sunderland, E.M.; Jacob, D.J. Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: Insights from a new global model. J. Geophys. Res. Atmos. 2010, 115, G03008. [Google Scholar] [CrossRef]
- Canil, D.; Crockford, P.W.; Rossin, R.; Telmer, K. Mercury in some arc crustal rocks and mantle peridotites and relevance to the moderately volatile element budget of the Earth. Chem. Geol. 2015, 396, 134–142. [Google Scholar] [CrossRef]
- Mason, R. Mercury and Lead. In Still Only One Earth; Harrison, R., Hester, R., Eds.; Issues in Environmental Science and Technology; Royal Society of Chemistry: London, UK, 2015; Volume 40, pp. 107–149. [Google Scholar]
- Hissler, C.; Probst, J.L. Chlor-alkali industrial contamination and riverine transport of mercury: Distribution and partitioning of mercury between water, suspended matter, and bottom sediment of the Thur River, France. Appl. Geochem. 2006, 21, 1837–1854. [Google Scholar] [CrossRef] [Green Version]
- Bishop, K.; Allan, C.; Bringmark, L.; Garcia, E.; Hellsten, S.; Hogbom, L.; Johansson, K.; Lomander, A.; Meili, M.; Munthe, J.; et al. The Effects of Forestry on Hg Bioaccumulation in Nemoral/Boreal Waters and Recommendations for Good Silvicultural Practice. Ambio 2009, 38, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, R.; Meili, M.; Lambertsson, L.; von Bromssen, C.; Bishop, K. The Effects of Forest Harvest Operations on Mercury and Methylmercury in Two Boreal Streams: Relatively Small Changes in the First Two Years prior to Site Preparation. Ambio 2009, 38, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Shanley, J.B.; Bishop, K. Mercury cycling in terrestrial watersheds. In Mercury in the Environment: Pattern and Process; Bank, M.B., Ed.; University of California Press: Berkeley, CA, USA, 2012; pp. 119–142. [Google Scholar]
- Eklof, K.; Schelker, J.; Sorensen, R.; Meili, M.; Laudon, H.; von Bromssen, C.; Bishop, K. Impact of Forestry on Total and Methyl-Mercury in Surface Waters: Distinguishing Effects of Logging and Site Preparation. Environ. Sci. Technol. 2014, 48, 4690–4698. [Google Scholar] [CrossRef] [PubMed]
- Mainville, N.; Webb, J.; Lucotte, M.; Davidson, R.; Betancourt, O.; Cueva, E.; Mergler, D. Decrease of soil fertility and release of mercury following deforestation in the Andean Amazon, Napo River Valley, Ecuador. Sci. Total Environ. 2006, 368, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Beliveau, A.; Lucotte, M.; Davidson, R.; Lopes, L.O.D.; Paquet, S. Early Hg mobility in cultivated tropical soils one year after slash-and-burn of the primary forest, in the Brazilian Amazon. Sci. Total Environ. 2009, 407, 4480–4489. [Google Scholar] [CrossRef] [PubMed]
- Roulet, M.; Lucotte, M.; Farella, N.; Serique, G.; Coelho, H.; Passos, C.J.S.; da Silva, E.D.; de Andrade, P.S.; Mergler, D.; Guimaraes, J.R.D.; et al. Effects of recent human colonization on the presence of mercury in Amazonian ecosystems. Water Air Soil Pollut. 1999, 112, 297–313. [Google Scholar] [CrossRef]
- Shaoshan, A.Z.; Zhang, F.; Van Pelt, S.; Hamer, U.; Makeschin, F. Soil quality degradation processes along a deforestation chronosequence in the Ziwuling area, China. Catena 2008, 75, 248–256. [Google Scholar]
- Lacerda, L.D.; Bastos, W.R.; Almeida, M.D. The impacts of land use changes in the mercury flux in the Madeira River, Western Amazon. An. Acad. Bras. Cienc. 2012, 84, 69–78. [Google Scholar] [CrossRef] [PubMed]
- GWSP. Digital Water Atlas, Map 52: Change in Discharge due to Deforestation (V1.0). Available online: http://atlas.gwsp.org (accessed on 30 January 2017).
- FAO. Global Forest Resources Assessment 2010; Food and Agriculture Organisation of the United Nations: Rome, Italy, 2010; p. 340. [Google Scholar]
- Balogh, S.J.; Meyer, M.; Land, D.; Johnson, K. Transport of mercury in three contrasting river basins. Environ. Sci. Technol. 1998, 32, 456–462. [Google Scholar] [CrossRef]
- Balogh, S.; Meyer, M.; Johnson, K. Diffuse and point source mercury inputs to the Mississippi, Minnesota, and St. Croix Rivers. Sci. Total Environ. 1998, 231, 109–113. [Google Scholar] [CrossRef]
- Smart, N.A. Use and residues of mercury compounds in agriculture. In Residue Reviews/Rückstands-Berichte; Gunther, F., Ed.; Springer: New York, NY, USA, 1968; Volume 23, pp. 1–36. [Google Scholar]
- WHO. Children’s Exposure to Mercury Compounds; WHO Document Production Services: Geneva, Switzerland, 2010; p. 104. [Google Scholar]
- Milieu. Environmental, Economic and Social Impacts of the Use of Sewage Sludge on Land. Part I: Overview Report; Report prepared for the European Commission under Study Contract DG ENV.G.4/ETU/2008/0076r; Milieu: Brussels, Belgium, 2010; p. 16. [Google Scholar]
- BIO Intelligence Service. Study on the Potential for Reducing Mercury Pollution from Dental Amalgam and Batteries; Final Report Prepared for the European Commission–DG ENV; BIO Intelligence Service: Paris, France, 2012; p. 245. [Google Scholar]
- McBride, M.B.; Richards, B.K.; Steenhuis, T.; Spiers, G. Long-term leaching of trace elements in a heavily sludge-amended silty clay loam soil. Soil Sci. 1999, 164, 613–623. [Google Scholar] [CrossRef]
- Siebert, S.; Döll, P. Irrigation water use—A global perspective. In Global Change: Enough Water for all? Lozán, J.L., Graßl, H., Hupfer, P., Menzel, L., Schönwiese, C.D., Eds.; Universität Hamburg: Hamburg, Germany, 2007; pp. 104–107. [Google Scholar]
- Lawson, N.M.; Mason, R.P. Concentration of mercury, methylmercury, cadmium, lead, arsenic, and selenium in the rain and stream water of two contrasting watersheds in Western Maryland. Water Res. 2001, 35, 4039–4052. [Google Scholar] [CrossRef]
- Milliman, J.D.; Farnsworth, K.L. River Discharge to the Coastal Ocean: A Global Synthesis; Cambridge University Press: Cambridge, UK, 2011; p. 384. [Google Scholar]
- Zhang, Y.; Jacob, D.J.; Dutkiewicz, S.; Amos, H.M.; Long, M.S.; Sunderland, E.M. Biogeochemical drivers of the fate of riverine mercury discharged to the global and Arctic oceans. Glob. Biogeochem. Cycles 2015, 29, 854–864. [Google Scholar] [CrossRef]
- Feller, M.C. Deforestation and nutrient loading to fresh waters. In River Ecosystem Ecology: A Global Perspective; Likens, G.E., Ed.; Academic Press: New York, NY, USA, 2010; pp. 221–291. [Google Scholar]
- Marvin, C.; Painter, S.; Rossmann, R. Spatial and temporal patterns in mercury contamination in sediments of the Laurentian Great Lakes. Environ. Res. 2004, 95, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Wiener, J.G.; Evers, D.C.; Gay, D.A.; Morrison, H.A.; Williams, K.A. Mercury contamination in the Laurentian Great Lakes region: Introduction and overview. Environ. Pollut. 2012, 161, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Bloom, N.S.; Gill, G.A.; Cappellino, S.; Dobbs, C.; McShea, L.; Driscoll, C.; Mason, R.; Rudd, J. Speciation and cycling of mercury in Lavaca Bay, Texas, sediments. Environ. Sci. Technol. 1999, 33, 7–13. [Google Scholar] [CrossRef]
- Tomiyasu, T.; Matsuyama, A.; Eguchi, T.; Fuchigami, Y.; Oki, K.; Horvat, M.; Rajar, R.; Akagi, H. Spatial variations of mercury in sediment of Minamata Bay, Japan. Sci. Total Environ. 2006, 368, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Mason, R.P.; Choi, A.L.; Fitzgerald, W.F.; Hammerschmidt, C.R.; Lamborg, C.H.; Soerensen, A.L.; Sunderland, E.M. Mercury biogeochemical cycling in the ocean and policy implications. Environ. Res. 2012, 119, 101–117. [Google Scholar] [CrossRef] [PubMed]
- Eckley, C.S.; Branfireun, B. Mercury mobilization in urban stormwater runoff. Sci. Total Environ. 2008, 403, 164–177. [Google Scholar] [CrossRef] [PubMed]
- Knightes, S.D.; Sunderland, E.M.; Craig Barber, M.; Johnston, J.M.; Ambrose, R.B. Application of ecosystem-scale fate and bioaccumulation models to predict fish mercury response times to changes in atmospheric deposition. Environ. Toxicol. Chem. 2009, 28, 881–893. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, C.T.; Han, Y.J.; Chen, C.Y.; Evers, D.C.; Lambert, K.F.; Holsen, T.M.; Kamman, N.C.; Munson, R.K. Mercury contamination in forest and freshwater ecosystems in the Northeastern United States. Bioscience 2007, 57, 17–28. [Google Scholar] [CrossRef]
- Harris, R.; Krabbenhoft, D.P.; Mason, R.; Murray, M.W.; Reash, R.; Saltman, T. Ecosystem Responses to Mercury Contamination: Indicators of Change; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Munthe, J.; Bodaly, R.A.; Branfireun, B.A.; Driscoll, C.T.; Gilmour, C.C.; Harris, R.; Horvat, M.; Lucotte, M.; Malm, O. Recovery of mercury-contaminated fisheries. Ambio 2007, 36, 33–44. [Google Scholar] [CrossRef]
- GMOS. Global Mercury Observation System. Available online: www.gmos.eu (accessed on 30 January 2017).
Source | Average (Range) Mg·a−1 |
---|---|
Background terrestrial | 230 (170–300) |
Primary anthropogenic | |
- Point sources | 220 (50–600) |
- ASGM * | 880 (500–1260) |
Remobilization from contaminated systems | 40 (10–80) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kocman, D.; Wilson, S.J.; Amos, H.M.; Telmer, K.H.; Steenhuisen, F.; Sunderland, E.M.; Mason, R.P.; Outridge, P.; Horvat, M. Toward an Assessment of the Global Inventory of Present-Day Mercury Releases to Freshwater Environments. Int. J. Environ. Res. Public Health 2017, 14, 138. https://doi.org/10.3390/ijerph14020138
Kocman D, Wilson SJ, Amos HM, Telmer KH, Steenhuisen F, Sunderland EM, Mason RP, Outridge P, Horvat M. Toward an Assessment of the Global Inventory of Present-Day Mercury Releases to Freshwater Environments. International Journal of Environmental Research and Public Health. 2017; 14(2):138. https://doi.org/10.3390/ijerph14020138
Chicago/Turabian StyleKocman, David, Simon J. Wilson, Helen M. Amos, Kevin H. Telmer, Frits Steenhuisen, Elsie M. Sunderland, Robert P. Mason, Peter Outridge, and Milena Horvat. 2017. "Toward an Assessment of the Global Inventory of Present-Day Mercury Releases to Freshwater Environments" International Journal of Environmental Research and Public Health 14, no. 2: 138. https://doi.org/10.3390/ijerph14020138
APA StyleKocman, D., Wilson, S. J., Amos, H. M., Telmer, K. H., Steenhuisen, F., Sunderland, E. M., Mason, R. P., Outridge, P., & Horvat, M. (2017). Toward an Assessment of the Global Inventory of Present-Day Mercury Releases to Freshwater Environments. International Journal of Environmental Research and Public Health, 14(2), 138. https://doi.org/10.3390/ijerph14020138