An Artificial Turf-Based Surrogate Surface Collector for the Direct Measurement of Atmospheric Mercury Dry Deposition
Abstract
:1. Introduction
2. Artificial Turf Surrogate Sampler Design
- Turf = turf extract concentration × volume of extraction solution;
- Throughfall = throughfall concentration × sample volume;
- Wet Deposition Contribution = volume weighted average precipitation concentration × (throughfall sample volume—rinse solution volume); and
- Collection Surface Area = 0.025687232 m−2.
3. Methods
3.1. Site Description
3.1.1. Michigan Studies
3.1.2. Florida Study
3.2. Cleaning Procedure
3.3. Sample Deployment
3.4. Sample Extraction and Analysis
3.5. Data Analysis
4. Results and Discussion
4.1. Performance Characteristics
4.1.1. Field Blanks
4.1.2. Extraction Efficiency
4.1.3. ATSS Total Dry Deposition Partitioning
4.1.4. ATSS Collocated Precision
4.1.5. SWSS versus ATSS Comparison
4.2. Urban Gradients and the Relative Importance of Hg Dry Deposition
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Guentzel, J.L.; Landing, W.M.; Gill, G.A.; Pollman, C.D. Atmospheric deposition of mercury in Florida: The FAMS Project (1992–1994). Water Air Soil Pollut. 1995, 80, 393–402. [Google Scholar] [CrossRef]
- Rea, A.W.; Keeler, G.J.; Scherbatskoy, T. The deposition of mercury in throughfall and litterfall in the Lake Champlain watershed: A short-term study. Atmos. Environ. 1996, 30, 3257–3263. [Google Scholar] [CrossRef]
- Dvonch, J.T.; Graney, J.R.; Keeler, G.J.; Stevens, R.K. Use of elemental tracers to source apportion mercury in south Florida precipitation. Environ. Sci. Technol. 1999, 33, 4522–4527. [Google Scholar] [CrossRef]
- Landis, M.S.; Keeler, G.J. Atmospheric Mercury Deposition to Lake Michigan during the Lake Michigan Mass Balance Study. Environ. Sci. Technol. 2002, 36, 4518–4524. [Google Scholar] [CrossRef] [PubMed]
- Dvonch, J.T.; Keeler, G.J.; Marsik, F.J. The influence of meteorological conditions on the wet deposition of mercury in southern Florida. J. Appl. Meteorol. 2005, 44, 1421–1435. [Google Scholar] [CrossRef]
- Hall, B.D.; Manolopoulos, H.; Hurley, J.P.; Schauer, J.J.; St. Louis, V.L.; Kenski, D.; Graydon, J.; Babiarz, C.L.; Cleckner, L.B.; Keeler, G.J. Methyl and total mercury in precipitation in the Great Lakes region. Atmos. Environ. 2005, 39, 7557–7569. [Google Scholar] [CrossRef]
- Keeler, G.J.; Dvonch, J.T.; Pirrone, N.; Mahaffey, K.R. Atmospheric Hg: A Decade of Observations in the Great Lakes. In Dynamics of Mercury Pollution on Regional and Global Scales; Springer: New York, NY, USA, 2005; pp. 611–636. [Google Scholar]
- Keeler, G.J.; Landis, M.S.; Norris, G.A.; Christianson, E.M.; Dvonch, J.T. Sources of mercury wet deposition in Eastern Ohio, USA. Environ. Sci. Technol. 2006, 40, 5874–5881. [Google Scholar] [CrossRef] [PubMed]
- Butler, T.J.; Cohen, M.D.; Vermeylen, F.O.M.; Likens, G.E.; Schmeltz, D.; Artz, R.S. Regional precipitation mercury trends in the eastern USA, 1998–2005: Declines in the Northeast and Midwest, no trend in the Southeast. Atmos. Environ. 2008, 42, 1582–1592. [Google Scholar] [CrossRef]
- Prestbo, E.M.; Gay, D.A. Wet deposition of mercury in the U.S. and Canada, 1996–2005: Results and analysis of the NADP mercury deposition network (MDN). Atmos. Environ. 2009, 43, 4223–4233. [Google Scholar] [CrossRef]
- Siudek, P.; Falkowska, L.; Urba, A. Bimodal variation in mercury wet deposition to the coastal zone of the southern Baltic. Atmos. Chem. Phys. Discuss. 2009, 9, 22773–22801. [Google Scholar] [CrossRef]
- White, E.M.; Keeler, G.J.; Landis, M.S. Spatial Variability of Mercury Wet Deposition in Eastern Ohio: Summertime Meteorological Case Study Analysis of Local Source Influences. Environ. Sci. Technol. 2009, 43, 4946–4953. [Google Scholar] [CrossRef] [PubMed]
- Risch, M.R.; Gay, D.A.; Fowler, K.K.; Keeler, G.J.; Backus, S.M.; Blanchard, P.; Barres, J.A.; Dvonch, J.T. Spatial patterns and temporal trends in mercury concentrations, precipitation depths, and mercury wet deposition in the North American Great Lakes region, 2002–2008. Environ. Pollut. 2012, 161, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, S.E.; Meyers, T.P.; Taylor, G.E.; Turner, R.R.; Schroeder, W.H. Atmosphere-surface exchange of mercury in a forest: Results of modeling and gradient approaches. J. Geophys. Res. 1992, 97, 2519–2528. [Google Scholar] [CrossRef]
- Kim, K.H.; Lindberg, S.E.; Meyers, T.P. Micrometeorological measurements of mercury vapor fluxes over background forest soils in Eastern Tennessee. Atmos. Environ. 1995, 29, 267–282. [Google Scholar] [CrossRef]
- Meyers, T.P.; Hall, M.E.; Lindberg, S.E.; Kim, K. Use of modified Bowen-ratio technique to measure fluxes of trace gases. Atmos. Environ. 1996, 30, 3321–3329. [Google Scholar] [CrossRef]
- Skov, H.; Brooks, S.B.; Goodsite, M.E.; Lindberg, S.E.; Meyers, T.P.; Landis, M.S.; Larsen, M.R.B.; Jensen, B.; McConville, G.; Christensen, J. Fluxes of reactive gaseous mercury measured with a newly developed method using relaxed eddy accumulation. Atmos. Environ. 2006, 40, 5452–5463. [Google Scholar] [CrossRef]
- Fritsche, J.; Wohlfahrt, G.; Ammann, C.; Zeeman, M.; Hammerle, A.; Obrist, D.; Alewell, C. Summertime elemental mercury exchange of temperate grasslands on an ecosystem-scale. Atmos. Chem. Phys. 2008, 8, 7709–7722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carpi, A.; Lindberg, S.E. Application of a Teflon dynamic flux chamber for quantifying soil mercury flux: Tests and results over background soil. Atmos. Environ. 1998, 32, 873–882. [Google Scholar] [CrossRef]
- Fu, X.; Feng, X.; Wang, S. Exchange fluxes of Hg between surfaces and atmosphere in the eastern flank of Mount Gongga, Sichuan province, southwestern China. J. Geophys. Res. 2008, 113, D20306. [Google Scholar] [CrossRef]
- Graydon, J.A.; St. Louis, V.L.; Lindberg, S.E.; Hintelmann, H.; Krabbenhoft, D.P. Investigation of mercury exchange between forest canopy vegetation and the atmosphere using a new dynamic chamber. Environ. Sci. Technol. 2006, 40, 4680–4688. [Google Scholar] [CrossRef] [PubMed]
- Iverfeldt, A. Hg in canopy throughfall and its relation to atmospheric dry deposition. Water Air Soil Pollut. 1991, 56, 553–564. [Google Scholar] [CrossRef]
- Lindberg, S.E.; Owens, J.G.; Stratton, W.J. Application of throughfall methods to estimate dry deposition of mercury. In Mercury Pollution: Integration and Synthesis; Watras, C.J., Huckabee, J.W., Eds.; Lewis Publishers: Boca Raton, FL, USA, 1994; pp. 261–271. [Google Scholar]
- Rea, A.W.; Lindberg, S.E.; Keeler, G.J. Assessment of Dry Deposition and Foliar Leaching of Mercury and Selected Trace Elements Based on Washed Foliar and Surrogate Surfaces. Environ. Sci. Technol. 2000, 34, 2418–2425. [Google Scholar] [CrossRef]
- St. Louis, V.L.; Rudd, J.W.M.; Kelly, C.A.; Hall, B.D.; Rolfhus, K.R.; Scott, K.J.; Lindberg, S.E.; Dong, W. Importance of the forest canopy to fluxes of methyl mercury and total mercury to boreal ecosystems. Environ. Sci. Technol. 2001, 35, 3089–3098. [Google Scholar] [CrossRef] [PubMed]
- Graydon, J.A.; St. Louis, V.L.; Hintelmann, H.; Lindberg, S.E.; Sandilands, K.A.; Rudd, J.W.; Kelly, C.A.; Hall, B.D.; Mowat, L.D. Long-term wet and dry deposition of total and methyl mercury in the remote boreal ecoregion of Canada. Environ. Sci. Technol. 2008, 42, 8345–8351. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Brook, J.R.; Vet, R. A revised parameterization for gaseous dry deposition in air-quality models. Atmos. Chem. Phys. 2003, 6, 2067–2082. [Google Scholar] [CrossRef]
- Poissant, L.; Pilote, M.; Xu, X.; Zhang, H.; Beauvais, C. Atmospheric mercury speciation and deposition in the Bay St. Francois wetlands. J. Geophys. Res. 2004, 109, D11301. [Google Scholar] [CrossRef]
- Lin, C.J.; Pongprueksaa, P.; Lindberg, S.E.; Pehkonend, S.O.; Byune, D.; Jang, C. Scientific uncertainties in atmospheric mercury models I: Model science evaluation. Atmos. Environ. 2006, 40, 2911–2928. [Google Scholar] [CrossRef]
- Marsik, F.J.; Keeler, G.J.; Landis, M.S. The dry-deposition of speciated mercury to the Florida Everglades: Measurements and modeling. Atmos. Environ. 2007, 41, 136–149. [Google Scholar] [CrossRef]
- Zhang, J.; Wright, L.P.; Blanchard, P. A review of current knowledge concerning dry deposition of atmospheric mercury. Atmos. Environ. 2009, 37, 5853–5864. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, Z.; Cheng, I.; Wright, L.P.; Olson, M.L.; Gay, D.A.; Risch, M.R.; Brooks, S.; Castro, M.S.; Conley, G.D.; et al. The estimated six-year mercury dry deposition across North America. Environ. Sci. Technol. 2016, 50, 12864–12873. [Google Scholar] [CrossRef] [PubMed]
- Businger, J.A. Evaluation of the accuracy with which dry deposition can be measured with current micrometeorological techniques. J. Clim. Appl. Meteorol. 1986, 25, 1100–1124. [Google Scholar] [CrossRef]
- Cobos, D.R.; Baker, J.M.; Nater, E.A. Conditional sampling for measuring mercury vapour fluxes. Atmos. Environ. 2002, 36, 4309–4321. [Google Scholar] [CrossRef]
- Yi, S.-M.; Holsen, T.M.; Noll, K.E. Comparison of dry deposition predicted from models and measured with a water surface sampler. Environ. Sci. Technol. 1997, 31, 272–278. [Google Scholar] [CrossRef]
- Shahin, U.M.; Holsen, T.M.; Odabasi, M. Dry deposition measured with a water surface sampler: A comparison to modeled results. Atmos. Environ. 2002, 36, 3267–3276. [Google Scholar] [CrossRef]
- Sakata, M.; Marumoto, K. Wet and dry deposition fluxes of mercury in Japan. Atmos. Environ. 2005, 39, 3139–3146. [Google Scholar] [CrossRef]
- Caldwell, C.A.; Swartzendruber, P.; Prestbo, E. Concentration and dry deposition of mercury species in arid south central New Mexico (2001–2002). Environ. Sci. Technol. 2006, 40, 7535–7540. [Google Scholar] [CrossRef] [PubMed]
- Lyman, S.N.; Gustin, M.S.; Prestbo, E.M.; Marsik, F.J. Estimation of Dry Deposition of Atmospheric Mercury in Nevada by Direct and Indirect Methods. Environ. Sci. Technol. 2007, 41, 1970–1976. [Google Scholar] [CrossRef] [PubMed]
- Lyman, S.N.; Gustin, M.S.; Prestbo, E.M.; Kilner, P.I.; Edgerton, E.; Hartsell, B. Testing and application of surrogate surfaces for understanding potential gaseous oxidized mercury dry deposition. Environ. Sci. Technol. 2009, 43, 6235–6241. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Liu, Y.; Holsen, T.M. Comparison between knife-edge and frisbee-shaped surrogate surfaces for making dry deposition measurements: Wind tunnel experiments and computational fluid dynamics (CFD) modeling. Atmos. Environ. 2011, 45, 4213–4219. [Google Scholar] [CrossRef]
- Lai, S.-O.; Huang, J.; Hopke, P.K.; Holsen, T.M. An evaluation of direct measurement techniques for mercury dry deposition. Sci. Total Environ. 2011, 409, 1320–1327. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.C.; Zhang, L.; Huang, C.S. Measurements of size-fractionated concentration and bulk dry deposition of atmospheric particulate bound mercury. Atmos. Environ. 2012, 61, 371–377. [Google Scholar] [CrossRef]
- Peterson, C.; Alishahi, M.; Gustin, M.S. Testing the use of passive sampling systems for understanding air mercury concentrations and dry deposition across Florida, USA. Sci. Total Environ. 2012, 424, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Sakata, M.; Marumoto, K. Dry Deposition Fluxes and Deposition Velocities of Trace Metals in the Tokyo Metropolitan Area Measured with a Water Surface Sampler. Environ. Sci. Technol. 2004, 38, 2190–2197. [Google Scholar] [CrossRef] [PubMed]
- Sakata, M.; Marumoto, K.; Narukawa, M.; Asakura, K. Mass Balance and Sources of Mercury in Tokyo Bay. J. Oceanogr. 2006, 62, 767–775. [Google Scholar] [CrossRef]
- Wu, Y.-L.; Davidson, C.I.; Dolske, D.A.; Sherwood, S.I. Dry deposition of atmospheric contaminants: The relative importance of aerodynamic, boundary layer, and surface resistances. Aerosol Sci. Technol. 1992, 16, 65–81. [Google Scholar] [CrossRef]
- Landis, M.S.; Keeler, G.J. Critical Evaluation of a Modified Automatic Wet-Only Precipitation Collector for Mercury and Trace Element Determinations. Environ. Sci. Technol. 1997, 31, 2610–2615. [Google Scholar] [CrossRef]
- Beier, C.; Gunderson, P. Atmospheric deposition to the edge of a spruce forest in Denmark. Environ. Pollut. 1989, 60, 257–271. [Google Scholar] [CrossRef]
- Beier, C. Atmospheric pollutants: Separation of gaseous and particulate dry deposition of sulfur at a forest edge in Denmark. J. Environ. Qual. 1991, 20, 460–466. [Google Scholar] [CrossRef]
- Draaijers, G.P.J.; Van Ek, R.; Bleuten, W. Atmospheric dry deposition in complex forest landscapes. Bound.-Layer Meteorol. 1994, 69, 343–366. [Google Scholar] [CrossRef]
- Weathers, K.C.; Cadenasso, M.L.; Pickett, S.T.S. Forest edges as nutrient and pollutant concentrators: Potential synergisms between fragmentation, forest canopies and the atmosphere. Conserv. Biol. 2001, 15, 1506–1514. [Google Scholar] [CrossRef]
- Davidson, C.I.; Miller, J.L.; Pleskow, M.A. The influence of surface structure on predicted particle dry deposition to natural grass canopies. Water Air Soil Pollut. 1982, 18, 25–43. [Google Scholar] [CrossRef]
- Liu, B.; Keeler, G.J.; Dvonch, J.T.; Barres, J.A.; Lynam, M.M.; Marsik, F.J.; Morgan, J.T. Temporal variability of mercury speciation in urban air. Atmos. Environ. 2007, 41, 1911–1923. [Google Scholar] [CrossRef]
- Gildmeister, A. Urban Atmospheric Mercury: The Impact of Local Sources on Deposition and Ambient Concentration in Detroit. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 17 August 2001. [Google Scholar]
- Landis, M.S.; Stevens, R.K.; Schaedlich, F.; Prestbo, E. Development and characterization of an annular denuder methodology for the measurement of divalent inorganic reactive gaseous mercury in ambient air. Environ. Sci. Technol. 2002, 36, 3000–3009. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Keeler, G.J.; Dvonch, J.T.; Barres, J.A.; Lynam, M.M.; Marsik, F.J.; Morgan, J.T. Urban-rural differences in atmospheric mercury speciation. Atmos. Environ. 2010, 44, 2013–2023. [Google Scholar] [CrossRef]
- Mukerjee, S.; Willis, R.D.; Walker, J.T.; Hammond, D.; Norris, G.A.; Smith, L.A.; Welch, D.P.; Peters, T.M. Seasonal effects in land use regression models for nitrogen dioxide, coarse particulate matter, and gaseous ammonia in Cleveland, Ohio. Atmos. Pollut. Res. 2012, 3, 352–361. [Google Scholar] [CrossRef]
- Sawvel, E.J.; Willis, R.; West, R.R.; Casuccio, G.S.; Norris, G.; Kumar, N.; Hammond, D.; Peters, T.M. Passive sampling to capture the spatial variability of coarse particles by composition in Cleveland, OH. Atmos. Environ. 2015, 105, 61–69. [Google Scholar] [CrossRef]
- Lin, J.-M.; Fang, G.-C.; Holsen, T.M.; Noll, K.E. A comparison of dry deposition modeled from size distribution data and measured with a smooth surface for total particle mass, lead and calcium in Chicago. Atmos. Environ. 1993, 27, 1131–1138. [Google Scholar] [CrossRef]
Blank Metric | Throughfall | Turf | Total |
---|---|---|---|
n | 6 | 6 | 6 |
Mean | 0.03 | 1.96 | 1.99 |
Standard Deviation | 0.02 | 1.12 | 1.12 |
Minimum | 0.01 | 0.52 | 0.56 |
Maximum | 0.05 | 3.07 | 3.09 |
Median | 0.03 | 2.31 | 2.33 |
Blank Metric | Throughfall | Turf | Total |
---|---|---|---|
n | 77 | 77 | 77 |
Mean | 0.07 | 0.77 | 0.84 |
Standard Deviation | 0.07 | 0.44 | 0.44 |
Minimum | 0.01 | 0.12 | 0.19 |
Maximum | 0.39 | 1.96 | 2.01 |
Median | 0.05 | 0.71 | 0.75 |
Site | n | ATSS Flux (ng·m−2·h−1) | SWSS Flux (ng·m−2·h−1) |
---|---|---|---|
Botanical Gardens | 3 | 1.56 | 0.26 |
Dearborn | 5 | 6.42 | 2.22 |
Detroit-Fort Street | 5 | 5.38 | 1.29 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hall, N.L.; Dvonch, J.T.; Marsik, F.J.; Barres, J.A.; Landis, M.S. An Artificial Turf-Based Surrogate Surface Collector for the Direct Measurement of Atmospheric Mercury Dry Deposition. Int. J. Environ. Res. Public Health 2017, 14, 173. https://doi.org/10.3390/ijerph14020173
Hall NL, Dvonch JT, Marsik FJ, Barres JA, Landis MS. An Artificial Turf-Based Surrogate Surface Collector for the Direct Measurement of Atmospheric Mercury Dry Deposition. International Journal of Environmental Research and Public Health. 2017; 14(2):173. https://doi.org/10.3390/ijerph14020173
Chicago/Turabian StyleHall, Naima L., Joseph Timothy Dvonch, Frank J. Marsik, James A. Barres, and Matthew S. Landis. 2017. "An Artificial Turf-Based Surrogate Surface Collector for the Direct Measurement of Atmospheric Mercury Dry Deposition" International Journal of Environmental Research and Public Health 14, no. 2: 173. https://doi.org/10.3390/ijerph14020173
APA StyleHall, N. L., Dvonch, J. T., Marsik, F. J., Barres, J. A., & Landis, M. S. (2017). An Artificial Turf-Based Surrogate Surface Collector for the Direct Measurement of Atmospheric Mercury Dry Deposition. International Journal of Environmental Research and Public Health, 14(2), 173. https://doi.org/10.3390/ijerph14020173