Non-Traditional Risk Factors of Albuminuria in the Pediatric Population: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Environmental Factors
3.2. Non-Transmissible Diseases
3.3. Transmissible Diseases
3.4. Uncommon and Congenital Nephropathies Causing Albuminuria
3.5. Congenital Urinary Tract Malformations
3.6. Demographic Factors
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Peterson, P.A.; Evrin, P.E.; Berggard, I. Differentiation of glomerular, tubular, and normal proteinuria: Determinations of urinary excretion of beta-2-macroglobulin, albumin, and total protein. J. Clin. Investig. 1969, 48, 1189–1198. [Google Scholar] [CrossRef] [PubMed]
- Parving, H.H.; Oxenbøll, B.; Svendsen, P.A.; Christiansen, J.S.; Andersen, A.R. Early detection of patients at risk of developing diabetic nephropathy. A longitudinal study of urinary albumin excretion. Acta Endocrinol. 1982, 100, 550–555. [Google Scholar] [PubMed]
- Losito, A.; Fortunati, F.; Zampi, I.; Del Favero, A. Impaired renal functional reserve and albuminuria in essential hypertension. Br. Med. J. (Clin. Res. Ed). 1988, 296, 1562–1564. [Google Scholar] [CrossRef]
- Chavers, B.M.; Simonson, J.; Michael, A.F. A solid phase fluorescent immunoassay for the measurement of human urinary albumin. Kidney Int. 1984, 25, 576–578. [Google Scholar] [CrossRef] [PubMed]
- Hillege, H.L.; Janssen, W.M.; Bak, A.A.; Diercks, G.F.; Grobbee, D.E.; Crijns, H.J.; Van Gilst, W.H.; De Zeeuw, D.; De Jong, P.E.; Prevend Study Group. Microalbuminuria is common, also in a nondiabetic, nonhypertensive population, and an independent indicator of cardiovascular risk factors and cardiovascular morbidity. J. Intern. Med. 2001, 249, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Murakami, M.; Yamamoto, H.; Ueda, Y.; Murakami, K.; Yamauchi, K. Urinary screening of elementary and junior high-school children over a 13-year period in Tokyo. Pediatr. Nephrol. 1991, 5, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Rademacher, E.R.; Sinaiko, A.R. Albuminuria in children. Curr. Opin. Nephrol. Hypertens. 2009, 18, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Van den Belt, S.M.; Gracchi, V.; de Zeeuw, D.; Heerspink, H.J. Comparison of urine collection methods for albuminuria assessment in young children. Clin. Chim. Acta 2016, 458, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Hirschler, V.; Molinari, C.; Maccallini, G.; Aranda, C. Is albuminuria associated with obesity in school children? Pediatr. Diabetes 2010, 11, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Larkins, N.; Teixera-Pinto, A.; Craig, J. The population-based prevalence of albuminuria in children. Pediatr. Nephrol. 2017, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Glassock, R. Postural (orthostatic) proteinuria: No causes for concern. N. Engl. J. Med. 1981, 305, 639–641. [Google Scholar] [CrossRef] [PubMed]
- Brandt, J.; Jacobs, J.; Raissy, H.; Kelly, F.; Staples, A.; Kaufman, E.; Wong, C. Orthostatic proteinuria and the spectrum of diurnal variability of urinary protein excretion in healthy children. Pediatr. Nephrol. 2010, 25, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Psychiatr. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Wilson, N.K.; Chuang, J.C.; Iachan, R.; Lyu, C.; Gordon, S.M.; Morgan, M.K.; Ozkaynak, H.; Sheldon, L.S. Design and sampling methodology for a large study of preschool children’s aggregate exposures to persistent organic pollutants in their everyday environments. J. Expo Anal. Environ. Epidemiol. 2004, 14, 260–274. [Google Scholar] [CrossRef] [PubMed]
- Carwile, J.L.; Ye, X.; Zhou, X.; Calafat, A.M.; Michels, K.B. Canned soup consumption and urinary bisphenol A: A randomized crossover trial. JAMA 2011, 306, 2218–2220. [Google Scholar] [CrossRef] [PubMed]
- Braun, J.M.; Kalkbrenner, A.E.; Calafat, A.M.; Yolton, K.; Ye, X.; Dietrich, K.N.; Lanphear, B.P. Impact of early-life bisphenol A exposure on behavior and executive function in children. Pediatrics 2011, 128, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Trasande, L.; Attina, T.M.; Trachtman, H. Bisphenol A exposure is associated with low-grade urinary albumin excretion in children of the United States. Kidney Int. 2013, 83, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Kataria, A.; Trasande, L.; Trachtman, H. The effects of environmental chemicals on renal function. Nat. Rev. Nephrol. 2015, 11, 610–625. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.J.; Chen, B.H.; Wu, C.F.; Wang, S.L.; Huang, P.C.; Tsai, Y.C.; Chen, M.L.; Ho, C.K.; Hsiung, C.A.; Wu, M.T. Intake of phthalate-tainted foods and microalbuminuria in children: The 2011 Taiwan food scandal. Environ. Int. 2016, 89–90, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Trasande, L.; Sathyanarayana, S.; Trachtman, H. Dietary phthalates and low-grade albuminuria in U.S. children and adolescents. Clin. J. Am. Soc. Nephrol. 2014, 9, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Chan, I.H.; Kong, A.P.; Leung, T.F.; Tsui, T.K.; Cheung, R.C.; Osaki, R.; Ho, C.S.; Wong, G.W.; Wong, C.K.; Lam, C.W.; et al. Cadmium and lead in Hong Kong school children. Pathology 2012, 44, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Noonan, C.W.; Sarasua, S.M.; Campagna, D.; Kathman, S.J.; Lybarger, J.A.; Mueller, P.W. Effects of exposure to low levels of environmental cadmium on renal biomarkers. Environ. Health Perspect. 2002, 110, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas-González, M.; Osorio-Yáñez, C.; Gaspar-Ramírez, O.; Pavković, M.; Ochoa-Martínez, A.; López-Ventura, D.; Medeiros, M.; Barbier, O.C.; Pérez-Maldonado, I.N.; Sabbisetti, V.S.; et al. Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1. Environ. Res. 2016, 150, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Al-Saleh, I.; Al-Sedairi, A.; Elkhatib, R. Effect of mercury (Hg) dental amalgam fillings on renal and oxidative stress biomarkers in children. Sci. Total Environ. 2012, 431, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Kong, A.P.; Xiao, K.; Choi, K.C.; Wang, G.; Chan, M.H.; Ho, C.S.; Chan, I.; Wong, C.K.; Chan, J.C.; Szeto, C.C. Associations between microRNA (miR-21, 126, 155 and 221), albuminuria and heavy metals in Hong Kong Chinese adolescents. Clin. Chim. Acta 2012, 413, 1053–1057. [Google Scholar] [CrossRef] [PubMed]
- Hogan, S.L.; Vupputuri, S.; Guo, X.; Cai, J.; Colindres, R.E.; Heiss, G.; Coresh, J. Association of cigarette smoking with albuminuria in the United States: The third National Health and Nutrition Examination Survey. Ren. Fail. 2007, 29, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Omoloja, A.; Jerry-Fluker, J.; Ng, D.K.; Abraham, A.G.; Furth, S.; Warady, B.A.; Mitsnefes, M. Secondhand smoke exposure is associated with proteinuria in children with chronic kidney disease. Pediatr. Nephrol. 2013, 28, 1243–1251. [Google Scholar] [CrossRef] [PubMed]
- García-Esquinas, E.; Loeffler, L.F.; Weaver, V.M.; Fadrowski, J.J.; Navas-Acien, A. Kidney function and tobacco smoke exposure in U.S. adolescents. Pediatrics 2013, 131, e1415–e1423. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, S.N.; Göethel, G.; Baierle, M.; Barth, A.; Brucker, N.; Charão, M.F.; Moro, A.M.; Gauer, B.; Sauer, E.; Durgante, J.; et al. Environmental exposure and effects on health of children from a tobacco-producing region. Environ. Sci. Pollut. Res. Int. 2017, 24, 2851–2865. [Google Scholar] [CrossRef] [PubMed]
- Becton, L.J.; Kalpatthi, R.V.; Rackoff, E.; Disco, D.; Orak, J.K.; Jackson, S.M.; Shatat, I.F. Prevalence and clinical correlates of microalbuminuria in children with sickle cell disease. Pediatr. Nephrol. 2010, 25, 1505–1511. [Google Scholar] [CrossRef] [PubMed]
- McPherson, Y.M.; Jabbar, S.F.; Osunkwo, I.; Clement, L.; Lane, P.A.; Eckman, J.R.; Guasch, A. Chronic kidney disease and albuminuria in children with sickle cell disease Chronic kidney disease and albuminuria in children with sickle cell disease. Clin. J. Am. Soc. Nephrol. 2011, 6, 2628–2633. [Google Scholar] [CrossRef] [PubMed]
- Ranque, B.; Menet, A.; Diop, I.B.; Thiam, M.M.; Diallo, D.; Diop, S.; Diagne, I.; Sanogo, I.; Kingue, S.; Chelo, D.; et al. Early renal damage in patients with sickle cell disease in sub-Saharan Africa: A multinational, prospective, cross-sectional study. Lancet Haematol. 2014, 1, e64–e73. [Google Scholar] [CrossRef]
- Di Bonito, P.; Sanguigno, E.; Forziato, C.; Di Fraia, T.; Moio, N.; Cavuto, L.; Sibilio, G.; Iardino, M.R.; Di Carluccio, C.; Capaldo, B. Glomerular filtration rate and cardiometabolic risk in an outpatient pediatric population with high prevalence of obesity. Obes. Silver Spring 2014, 22, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Lurbe, E.; Torro, M.I.; Alvarez, J.; Aguilar, F.; Fernandez-Formoso, J.A.; Redon, J. Prevalence and factors related to urinary albumin excretion in obese youths. J. Hypertens. 2013, 31, 2230–2236. [Google Scholar] [CrossRef] [PubMed]
- Radhakishun, N.N.; van Vliet, M.; von Rosenstiel, I.A.; Beijnen, J.H.; Diamant, M. Limited value of routine microalbuminuria assessment in multi-ethnic obese children. Pediatr. Nephrol. 2013, 28, 1145–1149. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, S.; McCulloch, C.; Brakeman, P.; Portale, A.; Hsu, C.Y. Being overweight modifies the association between cardiovascular risk factors and microalbuminuria in adolescents. Pediatrics 2008, 121, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Varlami, V.; Malakasioti, G.; Alexopoulos, E.I.; Theologi, V.; Theophanous, E.; Liakos, N.; Daskalopoulou, E.; Gourgoulianis, K.; Kaditis, A.G. Low-grade albuminuria in children with obstructive sleep apnea. J. Sleep Res. 2013, 22, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Gheissari, A.; Hashemipour, M.; Khosravi, P.; Adibi, A. Different aspects of kidney function in well-controlled congenital hypothyroidism. J. Clin. Res. Pediatr. Endocrinol. 2012, 4, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Golden, M.H.; Brooks, S.E.; Ramdath, D.D.; Taylor, E. Effacement of glomerular foot processes in kwashiorkor. Lancet 1990, 336, 1472–1474. [Google Scholar] [CrossRef]
- Wami, W.M.; Nausch, N.; Midzi, N.; Gwisai, R.; Mduluza, T.; Woolhouse, M.; Mutapi, F. Identifying and evaluating field indicators of urogenital schistosomiasis-related morbidity in preschool-aged children. PLoS Negl. Trop. Dis. 2015, 9. [Google Scholar] [CrossRef] [PubMed]
- Russell Stothard, J.; Sousa-Figueiredo, J.C.; Simba Khamis, I.; Garba, A.; Rollinson, D. Urinary schistosomiasis-associated morbidity in schoolchildren detected with urine albumin-to-creatinine ratio (UACR) reagent strips. J. Pediatr. Urol. 2009, 5, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Sousa-Figueiredo, J.C.; Basáñez, M.G.; Khamis, I.S.; Garba, A.; Rollinson, D.; Stothard, J.R. Measuring morbidity associated with urinary schistosomiasis: Assessing levels of excreted urine albumin and urinary tract pathologies. PLoS Negl. Trop. Dis. 2009, 3. [Google Scholar] [CrossRef] [PubMed]
- Copelovitch, L.; Sam Ol, O.; Taraquinio, S.; Chanpheaktra, N. Childhood nephrotic syndrome in Cambodia: An association with gastrointestinal parasites. J. Pediatr. 2010, 156, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Jung, O.; Ditting, T.; Gröne, H.J.; Geiger, H.; Hauser, I.A. Acute interstitial nephritis in a case of Ascaris lumbricoides infection. Nephrol. Dial. Transplant. 2004, 19, 1625–1628. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Kumar, V.; Yadav, A.K.; Iyengar, S.; Bhalla, A.; Sharma, N.; Aggarwal, R.; Jain, S.; Jha, V. Scrub typhus is an under-recognized cause of acute febrile illness with acute kidney injury in India. PLoS Negl. Trop. Dis. 2014, 8. [Google Scholar] [CrossRef] [PubMed]
- Elnojomi, N.A.; Musa, A.M.; Younis, B.M.; Elfaki, M.E.; El-Hassan, A.M.; Khalil, E.A. Surrogate markers of subtle renal injury in patients with visceral leishmaniasis. Saudi J. Kidney Dis. Transpl. 2010, 21, 872–875. [Google Scholar] [PubMed]
- Kwak, B.O.; Chung, S.; Kim, K.S. Microalbuminuria in children with urinary tract infection. Korean J. Pediatr. 2010, 53, 840–844. [Google Scholar] [CrossRef] [PubMed]
- Karlén, J.; Linné, T.; Wikstad, I.; Aperia, A. Incidence of microalbuminuria in children with pyelonephritic scarring. Pediatr. Nephrol. 1996, 10, 705–708. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Gonzalez, M.A.; Lucas, M.; Mata, F.; Delgado, F. Microalbuminuria as renal marker in recurrent acute tonsillitis and tonsillar hypertrophy in children. Int. J. Pediatr. Otorhinolaryngol. 1999, 50, 119–124. [Google Scholar] [CrossRef]
- Hanh Tien, N.T.; Lam, P.K.; Duyen, H.T.; Ngoc, T.V.; Ha, P.T.; Kieu, N.T.; Simmons, C.; Wolbers, M.; Wills, B. Assessment of microalbuminuria for early diagnosis and risk prediction in dengue infections. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.P.; Filler, G.; Dwight, P.; Clark, W.F. Chronic renal disease is more prevalent in patients with hemolytic uremic syndrome who had a positive history of diarrhea. Kidney Int. 2010, 78, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.X.; Clark, W.F.; Salvadori, M.; Macnab, J.; Suri, R.S.; Haynes, R.B.; Matsell, D. Walkerton Health Study Investigators. Microalbuminuria three years after recovery from Escherichia coli O157 hemolytic uremic syndrome due to municipal water contamination. Kidney Int. 2005, 67, 1476–1482. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.X.; Salvadori, M.; Okell, J.M.; Thiessen-Philbrook, H.R.; Suri, R.S.; Filler, G.; Moist, L.; Matsell, D.; Clark, W.F. Albuminuria and estimated GFR 5 years after Escherichia coli O157 hemolytic uremic syndrome: An update. Am. J. Kidney Dis. 2008, 51, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Ergüven, M.; Emeksiz, C.; Deveci, M.; Ozlü, S.G. Relation between microalbuminuria and gene mutations in familial Mediterranean fever. Turk. J. Pediatr. 2008, 50, 326–330. [Google Scholar] [PubMed]
- De Lucas, C.; Nocea, A.; San, R.J.; Espínola, B.; Ecija, J.L.; Vázquez Martul, M. Solitary kidney. Study of renal morphology and function in 95 children. Nefrologia 2006, 26, 56–63. [Google Scholar] [PubMed]
- Shirzai, A.; Yildiz, N.; Biyikli, N.; Ustunsoy, S.; Benzer, M.; Alpay, H. Is microalbuminuria a risk factor for hypertension in children with solitary kidney? Pediatr. Nephrol. 2014, 29, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Kolvek, G.; Podracka, L.; Rosenberger, J.; Stewart, R.E.; van Dijk, J.P.; Reijneveld, S.A. Solitary functioning kidney in children—A follow-up study. Kidney Blood Press Res. 2014, 39, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Sharp, C.; Johnson, A.; Gabow, P. Factors relating to urinary protein excretion in children with autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 1998, 9, 1908–1914. [Google Scholar] [PubMed]
- Cadnapaphornchai, M.A.; McFann, K.; Strain, J.D.; Masoumi, A.; Schrier, R.W. Prospective change in renal volume and function in children with ADPKD. Clin. J. Am. Soc. Nephrol. 2009, 4, 820–829. [Google Scholar] [CrossRef] [PubMed]
- Selistre, L.; de Souza, V.; Ranchin, B.; Hadj-Aissa, A.; Cochat, P.; Dubourg, L. Early renal abnormalities in children with postnatally diagnosed autosomal dominant polycystic kidney disease. Pediatr. Nephrol. 2012, 27, 1589–1593. [Google Scholar] [CrossRef] [PubMed]
- Lama, G.; Tedesco, M.A.; Graziano, L.; Calabrese, E.; Grassia, C.; Natale, F.; Pacileo, G.; Rambaldi, P.F.; Esposito-Salsano, M. Reflux nephropathy and hypertension: Correlation with the progression of renal damage. Pediatr. Nephrol. 2003, 18, 241–245. [Google Scholar] [PubMed]
- González-Celedon, C.; Bistori, M.; Tullus, K. Progression of chronic renal failure in children with dysplasic kidneys. Pediatr Nephrol. 2007, 22, 1014–1020. [Google Scholar] [CrossRef] [PubMed]
- Davies, A.G.; Postlethwaite, R.J.; Price, D.A.; Burn, J.L.; Houlton, C.A.; Fielding, B.A. Urinary albumin excretion in school children. Arch. Dis. Child. 1984, 59, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Gracchi, V.; van den Belt, S.M.; Küpers, L.K.; Corpeleijn, E.; de Zeeuw, D.; Heerspink, H.J. Prevalence and distribution of (micro)albuminuria in toddlers. Nephrol. Dial. Transplant. 2015, 31, 1686–1692. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Yang, H.; Luo, J.; Zhang, G.; Li, S.; Wang, M.; Tang, X.; Wang, Z.; Xu, Z.; Li, Q. Age-and gender-specific reference values for urine albumin/creatinine ratio in children of southwest China. Clin. Chim. Acta 2014, 431, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Trachtenberg, F.; Barregard, L. The effect of age, sex, and race on urinary markers of kidney damage in children. Am. J. Kidney Dis. 2007, 50, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Iacobelli, S.; Loprieno, S.; Bonsante, F.; Latorre, G.; Esposito, L.; Gouyon, J.B. Renal function in early childhood in very low birthweight infants. Am. J. Perinatol. 2007, 24, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Macaskill, P.; Hodson, E.M.; Daylight, J.; Williams, R.; Kearns, R.; Vukasin, N.; Lyle, D.M.; Craig, J.C. Beginning the trajectory to ESKD in adult life: Albuminuria in Australian aboriginal children and adolescents. Pediatr. Nephrol. 2017, 32, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Haysom, L.; Williams, R.; Hodson, E.; Roy, L.P.; Lyle, D.; Craig, J.C. Early chronic kidney disease in Aboriginal and non-Aboriginal Australian children: Remoteness, socioeconomic disadvantage or race? Kidney Int. 2007, 71, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Kwak, B.O.; Lee, S.T.; Chung, S.; Kim, K.S. Microalbuminuria in normal Korean children. Yonsei Med. J. 2011, 52, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work GroupKDIGO clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013, 3, 1–150.
- Haysom, L.; Williams, R.; Hodson, E.; Lopez-Vargas, P.; Roy, L.P.; Lyle, D.; Craig, J.C. Diagnostic accuracy of urine dipsticks for detecting albuminuria in indigenous and non-indigenous children in a community setting. Pediatr. Nephrol. 2009, 24, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Hogg, R.J. Screening for CKD in children: A global controversy. Clin. J. Am. Soc. Nephrol. 2009, 4, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Sekhar, D.L.; Wang, L.; Hollenbeak, C.S.; Widome, M.D.; Paul, I.M. A cost-effectiveness analysis of screening urine dipsticks in well-child care. Pediatrics 2010, 125, 660–663. [Google Scholar] [CrossRef] [PubMed]
Key-Words Combination | Number of Hints | Final Selection | |
---|---|---|---|
PubMed | Albuminuria, risk factor and children | 298 | 59 |
PubMed | Albuminuria, risk factor and non-diabetic children | 87 | 12 |
PubMed | Albuminuria and non-diabetic preschoolers | 291 | 31 |
Author (Year) Country [ref] | Study Design | Sample (Age) | Sample and Method (Albuminuria) |
---|---|---|---|
Trasande (2013) USA [17] | Cross-sectional analyses | N = 710 (6–19 years) | First morning urine sample. Solid-phase fluorescent immunoassay |
Tsai (2016) China [19] | Cross-sectional analyses | N = 184 (<10 years) | Spot urine sample. Radioimmunoassay (RIA) using albumin RIA kit |
Trasande (2014) USA [20] | Cross-sectional | N = 667 (6–19 years) | First morning urine sample. Solid-phase fluorescent immunoassay |
Chan (2012) China [21] | Cross-sectional | N = 3102 (1–21 years) | Spot urine sample. Immunoturbidimetric assay |
Noonan (2002) USA [22] | Case-control | N = 159 (6–17 years) | Spot urine sample. Enzyme immunosorbent assay |
Cardenas (2016) Mexico [23] | Cross-sectional sampling | N = 107 (5–12 years) | Spot urine sample. Turbidimetry method on Radox Daytona |
Kong (2012) China [25] | Cohort | N = 120 (12–19 years) | Morning urine sample. Immunoturbidimetric assay |
Omologa (2013) USA [27] | Cohort | N = 366 (1–16 years) | Spot urine sample. Method not described |
Nascimento (2017) Brazil [29] | Cohort | N = 66 (6–12 years) | Two urine samples 6 months apart. Immunoturbidimetric assay |
Becton (2010) USA [30] | Cross-sectional | N = 90 (2–18 years) | Two urine samples 6 months apart. Immunoturbidimetric assay |
McPherson (2011) USA [31] | Cross-sectional | N = 410 (2–21 years) | Spot urine sample. Radioimmunoassay (RIA) |
Ranque (2014); five countries in sub-Saharan Africa [32] | Cross-sectional | N = 2582 (N = 527 <10 years) | Spot urine sample. HemoCue Albumin 20 system or Siemens Clinitek StatusAnalyzer |
Di Bonito (2014) Italy [33] | Cross-sectional | N = 901 (6–16 years) | First morning urine sample. Kinetic nephelometric method. |
Lurbe (2013) Spain [34] | Cross-sectional | N = 134 (9–18 years) | First morning urine sample. Immunonephelometric assay |
Radhakishun (2013) The Netherlands [35] | Cross-sectional | N = 408 (3–19 years) | Morning urine sample. Immunochemistry system |
Nguyen (2013) USA [36] | Cross-sectional | N = 2515 (12–19 years) | Morning urine sample. Solid-phase fluorescent immunoassay |
Varlami (2013) Greece [37] | Case-control | N = 129 (2–14 years) | Two urine samples: 10 p.m. and 8 a.m. h. Immunonephelometric assay |
Wami (2015) Zimbabwe [40] | Cross-sectional | N = 298 (1–10 years) | Morning urine sample. Clinitek Microalbumin Reagent Strips |
Stothard (2008) Zanzibar [41] | Cross-sectional | N = 66 (9–15 years) | Mid-morning urine sample. Hemastix_reagent strips and Microalbustix_ reagent strips |
Sousa-Figueiredo (2009) Unguja, Tanzania [42] | Cross-sectional | N = 140 (9–15 years) | Mid-morning urine sample. Albumin-HemoCue photometer |
Elnojomi (2010) Sudan [46] | Cross-sectional | N = 88 (children age not available) | 24-h urine sample. Turbidimetric kit and ELISA |
Karlen (1996) Sweden [48] | Cross-sectional | N = 57 (1.7–17.9 years) | Four urine collection periods lasting 30 min each were obtained in every subject. Solid-phase radioimmunological assay |
Lopez-Gonzalez (1999) Spain [49] | Cohort | N = 90 (1.9–16 years) | Two 24-h urine samples 2 months apart. Laser nephelometry |
Hanh Thien (2013) Vietnam [50] | Prospective descriptive study | N = 429 (5–15 years) | Spot urine sample. ELISA using rabbit anti-human albumin polyclonal antibodies and a human serum albumin standard |
Sharma (2010) Canada [51] | Cohort | N = 48 (3–18 years) | Spot urine samples. Immunoassay |
Garg (2005) Canada [52] | Cohort | N = 19 cases (1–5 years) N = 38 controls | Spot urine sample. Solid-phase competitive chemiluminescent enzyme immunoassay |
Garg (2008) Canada [53] | Cohort | N = 19 cases (4–8 years) N = 64 controls | Two-first morning urine samples. Image Beckman Coulter immunoassay |
Ergüven (2008) Turkey [54] | Cross-sectional | N = 50 cases (3–19 years) N=20 controls (3–17 years) | 24-h urine sample. Immunoturbidimetric assay |
De Lucas (2006) Spain [55] | Prospective | N = 95 (1–17 years) | Spot urine samples. Method not described |
Shirzai (2014) Turkey [56] | Cross-sectional | N = 44 cases (6–16 years) N = 25 controls (5–10 years) | 24-h urine sample. Nephelometry |
Kolvek (2014) Slovakia [57] | Prospective follow-up study | N = 42 (mean 11.3 years) | 24-h urine sample. Method not described |
Sharp (1998) USA [58] | Cross-sectional | N = 103 cases (mean 11.2 years) N = 86 controls (mean 10.6 years) | Spot urine sample. Radioimmunoassay (RIA) |
Cadnapaphornchai (2009) USA [59] | Clinical Trial | N = 85 (4–21 years) | Two 24-h urine sample. Method not described |
Selistre (2012) France [60] | Cross-sectional | N = 52 (1–17 years) | Second-morning urine sample. Nephelometry, BM2 |
Lama (2003) Italy [61] | Retrospective | N = 100 (mean 11.5 years) | Two 24-h urine samples. Enzyme immunoassay |
Gonzalez (2007) England [62] | Retrospective | N = 176 (0–11.9 years) | Spot urine sample (MNS). Method not described |
Davies (1984) England [63] | Cross-sectional | N = 400 (4–16 years) | 24-h urine sample. ELISA |
Gracchi (2015) The Netherlands [64] | Cohort | N = 1352 (24–60 months) | Pantyliners. Nephelometry |
Wu (2014) China [65] | Cross-sectional | N = 1986 (6–19 years) | Morning spot urine sample. Immunoturbidimetric assay |
Trachtenberg (2007) USA [66] | Secondary analysis of a clinical trial | N = 534 (6–10 years) | Two urine samples 2 years apart. Nephelometric immunochemical methods |
Kim (2017) Australia [68] | Cohort | N = 3418 | Spot urine sample. Dipstick analysis Siemens Clinitek machine |
Haysom (2007) Australia [69] | Cross-sectional | N = 2266 (4–14.8 years) | Morning urine sample. Dipsticks Clinitek 50 machine |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sierra-Diaz, E.; Celis-de la Rosa, A.D.J.; Lozano-Kasten, F.; Bravo-Cuellar, A.; Garcia-Gutierrez, M.; Georgina, H.-F. Non-Traditional Risk Factors of Albuminuria in the Pediatric Population: A Scoping Review. Int. J. Environ. Res. Public Health 2017, 14, 1231. https://doi.org/10.3390/ijerph14101231
Sierra-Diaz E, Celis-de la Rosa ADJ, Lozano-Kasten F, Bravo-Cuellar A, Garcia-Gutierrez M, Georgina H-F. Non-Traditional Risk Factors of Albuminuria in the Pediatric Population: A Scoping Review. International Journal of Environmental Research and Public Health. 2017; 14(10):1231. https://doi.org/10.3390/ijerph14101231
Chicago/Turabian StyleSierra-Diaz, Erick, Alfredo De Jesus Celis-de la Rosa, Felipe Lozano-Kasten, Alejandro Bravo-Cuellar, Mariana Garcia-Gutierrez, and Hernandez-Flores Georgina. 2017. "Non-Traditional Risk Factors of Albuminuria in the Pediatric Population: A Scoping Review" International Journal of Environmental Research and Public Health 14, no. 10: 1231. https://doi.org/10.3390/ijerph14101231
APA StyleSierra-Diaz, E., Celis-de la Rosa, A. D. J., Lozano-Kasten, F., Bravo-Cuellar, A., Garcia-Gutierrez, M., & Georgina, H. -F. (2017). Non-Traditional Risk Factors of Albuminuria in the Pediatric Population: A Scoping Review. International Journal of Environmental Research and Public Health, 14(10), 1231. https://doi.org/10.3390/ijerph14101231