Associations of Fasting Blood Glucose with Influencing Factors in Northeast China: A Quantile Regression Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Ethics Statement
2.3. Data Collection and Measurements
2.4. Assessment Criteria
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- NCD Risk Factor Collaboration (NCD-RisC). Effects of diabetes definition on global surveillance of diabetes prevalence and diagnosis: A pooled analysis of 96 population-based studies with 331,288 participants. Lancet Diabetes Endocrinol. 2015, 3, 624–637. [Google Scholar]
- Xu, Y.; Wang, L.; He, J.; Bi, Y.; Li, M.; Wang, T.; Wang, L.; Jiang, Y.; Dai, M.; Lu, J.; et al. Prevalence and control of diabetes in Chinese adults. JAMA 2013, 310, 948–959. [Google Scholar] [CrossRef] [PubMed]
- Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration. Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: A comparative risk assessment. Lancet Diabetes Endocrinol. 2014, 2, 634–647. [Google Scholar]
- Guariguata, L.; Whiting, D.R.; Hambleton, I.; Beagley, J.; Linnenkamp, U.; Shaw, J.E. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 2014, 103, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhang, X.; Brown, J.; Vistisen, D.; Sicree, R.; Shaw, J.; Nichols, G. Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 2010, 87, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Bragg, F.; Holmes, M.V.; Iona, A.; Guo, Y.; Du, H.; Chen, Y.; Bian, Z.; Yang, L.; Herrington, W.; Bennett, D.; et al. Association between diabetes and cause-specific mortality in rural and urban areas of China. JAMA 2017, 317, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Simmons, R.K.; Echouffo-Tcheugui, J.B.; Sharp, S.J.; Sargeant, L.A.; Williams, K.M.; Prevost, A.T.; Kinmonth, A.L.; Wareham, N.J.; Griffin, S.J. Screening for type 2 diabetes and population mortality over 10 years (ADDITION-Cambridge): A cluster-randomised controlled trial. Lancet 2012, 380, 1741–1748. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, P.; Lv, X.; Jiang, L.; Gao, C.; Song, Y.; Yu, Y.; Li, B. Situation of diabetes and related disease surveillance in rural areas of Jilin province, Northeast China. Int. J. Environ. Res. Public Health 2016, 13, 538. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Sun, X.H.; Liu, W.Y.; Kanu, J.S.; Li, R.; Yu, Q.Y.; Huang, F.X.; Li, B.; Zhang, Y.X. Prevalence and correlates of psychological distress among diabetes mellitus adults in the Jilin province in China: A cross-sectional study. PeerJ 2017, e2869. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; McDermott, R.A. Using anthropometric indices to predict cardio-metabolic risk factors in Australian indigenous populations. Diabetes Res. Clin. Pract. 2010, 87, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Nagai, M.; Murakami, Y.; Tamakoshi, A.; Kiyohara, Y.; Yamada, M.; Ukawa, S.; Hirata, T.; Tanaka, S.; Miura, K.; Ueshima, H.; et al. Fasting but not casual blood glucose is associated with pancreatic cancer mortality in Japanese: EPOCH-JAPAN. Cancer Causes Control 2017, 28, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wang, F.; Cheng, Q.; Jiao, X.; Lv, X. Fasting blood glucose levels affect hospitalization time and relapse and mortality rates of cerebral infarction patients. Int. J. Clin. Exp. Med. 2015, 8, 11508–11513. [Google Scholar] [PubMed]
- Kosiborod, M.; Inzucchi, S.E.; Krumholz, H.M.; Xiao, L.; Jones, P.G.; Fiske, S.; Masoudi, F.A.; Marso, S.P.; Spertus, J.A. Glucometrics in patients hospitalized with acute myocardial infarction: Defining the optimal outcomes-based measure of risk. Circulation 2008, 117, 1018–1027. [Google Scholar] [CrossRef] [PubMed]
- Hairong, N.; Zengchang, P.; Shaojie, W.; Weiguo, G.; Lei, Z.; Jie, R.; Feng, N.; Tuomilehto, J.; Qing, Q. Serum uric acid, plasma glucose and diabetes. Diabetes Vasc. Dis. Res. 2010, 7, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Hansen, L.P. Large sample properties of generalized method of moments estimators. Econometrica 1982, 50, 1029–1054. [Google Scholar] [CrossRef]
- Koenker, R.; Bassett, G.W. Regression quantiles. Econometrica 1987, 46, 33–50. [Google Scholar] [CrossRef]
- Koenker, R.; Hallock, K.F. Quantile regression: An introduction. J. Econ. Perspect. 2001, 15, 143–156. [Google Scholar] [CrossRef]
- Wang, C.; Yu, Y.; Zhang, X.; Li, Y.; Kou, C.; Li, B.; Tao, Y.; Zhen, Q.; He, H.; Kanu, J.S.; et al. Awareness, treatment, control of diabetes mellitus and the risk factors: Survey results from northeast China. PLoS ONE 2014, 9, e103594. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yu, S.; Wang, S.; Shi, J.; Xu, Z.; Zhang, Q.; Fu, Y.; Qi, Y.; Liu, J.; Fu, R.L.; et al. Zinc finger protein 259 (ZNF259) polymorphisms are associated with the risk of metabolic syndrome in a Han Chinese population. Clin. Lab. 2015, 61, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Permutt, M.A. Postprandiol hypoglycemia. Diavetes 1976, 25, 719. [Google Scholar]
- R Core Team. A Language and Environment for Statistical Computing. 2017. R Foundation for Statistical Computing, Vienna, Austria. Available online: https://www.R-project.org/ (accessed on 6 March 2017).
- Koenker, R. Quantreg: Quantile regression. R Package Vers. 2016, 101, 712–718. [Google Scholar]
- Yang, W.; Lu, J.; Weng, J.; Jia, W.; Ji, L.; Xiao, J.; Shan, Z.; Liu, J.; Tian, H.; Ji, Q.; et al. Prevalence of diabetes among men and women in China. N. Engl. J. Med. 2010, 362, 1090. [Google Scholar] [CrossRef] [PubMed]
- Nirmala, P.V.; Gudivada, M.; Lashmi, C. Comparative study of the prevalence of Type-2 diabetes mellitus in various demographic regions of Andhra Pradesh, India: A population based study. Int. J. MCH AIDS 2016, 5, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.; Augustin, B.; Shu, C.; Qin, T.; Yin, P. Probit models to investigate prevalence of total diagnosed and undiagnosed diabetes among aged 45 years or older adults in China. PLoS ONE 2016, 11, e164481. [Google Scholar] [CrossRef] [PubMed]
- Wysocka-Mincewicz, M.; Kolodziejczyk, H.; Wierzbicka, E.; Szalecki, M. Overweight, obesity and lipids abnormalities in adolescents with type 1 diabetes. Pediatr. Endocrinol. Diabetes Metab. 2016, 21, 70–81. [Google Scholar] [CrossRef] [PubMed]
- McKeigue, P.M.; Shah, B.; Marmot, M.G. Relation of central obesity and insulin resistance with high diabetes prevalence and cardiovascular risk in South Asians. Lancet 1991, 337, 382–386. [Google Scholar] [CrossRef]
- Roth, C.L.; Reinehr, T. Roles of gastrointestinal and adipose tissue peptides in childhood obesity and changes after weight loss due to lifestyle intervention. Arch. Pediatr. Adolesc. Med. 2010, 164, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Kahn, S.E.; Hull, R.L.; Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006, 444, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, R.; Ahmed, H.; Afzal, M.N.; Rehman, H.R.; Rashid, I.; Imran, S. Comparative evaluation of dyslipedaemia in obese and diabetic patients of rural and urban areas in Lahore, Pakistan. West Indian Med. J. 2016. [Google Scholar] [CrossRef]
- Tangvarasittichai, S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J. Diabetes 2015, 6, 456. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, T.; Reaven, G.; Abbasi, F.; Lamendola, C.; Saad, M.; Waters, D.; Simon, J.; Krauss, R.M. Is there a simple way to identify insulin-resistant individuals at increased risk of cardiovascular disease? Am. J. Cardiol. 2005, 96, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Zhou, H.; Han, T.; Li, Y.; Zhang, Y.; Liu, W.; Hu, Y. Clinical characteristics and beta cell function in Chinese patients with newly diagnosed type 2 diabetes mellitus with different levels of serum triglyceride. BMC Endocr. Disord. 2015, 15, 21. [Google Scholar] [CrossRef] [PubMed]
- Onat, A.; Karadeniz, Y.; Tusun, E.; Yuksel, H.; Kaya, A. Advances in understanding gender difference in cardiometabolic disease risk. Expert Rev. Cardiovasc. Ther. 2016, 14, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Won, J.C.; Kang, Y.J.; Yoon, S.H.; Choi, E.O.; Bae, J.Y.; Sung, M.H.; Kim, H.R.; Yang, J.H.; Oh, J.; et al. Type 2 diabetes in urban and rural districts in Korea: Factors associated with prevalence difference. J. Korean Med. Sci. 2010, 25, 1777–1783. [Google Scholar] [CrossRef] [PubMed]
- Djousse, L.; Driver, J.A.; Gaziano, J.M.; Buring, J.E.; Lee, I.M. Association between modifiable lifestyle factors and residual lifetime risk of diabetes. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Salas-Salvado, J.; Martinez-Gonzalez, M.A.; Bullo, M.; Ros, E. The role of diet in the prevention of type 2 diabetes. Nutr. Metab. Cardiovasc. Dis. 2011, 21 (Suppl. 2), B32–B48. [Google Scholar] [CrossRef] [PubMed]
- Adeniyi, O.V.; Longo-Mbenza, B.; Ter Goon, D. Female sex, poverty and globalization as determinants of obesity among rural South African type 2 diabetics: A cross-sectional study. BMC Public Health 2015, 15, 298. [Google Scholar] [CrossRef] [PubMed]
- Bazzano, L.A.; Li, T.Y.; Joshipura, K.J.; Hu, F.B. Intake of fruit, vegetables, and fruit juices and risk of diabetes in women. Diabetes Care 2008, 31, 1311–1317. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.; Malik, V.S.; Schulze, M.B.; Manson, J.E.; Willett, W.C.; Hu, F.B. Plain-water intake and risk of type 2 diabetes in young and middle-aged women. Am. J. Clin. Nutr. 2012, 95, 1454–1460. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Dai, T.; Liu, Y.; Liao, X.; Liu, J.; Ren, C.; Zhang, X. Prevalence and related risk factors among residents with diabetes in urban and rural areas in Chengdu. Eur. PMC 2014, 35, 386–389. [Google Scholar]
Variables | Male (n = 6734) | Female (n = 7964) | t/Z/χ2 | p-Value |
---|---|---|---|---|
Age * | 45.89 ± 13.86 46.00 [21.00] | 47.40 ± 12.68 47.00 [18.00] | −6.83 | <0.001 |
BMI * | 24.23 ± 3.73 24.02 [5.05] | 23.96 ± 3.63 23.67 [4.80] | 4.41 | <0.001 |
WC * | 84.23 ± 10.49 84.00 [15.70] | 79.56 ± 10.14 79.00 [14.00] | 27.26 | <0.001 |
FBG * | 5.24 ± 1.20 5.20 [1.10] | 4.98 ± 1.08 4.90 [1.00] | 13.52 | <0.001 |
TG * | 2.08 ± 2.01 1.50 [1.41] | 1.68 ± 1.38 1.32 [1.09] | 13.54 | <0.001 |
TC | 4.89 ± 1.04 4.78 [1.29] | 4.89 ± 1.08 4.76 [1.37] | −0.05 | 0.963 |
LDL-c * | 2.91 ± 0.86 2.84 [1.07] | 2.96 ± 0.90 2.85 [1.17] | −3.23 | 0.001 |
HDL-c * | 1.37 ± 0.41 1.30 [0.46] | 1.44 ± 0.37 1.40 [0.49] | −10.95 | <0.001 |
Residence | 2.45 | 0.118 | ||
Rural | 3029 (45.11) | 3685 (54.89) | ||
Urban | 3705 (46.41) | 4279 (53.59) | ||
Occupation * | 471.45 | <0.001 | ||
Unemployed/Others | 1020 (29.91) | 2390 (70.09) | ||
Mental labor | 1416 (47.22) | 1583 (52.78) | ||
Manual labor | 4298 (51.85) | 3991 (48.15) | ||
Smoking * | 4126.75 | <0.001 | ||
No | 2287 (25.12) | 6817 (74.88) | ||
Yes | 4447 (79.50) | 1147 (20.50) | ||
Drinking * | 3848.30 | <0.001 | ||
No | 2828 (28.31) | 7161 (71.69) | ||
Yes | 3906 (82.95) | 803 (17.05) | ||
Family history of DM * | 22.14 | <0.001 | ||
No | 5944 (46.57) | 6820 (53.43) | ||
Yes | 790 (40.85) | 1144 (59.15) | ||
Vegetable * | 22.08 | <0.001 | ||
Occasionally/rarely | 139 (61.23) | 88 (38.77) | ||
Often | 6595 (45.57) | 7876 (54.43) | ||
Fruit * | 345.09 | <0.001 | ||
Occasionally/rarely | 3700 (53.98) | 3154 (46.02) | ||
Often | 3034 (38.68) | 4810 (61.32) | ||
Meat * | 442.42 | <0.001 | ||
Occasionally/rarely | 3731 (39.39) | 5740 (60.61) | ||
Often | 3003 (57.45) | 2224 (42.55) | ||
Fish * | 116.54 | <0.001 | ||
Occasionally/rarely | 5821 (44.29) | 7322 (55.71) | ||
Often | 913 (58.71) | 642 (41.29) | ||
Eggs/Bean/Bean products * | 30.44 | <0.001 | ||
Occasionally/rarely | 2523 (43.03) | 3340 (56.97) | ||
Often | 4211 (47.66) | 4624 (52.34) | ||
Milk/Dairy products * | 20.45 | <0.001 | ||
Occasionally/rarely | 5783 (46.61) | 6623 (53.39) | ||
Often | 951 (41.49) | 1341 (58.51) | ||
Exercise * | 6.34 | 0.012 | ||
Occasionally/rarely | 4798 (45.17) | 5823 (54.83) | ||
Often | 1936 (47.49) | 2141 (52.51) |
Factors | Hypoglycemia | Euglycemia | IFG | DM | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P5 | P7.5 | P25 | P50 | P75 | P83.9 | P95.4 | P97 | |||||||||
β | p | β | p | β | p | β | p | β | p | β | p | β | p | β | p | |
Age | 0.010 | <0.001 | 0.008 | <0.001 | 0.005 | <0.001 | 0.005 | <0.001 | 0.009 | <0.001 | 0.011 | <0.001 | 0.023 | <0.001 | 0.026 | <0.001 |
Urban | 0.267 | <0.001 | 0.269 | <0.001 | 0.271 | <0.001 | 0.205 | <0.001 | 0.182 | <0.001 | 0.185 | <0.001 | 0.034 | 0.580 | 0.032 | 0.794 |
Drinking | 0.205 | <0.001 | 0.180 | <0.001 | 0.089 | 0.002 | 0.094 | <0.001 | 0.079 | 0.008 | 0.088 | 0.005 | 0.121 | 0.082 | 0.111 | 0.355 |
Fruit | 0.109 | 0.032 | 0.108 | 0.003 | 0.086 | 0.003 | 0.082 | 0.001 | 0.079 | 0.007 | 0.049 | 0.124 | 0.077 | 0.191 | 0.016 | 0.886 |
Family history of DM | 0.036 | 0.601 | 0.092 | 0.220 | 0.057 | 0.197 | 0.031 | 0.353 | 0.080 | 0.034 | 0.185 | 0.002 | 0.266 | 0.025 | 0.505 | 0.060 |
BMI | 0.040 | 0.002 | 0.043 | <0.001 | 0.045 | <0.001 | 0.035 | <0.001 | 0.026 | 0.002 | 0.019 | <0.001 | −0.016 | 0.399 | −0.047 | 0.012 |
WC | −0.005 | 0.209 | −0.005 | 0.115 | −0.006 | 0.035 | −0.001 | 0.752 | 0.003 | 0.379 | 0.004 | 0.052 | 0.017 | 0.009 | 0.029 | 0.027 |
TG | 0.057 | 0.001 | 0.060 | <0.001 | 0.072 | <0.001 | 0.095 | <0.001 | 0.152 | <0.001 | 0.179 | <0.001 | 0.355 | <0.001 | 0.390 | <0.001 |
LDL-c | −0.053 | 0.075 | −0.028 | 0.222 | 0.044 | 0.018 | 0.042 | 0.011 | 0.052 | 0.007 | 0.060 | 0.005 | 0.101 | 0.018 | 0.136 | 0.034 |
Factors | Hypoglycemia | Euglycemia | IFG | DM | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P5 | P8.4 | P25 | P50 | P75 | P91.1 | P95 | P97.4 | |||||||||
β | p | β | p | β | p | β | p | β | p | β | p | β | p | β | p | |
Age | 0.006 | <0.001 | 0.006 | <0.001 | 0.007 | <0.001 | 0.009 | <0.001 | 0.010 | <0.001 | 0.014 | <0.001 | 0.012 | <0.001 | 0.016 | 0.001 |
Urban | 0.143 | <0.001 | 0.140 | <0.001 | 0.134 | <0.001 | 0.137 | <0.001 | 0.114 | <0.001 | 0.049 | 0.202 | 0.049 | 0.419 | 0.060 | 0.555 |
Occupation | ||||||||||||||||
Unemployed/Others | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Mental labor | 0.118 | 0.018 | 0.119 | 0.014 | 0.045 | 0.252 | 0.063 | 0.043 | 0.099 | 0.005 | 0.107 | 0.036 | 0.116 | 0.042 | 0.249 | 0.079 |
Manual labor | 0.025 | 0.584 | 0.018 | 0.647 | 0.019 | 0.555 | 0.087 | <0.001 | 0.117 | <0.001 | 0.112 | 0.015 | 0.145 | 0.022 | 0.290 | 0.017 |
Fruit | 0.082 | 0.026 | 0.048 | 0.105 | 0.057 | 0.034 | 0.068 | 0.002 | 0.071 | 0.004 | −0.016 | 0.780 | −0.102 | 0.017 | −0.054 | 0.616 |
Meat | 0.043 | 0.239 | 0.061 | 0.046 | 0.044 | 0.119 | 0.058 | 0.015 | 0.096 | <0.001 | 0.089 | 0.036 | 0.123 | 0.018 | 0.004 | 0.966 |
Fish | −0.049 | 0.369 | 0.009 | 0.895 | −0.009 | 0.824 | 0.003 | 0.924 | −0.082 | 0.047 | −0.108 | 0.018 | −0.225 | <0.001 | −0.384 | <0.001 |
Family history of DM | 0.008 | 0.875 | 0.059 | 0.228 | 0.080 | 0.037 | 0.082 | 0.003 | 0.091 | 0.006 | 0.149 | <0.001 | 0.082 | 0.173 | 0.120 | 0.496 |
BMI | 0.013 | 0.010 | 0.022 | 0.002 | 0.016 | 0.005 | 0.011 | 0.022 | 0.006 | 0.265 | 0.010 | 0.278 | −0.013 | 0.168 | −0.038 | 0.075 |
WC | 0.003 | 0.297 | 0.001 | 0.813 | 0.002 | 0.302 | 0.005 | 0.009 | 0.008 | <0.001 | 0.012 | 0.001 | 0.019 | <0.001 | 0.030 | 0.002 |
TG | 0.008 | 0.682 | 0.032 | 0.047 | 0.052 | <0.001 | 0.078 | <0.001 | 0.102 | <0.001 | 0.180 | <0.001 | 0.331 | <0.001 | 0.500 | <0.001 |
TC | 0.069 | 0.001 | 0.053 | 0.002 | 0.044 | 0.003 | 0.042 | <0.001 | 0.063 | <0.001 | 0.077 | 0.002 | 0.076 | 0.029 | 0.216 | 0.005 |
HDL-c | −0.131 | 0.013 | −0.137 | 0.010 | −0.098 | 0.017 | −0.113 | <0.001 | −0.189 | <0.001 | −0.170 | 0.011 | −0.197 | 0.041 | −0.188 | 0.301 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Shen, L.; Dou, J.; Lv, Y.; Zhang, A.; Shi, F.; Xue, Z.; Yu, Y.; Jin, L.; Yao, Y. Associations of Fasting Blood Glucose with Influencing Factors in Northeast China: A Quantile Regression Analysis. Int. J. Environ. Res. Public Health 2017, 14, 1368. https://doi.org/10.3390/ijerph14111368
Guo X, Shen L, Dou J, Lv Y, Zhang A, Shi F, Xue Z, Yu Y, Jin L, Yao Y. Associations of Fasting Blood Glucose with Influencing Factors in Northeast China: A Quantile Regression Analysis. International Journal of Environmental Research and Public Health. 2017; 14(11):1368. https://doi.org/10.3390/ijerph14111368
Chicago/Turabian StyleGuo, Xin, Li Shen, Jing Dou, Yaogai Lv, Anning Zhang, Fanchao Shi, Zhiqiang Xue, Yaqin Yu, Lina Jin, and Yan Yao. 2017. "Associations of Fasting Blood Glucose with Influencing Factors in Northeast China: A Quantile Regression Analysis" International Journal of Environmental Research and Public Health 14, no. 11: 1368. https://doi.org/10.3390/ijerph14111368
APA StyleGuo, X., Shen, L., Dou, J., Lv, Y., Zhang, A., Shi, F., Xue, Z., Yu, Y., Jin, L., & Yao, Y. (2017). Associations of Fasting Blood Glucose with Influencing Factors in Northeast China: A Quantile Regression Analysis. International Journal of Environmental Research and Public Health, 14(11), 1368. https://doi.org/10.3390/ijerph14111368