Work Stress and Altered Biomarkers: A Synthesis of Findings Based on the Effort–Reward Imbalance Model
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Biomarkers of the Sympatho-Adrenal Axis and Cardiovascular Biomarkers
3.2. Biomarkers of the Hypothalamic-Pituitary-Adrenocortical (HPA) Axis
3.3. Biomarkers of Immune Function and Inflammation
3.4. Metabolic and Haemostatic Biomarkers
3.5. Extending or Focusing the Range of Biomarkers?
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hill, A.B. The environment and disease: Association or causation. J. R. Soc. Med. 1965, 58, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Weiner, H. Perturbing the Organism. The Biology of Stressful Experience; University of Chicago Press: Chicago, IL, USA, 1992. [Google Scholar]
- Marmot, M.; Siegrist, J.; Theorell, T. Health and the psychosocial environment at work. In Social Determinants of Health, 2nd ed.; Marmot, M., Wilkinson, R.G., Eds.; Oxford University Press: Oxford, UK, 2006; pp. 97–130. [Google Scholar]
- Karasek, R.A. Job demands, job decision latitude, and mental strain: Implications for job redesign. Adm. Sci. Q. 1979, 24. [Google Scholar] [CrossRef]
- Siegrist, J. Adverse health effects of high-effort/low-reward conditions. J. Occup. Health Psychol. 1996, 1, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, J. Organizational injustice as an occupational health risk. Acad. Manag. Ann. 2010, 4, 205–243. [Google Scholar] [CrossRef]
- Marmot, M.G.; Smith, G.D.; Stansfeld, S.; Patel, C.; North, F.; Head, J.; White, I.; Brunner, E.; Feeney, A. Health inequalities among British civil servants: The Whitehall II study. Lancet 1991, 337, 1387–1393. [Google Scholar] [CrossRef]
- Goldberg, M.; Leclerc, A.; Bonenfant, S.; Chastang, J.F.; Schmaus, A.; Kaniewski, N.; Zins, M. Cohort profile: The GAZEL cohort study. Int. J. Epidemiol. 2007, 36, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Schnall, P.L.; Dobson, M.; Landsbergis, P. Globalization, work, and cardiovascular disease. Int. J. Health Serv. 2016, 46, 656–692. [Google Scholar] [CrossRef] [PubMed]
- Siegrist, J.; Wahrendorf, M. Work Stress and Health in a Globalized Economy. The Model of Effort-Reward Imbalance; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Theorell, T.; Hammarström, A.; Aronsson, G.; Träskman Bendz, L.; Grape, T.; Hogstedt, C.; Marteinsdottir, I.; Skoog, I.; Hall, C. A systematic review including meta-analysis of work environment and depressive symptoms. BMC Public Health 2015, 15. [Google Scholar] [CrossRef] [PubMed]
- Rugulies, R.; Aust, B.; Madsen, I.E. Effort-reward imbalance at work and risk of depressive disorders. A systematic review and meta-analysis of prospective cohort studies. Scand. J. Work Environ. Health 2017, 43, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Ndjaboué, R.; Brisson, C.; Vézina, M. Organisational justice and mental health: A systematic review of prospective studies. J. Occup. Environ. Med. 2012, 69, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Marmot, M.G. The Health Gap. The Challenge of an Unequal World; Bloomsbury: London, UK; New York, NY, USA, 2015. [Google Scholar]
- Steptoe, A. Psychobiological processes linking socio-economic position with health. In Social Inequalities in Health; Siegrist, J., Marmot, M., Eds.; Oxford University Press: London, UK, 2006; pp. 101–126. [Google Scholar]
- McEwen, B.S. Protective and damaging effects of stress mediators. N. Engl. J. Med. 1998, 338, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Steptoe, A.; Kivimäki, M. Stress and cardiovascular disease. Nat. Rev. Cardiol. 2012, 9, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Gold, P.W. The organization of the stress system and its dysregulation in depressive illness. Mol. Psychiatry 2015, 20, 32–47. [Google Scholar] [CrossRef] [PubMed]
- Marmot, M.; Wilkinson, R.G. Social Determinants of Health, 2nd ed.; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Siegrist, J.; Li, J. Associations of extrinsic and intrinsic components of work Stress with health: A systematic review of evidence on the effort-reward imbalance model. Int. J. Environ. Res. Public Health 2016, 13, 432. [Google Scholar] [CrossRef] [PubMed]
- Eddy, P.; Heckenberg, R.; Wertheim, E.H.; Kent, S.; Wright, B.J. A systematic review and meta-analysis of the effort reward imbalance model of workplace stress with indicators of immune function. J. Psychosom. Res. 2016, 91, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Eddy, P.; Wertheim, E.H.; Hale, M.W.; Wright, B.J. A systematic review and meta-analysis of the effort-reward imbalance model of workplace stress and HPA axis measures of stress. Psychosom. Med. 2017. [Google Scholar] [CrossRef] [PubMed]
- Jarczok, M.N.; Jarczok, M.; Mauss, D.; Koenig, J.; Li, J.; Herr, R.M.; Thayer, J.F. Autonomic nervous system activity and workplace stressors—A systematic review. Neurosci. Biobehav. Rev. 2013, 37, 1810–1823. [Google Scholar] [CrossRef] [PubMed]
- Chandola, T.; Heraclides, A.; Kumari, M. Psychophysiological biomarkers of workplace stressors. Neurosci. Biobehav. Rev. 2010, 35, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Gilbert-Ouimet, M.; Trudel, X.; Brisson, C.; Milot, A.; Vézina, M. Adverse effects of psychosocial work factors on blood pressure: Systematic review of studies on demand-control-support and effort-reward imbalance models. Scand. J. Work Environ. Health 2014, 40, 109–132. [Google Scholar] [CrossRef] [PubMed]
- Bellingrath, S.; Kudielka, B.M. Psychobiological pathways from work stress to reduced health: Naturalistic and experimental studies on the ERI model. In Work Stress and Health in a Globalized Economy: The Model of Effort-Reward Imbalance; Siegrist, J., Wahrendorf, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 145–170. [Google Scholar]
- McEwen, B.S. In Pursuit of Resilience: Stress, Epigenetics, and Brain Plasticity. Ann. N. Y. Acad. Sci. 2016, 1373, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Henry, J.P.; Stephens, P.M. Stress, Health, and the Social Environment. A Sociobiologic Approach to Medicine; Springer New York: New York, NY, USA, 1977. [Google Scholar]
- Vrijkotte, T.G.M.; van Doornen, L.J.P.; de Geus, E.J.C. Effects of work stress on ambulatory blood pressure, heart rate, and heart rate variability. Hypertension 2000, 35, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Johnston, D.; Bell, C.; Jones, M.; Farquharson, B.; Allan, J.; Schofield, P.; Ricketts, I.; Johnston, M. Stressors, appraisal of stressors, experienced stress and cardiac response: A real-time, real-life investigation of work stress in nurses. Ann. Behav. Med. 2016, 50, 187–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landolt, K.; O’Donnell, E.; Hazi, A.; Dragano, N.; Wright, B.J. An experimental examination of the effort-reward imbalance model of occupational stress: Increased financial reward is related to reduced stress physiology. Biol. Psychol. 2017, 125, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Siegrist, J.; Klein, D.; Voigt, K.H. Linking sociological with physiological data: The model of effort-reward imbalance at work. Acta Physiol. Scand. Suppl. 1997, 640, 112–116. [Google Scholar] [PubMed]
- Lefkowitz, R.J.; Caron, M.G.; Stiles, G.L. Mechanisms of membrane-receptor regulation. Biochemical, physiological, and clinical insights derived from studies of the Adrenergic receptors. N. Engl. J. Med. 1984, 310, 1570–1579. [Google Scholar] [CrossRef] [PubMed]
- Steptoe, A.; Siegrist, J.; Kirschbaum, C.; Marmot, M. Effort-reward imbalance, overcommitment, and measures of Cortisol and blood pressure over the working day. Psychosom. Med. 2004, 66, 323–329. [Google Scholar] [PubMed]
- Maina, G.; Bovenzi, M.; Palmas, A.; Prodi, A.; Filon, F.L. Job Strain, Effort-reward imbalance and ambulatory blood pressure: Results of a cross-sectional study in Call Handler Operators. Int. Arch. Occup. Environ. Health 2011, 84, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Gilbert-Ouimet, M.; Brisson, C.; Vézina, M.; Milot, A.; Blanchette, C. Repeated exposure to effort-reward imbalance, increased blood pressure, and hypertension incidence among white-collar workers: Effort-reward imbalance and blood pressure. J. Psychosom. Res. 2012, 72, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Trudel, X.; Brisson, C.; Milot, A.; Masse, B.; Vézina, M. Psychosocial work environment and ambulatory blood pressure: Independent and combined effect of demand-control and effort-reward imbalance models. J. Occup. Environ. Med. 2013, 70, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Trudel, X.; Brisson, C.; Milot, A.; Masse, B.; Vézina, M. Adverse psychosocial work factors, blood pressure and hypertension incidence: Repeated exposure in a 5-year prospective cohort study. J. Epidemiol. Community Health 2016, 70, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Trudel, X.; Milot, A.; Gilbert-Ouimet, M.; Duchaine, C.; Guénette, L.; Dalens, V.; Brisson, C. Effort-reward imbalance at work and the prevalence of unsuccessfully treated hypertension among white-collar workers. Am. J. Epidemiol. 2017, 186, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Gilbert-Ouimet, M.; Brisson, C.; Milot, A.; Vézina, M. Double exposure to adverse psychosocial work factors and high family responsibilities as related to ambulatory blood pressure at work: A 5-year prospective study in women with white-collar jobs. Psychosom. Med. 2017, 79, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Boucher, P.; Gilbert-Ouimet, M.; Trudel, X.; Duchaine, C.S.; Milot, A.; Brisson, C. Masked hypertension and effort-reward imbalance at work among 2369 white-collar workers. J. Hum. Hypertens. 2017, 31, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.D.; Muntaner, C.; O’Campo, P.; Warren, N. Longitudinal assessment of effort-reward imbalance and job strain across pregnancy: A preliminary study. Matern Child. Health J. 2016, 20, 1366–1374. [Google Scholar] [CrossRef] [PubMed]
- Wirtz, P.H.; Siegrist, J.; Rimmele, U.; Ehlert, U. Higher overcommitment to work is associated with lower Norepinephrine secretion before and after acute psychosocial stress in men. Psychoneuroendocrinology 2008, 33, 92–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appelhans, B.M.; Luecken, L.J. Heart rate variability as an index of regulated emotional responding. Rev. Gen. Psychol. 2006, 10, 229–240. [Google Scholar] [CrossRef]
- Von Borell, E.; Langbein, J.; Després, G.; Hansen, S.; Leterrier, C.; Marchant-Forde, J.; Marchant-Forde, R.; Minero, M.; Mohr, E.; Prunier, A.; et al. Heart rate variability as a measure of autonomic regulation of cardiac activity for assessing stress and welfare in farm animals—A review. Physiol. Behav. 2007, 92, 293–316. [Google Scholar] [CrossRef] [PubMed]
- Dekker, J.M.; Crow, R.S.; Folsom, A.R.; Hannan, P.J.; Liao, D.; Swenne, C.A.; Schouten, E.G. Low heart rate variability in a 2-minute rhythm strip predicts risk of coronary heart disease and mortality from several causes: The ARIC Study. Circulation 2000, 102, 1239–1244. [Google Scholar] [CrossRef] [PubMed]
- Porges, S.W. The polyvagal perspective. Biol. Psychol. 2007, 74, 116–143. [Google Scholar] [CrossRef] [PubMed]
- Thayer, J.F.; Yamamoto, S.S.; Brosschot, J.F. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int. J. Cardiol. 2010, 141, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Penttila, J.; Helminen, A.; Jartti, T.; Kuusela, T.; Huikuri, H.V.; Tulppo, M.P.; Coffeng, R.; Scheinin, H. Time domain, geometrical and frequency domain analysis of cardiac vagal outflow: Effects of various respiratory patterns. Clin. Physiol. 2001, 21, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Hintsanen, M.; Elovainio, M.; Puttonen, S.; Kivimäki, M.; Koskinen, T.; Raitakari, O.T.; Keltikangas-Järvinen, L. Effort-reward imbalance, heart rate, and heart rate variability: The cardiovascular risk in young finns study. Int. J. Behav. Med. 2007, 14, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Eller, N.H.; Kristiansen, J.; Hansen, A.M. Long-term effects of psychosocial factors of home and work on biomarkers of stress. Int. J. Psychophysiol. 2011, 79, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Eller, N.H.; Blønd, M.; Nielsen, M.; Kristiansen, J.; Netterstrøm, B. Effort reward imbalance is associated with vagal withdrawal in Danish public sector employees. Int. J. Psychophysiol. 2011, 81, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Loerbroks, A.; Schilling, O.; Haxsen, V.; Jarczok, M.N.; Thayer, J.F.; Fischer, J.E. The fruits of ones labor: Effort-reward imbalance but not job strain is related to heart rate variability across the day in 35–44-year-old workers. J. Psychosom. Res. 2010, 69, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Uusitalo, A.; Mets, T.; Martinmäki, K.; Mauno, S.; Kinnunen, U.; Rusko, H. Heart rate variability related to effort at work. Appl. Ergon. 2011, 42, 830–838. [Google Scholar] [CrossRef] [PubMed]
- Hanson, E.; Godaert, G.; Maas, C.; Meijman, T. Vagal cardiac control throughout the day: The relative importance of effort-reward imbalance and within-day measurements of mood, demand and satisfaction. Biol. Psychol. 2001, 56, 23–44. [Google Scholar] [CrossRef]
- Garza, J.L.; Cavallari, J.M.; Eijckelhof, B.H.; Huysmans, M.A.; Thamsuwan, O.; Johnson, P.W.; van der Beek, A.J.; Dennerlein, J.T. Office workers with high effort-reward imbalance and overcommitment have greater decreases in heart rate variability over a 2-h working period. Int. Arch. Occup. Environ. Health 2015, 88, 565–575. [Google Scholar] [CrossRef] [PubMed]
- Jarczok, M.N.; Koenig, J.; Li, J.; Mauss, D.; Hoffmann, K.; Schmidt, B.; Fischer, J.E.; Thayer, J.F. The association of work stress and glycemic status is partially mediated by autonomic nervous system function: Cross-sectional results from the Mannheim Industrial cohort study (MICS). PLoS ONE 2016, 11, e160743. [Google Scholar] [CrossRef] [PubMed]
- Falk, A.; Kosse, F.; Menrath, I.; Verde, P.E.; Siegrist, J. Unfair pay and health. Manag. Sci. 2017. [Google Scholar] [CrossRef]
- Ota, A.; Mase, J.; Howteerakul, N.; Rajatanun, T.; Suwannapong, N.; Yatsuya, H.; Ono, Y. The effort-reward imbalance work-stress model and daytime salivary Cortisol and Dehydroepiandrosterone (DHEA) among Japanese women. Sci. Rep. 2014, 4. [Google Scholar] [CrossRef] [PubMed]
- Irie, M.; Tsutsumi, A.; Shioji, I.; Kobayashi, F. Effort–reward imbalance and physical health among Japanese workers in a recently downsized corporation. Int. Arch. Occup. Environ. Health 2004, 77, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Eller, N.H.; Netterstrøm, B.; Hansen, A.M. Psychosocial factors at home and at work and levels of salivary Cortisol. Biol. Psychol. 2006, 73, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.; Ursin, H.; Murison, R.; Eriksen, H.R. Coffee, stress and cortisol in nursing staff. Psychoneuroendocrinology 2007, 32, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Bellingrath, S.; Kudielka, B.M. Effort-reward-imbalance and overcommitment are associated with Hypothalamus-Pituitary-Adrenal (HPA) axis responses to acute psychosocial stress in healthy working schoolteachers. Psychoneuroendocrinology 2008, 33, 1335–1343. [Google Scholar] [CrossRef] [PubMed]
- Bellingrath, S.; Weigl, T.; Kudielka, B.M. Cortisol dysregulation in school teachers in relation to burnout, vital exhaustion, and effort-reward-imbalance. Biol. Psychol. 2008, 78, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Bellingrath, S.; Weigl, T.; Kudielka, B.M. Chronic work stress and exhaustion is associated with higher Allostastic load in female school teachers. Stress 2009, 12, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Von Känel, R.; Bellingrath, S.; Kudielka, B.M. Overcommitment but not effort-reward imbalance relates to stress-induced coagulation changes in teachers. Ann. Behav. Med. 2009, 37, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Wirtz, P.H.; Siegrist, J.; Schuhmacher, A.; Hoefels, S.; Maier, W.; Zobel, A.W. Higher overcommitment to work is associated with higher plasma cortisol but not ACTH responses in the combined Dexamethasone/CRH test in apparently healthy men and women. Psychoneuroendocrinology 2010, 35, 536–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, B.J. Effort-reward imbalance is associated with salivary immunoglobulin A and cortisol secretion in disability workers. Int. J. Occup. Environ. Med. 2011, 53, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Almadi, T.; Cathers, I.; Chow, C.M. Associations among work-related stress, cortisol, inflammation, and metabolic syndrome. Psychophysiology 2013, 50, 821–830. [Google Scholar] [CrossRef] [PubMed]
- Bathman, L.M.; Almond, J.; Hazi, A.; Wright, B.J. Effort-reward imbalance at work and pre-clinical biological indices of ill-health: The case for salivary immunoglobulin A. Brain Behav. Immun. 2013, 33, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Brunner, E.J.; Kumari, M. Is there an association between work stress and diurnal cortisol patterns? Findings from the Whitehall II Study. PLoS ONE 2013, 8, e81020. [Google Scholar] [CrossRef] [PubMed]
- Wirtz, P.H.; Ehlert, U.; Kottwitz, M.U.; La Marca, R.; Semmer, N.K. Occupational role stress is associated with higher cortisol reactivity to acute stress. J. Occup. Health Psychol. 2013, 18, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Wolfram, M.; Bellingrath, S.; Feuerhahn, N.; Kudielka, B.M. Emotional eexhaustion and overcommitment to work are differentially associated with Hypothalamus-Pituitary-Adrenal (HPA) axis responses to a low-dose ACTH1-24 (Synacthen) and dexamethasone-CRH test in healthy school teachers. Stress 2013, 16, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Zhang, J.; Liu, Y.; Ji, S.; Chen, Z.; Sluiter, J.K.; Deng, H. Relationship between effort-reward imbalance and hair cortisol concentration in female kindergarten teachers. J. Psychosom. Res. 2014, 76, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Gidlow, C.J.; Randall, J.; Gillman, J.; Silk, S.; Jones, M.V. Hair cortisol and self-reported stress in healthy, working adults. Psychoneuroendocrinology 2016, 63, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Marchand, A.; Juster, R.-P.; Durand, P.; Lupien, S.J. Work stress models and diurnal cortisol variations: The SALVEO study. J. Occup. Health Psychol. 2016, 21, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Eller, N.H.; Nielsen, S.F.; Blønd, M.; Nielsen, M.L.; Hansen, Å.M.; Netterstrøm, B. Effort reward imbalance, and salivary cortisol in the morning. Biol. Psychol. 2012, 89, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Landolt, K.; Maruff, P.; Horan, B.; Kingsley, M.; Kinsella, G.; O’Halloran, P.D.; Hale, M.W.; Wright, B.J. Chronic work stress and decreased vagal tone impairs decision making and reaction time in jockeys. Psychoneuroendocrinology 2017, 84, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Izawa, S.; Tsutsumi, A.; Ogawa, N. Effort-reward imbalance, cortisol secretion, and inflammatory activity in police officers with 24-h work shifts. Int. Arch. Occup. Environ. Health 2016, 89, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Herr, R.M.; Barrech, A.; Gündel, H.; Lang, J.; Quinete, N.S.; Angerer, P.; Li, J. Effects of psychosocial work characteristics on hair cortisol—Findings from a post-trial study. Stress 2017, 20, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Maina, G.; Bovenzi, M.; Palmas, A.; Larese Filon, F. Associations between two job stress models and measures of salivary cortisol. Int. Arch. Occup. Environ. Health 2009, 82, 1141–1150. [Google Scholar] [CrossRef] [PubMed]
- Hanson, E.K.S.; Maas, C.J.M.; Meijman, T.F.; Godaert, G.L.R. Cortisol secretion throughout the day, perceptions of the work environment, and negative affect. Ann. Behav. Med. 2000, 22, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Herbert, T.B.; Cohen, S. Stress and immunity in humans: A meta-analytic review. Psychosom. Med. 1993, 55, 364–379. [Google Scholar] [CrossRef] [PubMed]
- Segerstrom, S.C.; Miller, G.E. Psychological stress and the human immune system: A meta-analytic study of 30 years of inquiry. Psychol. Bull. 2004, 130, 601–630. [Google Scholar] [CrossRef] [PubMed]
- Bosch, J.A.; Fischer, J.E.; Fischer, J.C. Psychologically adverse work conditions are associated with CD8+ T cell differentiation indicative of immunesenescence. Brain Behav. Immun. 2009, 23, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Nakata, A. Psychosocial job stress and immunity: A systematic review. In Psychoneuroimmunology: Methods and Protocols; Yan, Q., Ed.; Humana Press: New York, NY, USA, 2012; pp. 39–75. [Google Scholar]
- Nakata, A.; Takahashi, M.; Irie, M. Effort-reward imbalance, overcommitment, and cellular immune measures among white-collar employees. Biol. Psychol. 2011, 88, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Franke, W.D.; Kohut, M.L.; Russell, D.W.; Yoo, H.L.; Ekkekakis, P.; Ramey, S.P. Is job-related stress the link between cardiovascular disease and the law enforcement profession? Int. J. Occup. Environ. Med. 2010, 52, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Bellingrath, S.; Rohleder, N.; Kudielka, B.M. Healthy working school teachers with high effort-reward-imbalance and overcommitment show increased pro-inflammatory immune activity and a dampened innate immune defence. Brain Behav. Immun. 2010, 24, 1332–1339. [Google Scholar] [CrossRef] [PubMed]
- Bellingrath, S.; Rohleder, N.; Kudielka, B.M. Effort-reward-imbalance in healthy teachers is associated with higher LPS-stimulated production and lower glucocorticoid sensitivity of interleukin-6 in vitro. Biol. Psychol. 2013, 92, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Hamer, M.; Williams, E.; Vuonovirta, R.; Giacobazzi, P.; Gibson, E.L.; Steptoe, A. The effects of effort-reward imbalance on inflammatory and cardiovascular responses to mental stress. Psychosom. Med. 2006, 68, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Chen, B.; Guo, L.; Li, Z.; Zhao, Y.; Zeng, H. High-sensitivity CRP: Possible link between job stress and atherosclerosis. Am. J. Ind. Med. 2015, 58, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Magnusson Hanson, L.L.; Westerlund, H.; Goldberg, M.; Zins, M.; Vahtera, J.; Hulvej Rod, N.; Stenholm, S.; Steptoe, A.; Kivimäki, M. Work stress, anthropometry, lung function, blood pressure, and blood-based biomarkers: A cross-sectional study of 43,593 French men and women. Sci. Rep. 2017, 7, 9282. [Google Scholar] [CrossRef] [PubMed]
- Vrijkotte, T.G.M.; van Doornen, L.J.P.; de Geus, E.J.C. Work stress and metabolic and hemostatic risk factors. Psychosom. Med. 1999, 61, 796–805. [Google Scholar] [CrossRef] [PubMed]
- Siegrist, J.; Peter, R.; Cremer, P.; Seidel, D. Chronic work stress is associated with atherogenic lipids and elevated fibrinogen in middle-aged men. J. Intern. Med. 1997, 242, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Hang, J.; Guo, L.; Zhao, Y.; Li, Z.; Gao, W. Plasma fibrinogen: A possible link between job stress and cardiovascular disease among Chinese workers. Am. J. Ind. Med. 2012, 55, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Peter, R.; Alfredsson, L.; Hammar, N.; Siegrist, J.; Theorell, T.; Westerholm, P. High effort, low reward, and cardiovascular risk factors in employed Swedish men and women: Baseline results from the WOLF Study. J. Epidemiol. Community Health 1998, 52, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, S.; Hawken, S.; Ôunpuu, S.; Dans, T.; Avezum, A.; Lanas, F.; McQueen, M.; Budaj, A.; Pais, P.; Varigos, J.; et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. Lancet 2004, 364, 937–952. [Google Scholar] [CrossRef]
- Friedman, M.; Rosenman, R.H.; Carroll, V.; Tat, R.J. Changes in the serum cholesterol and blood clotting time in men subjected to cyclic variation of occupational stress. Circulation 1958, 17, 852–861. [Google Scholar] [CrossRef]
- Stansfeld, S.A.; Marmot, M.G. Stress and the Heart. Psychosocial Pathways to Coronary Heart Disease; BMJ Books: London, UK, 2002. [Google Scholar]
- Söderberg, M.; Rosengren, A.; Hillström, J.; Lissner, L.; Torén, K. A cross-sectional study of the relationship between job demand-control, effort-reward imbalance and cardiovascular heart disease risk factors. BMC Public Health 2012, 12. [Google Scholar] [CrossRef] [PubMed]
- Kivimäki, M.; Leino-Arjas, P.; Luukkonen, R.; Riihimäki, H.; Vahtera, J.; Kirjonen, J. Work stress and risk of cardiovascular mortality: Prospective cohort study of industrial employees. BMJ 2002, 325, 857. [Google Scholar] [CrossRef] [PubMed]
- Siegrist, J.; Matschinger, H.; Cremer, P.; Seidel, D. Atherogenic risk in men suffering from occupational stress. Atherosclerosis 1988, 69, 211–218. [Google Scholar] [CrossRef]
- Xu, W.; Hang, J.; Gao, W.; Zhao, Y.; Cao, T.; Guo, L. Association between Job Stress and Newly Detected Combined Dyslipidemia among Chinese Workers: Findings from the SHISO Study. J. Occup. Health 2011, 53, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Hirose, T.; Tada, Y.; Tsutsumi, A.; Kawakami, N. Relationship between two job stress models and coronary risk factors among Japanese part-time female employees of a retail company. J. Occup. Health 2005, 47, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.M.; Larsen, A.D.; Rugulies, R.; Garde, A.H.; Knudsen, L.E. A review of the effect of the psychosocial working environment on physiological changes in blood and urine. Basic Clin. Pharmacol. Toxicol. 2009, 105, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Hang, J.; Gao, W.; Zhao, Y.; Li, W.; Wang, X.; Li, Z.; Guo, L. Association between effort-reward imbalance and glycosylated hemoglobin (HbA1c) among Chinese workers: Results from SHISO study. Int. Arch. Occup. Environ. Health 2012, 85, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jarczok, M.N.; Loerbroks, A.; Schöllgen, I.; Siegrist, J.; Bosch, J.A.; Wilson, M.G.; Mauss, D.; Fischer, J.E. Work stress is associated with diabetes and prediabetes: Cross-sectional results from the MIPH Industrial Cohort Studies. Int. J. Behav. Med. 2013, 20, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Chandola, T.; Brunner, E.; Marmot, M. Chronic stress at work and the metabolic syndrome: Prospective study. BMJ 2006, 332, 521–525. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, B.; Bosch, J.A.; Jarczok, M.N.; Herr, R.M.; Loerbroks, A.; van Vianen, A.E.M.; Fischer, J.E. Effort-reward imbalance is associated with the metabolic syndrome—Findings from the Mannheim Industrial Cohort Study (MICS). Int. J. Cardiol. 2015, 178, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Magnavita, N.; Fileni, A. Work stress and metabolic syndrome in radiologists: First evidence. Radiol. Med. 2014, 119, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Garbarino, S.; Magnavita, N. Work stress and metabolic syndrome in police officers. A prospective study. PLoS ONE 2015, 10, e144318. [Google Scholar] [CrossRef] [PubMed]
- Loerbroks, A.; Shang, L.; Angerer, P.; Li, J. Effort-reward imbalance at work increases the risk of the metabolic syndrome: A prospective study in Chinese university staff. Int. J. Cardiol. 2015, 182, 390–391. [Google Scholar] [CrossRef] [PubMed]
- Hwang, W.J.; Lee, C.Y. Effect of psychosocial factors on metabolic syndrome in male and female blue-collar workers. JJNS 2014, 11, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Mauss, D.; Jarczok, M.N.; Fischer, J.E. A streamlined approach for assessing the Allostatic Load Index in industrial employees. Stress 2015, 18, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Mauss, D.; Jarczok, M.N.; Fischer, J.E. The streamlined allostatic load index: A replication of study results. Stress 2016, 19, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 2017, 11, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Siegrist, J.; Sies, H. Disturbed Redox Homeostasis in Oxidative Distress: A Molecular Link from Chronic Psychosocial Work Stress to Coronary Heart Disease? Circ. Res. 2017, 121, 103–105. [Google Scholar] [CrossRef] [PubMed]
- Takaki, J. Associations of job stress indicators with oxidative biomarkers in Japanese men and women. Int. J. Environ. Res. Public Health 2013, 10, 6662–6671. [Google Scholar] [CrossRef] [PubMed]
- Berkman, L.F.; Glass, T.A. Social integration, social networks, social support and health. In Social Epidemiology; Berkman, L.F., Kawachi, I., Eds.; Oxford University Press: London, UK, 2000; pp. 137–173. [Google Scholar]
- Wahrendorf, M.; Siegrist, J. Proximal and distal determinants of stressful work: Framework and analysis of retrospective European data. BMC Public Health 2014, 14, 849. [Google Scholar] [CrossRef] [PubMed]
- Demakakos, P.; Biddulph, J.P.; Bobak, M.; Marmot, M.G. Wealth and mortality at older ages: A prospective cohort study. J. Epidemiol. Community Health 2016, 70, 346–353. [Google Scholar] [CrossRef] [PubMed]
Biomarkers | Extrinsic Component | Intrinsic Component | Number of Studies # |
---|---|---|---|
Sympatho-adrenal axis and cardiovascular system | |||
Heart rate | ↑: Three [29,30,31] ↓: One [32] | Four [29,30,31,32] | |
Blood pressure | ↑: Three [29,36,37] –: Two [32,35] | ↑: One [34] –: One [29] | Six [29,32,34,35,36,37] |
Heart rate variability | ↓: Nine [29,31,50,51,52,53,54,56,58] –: One [55] | ↓: Two [55,56] | Ten [29,31,50,51,52,53,54,55,56,58] |
Hypothalamic–pituitary–adrenocortical axis | |||
Cortisol (majorly in saliva) | ↑: Eight [51,61,69,74,76,77,78,80] ↓: Five [64,68,71,73,79] –: Eight [60,62,65,66,70,75,81,82] | ↑: Three [34,63,76] –: Seven [59,60,64,66,67,70,72] | Twenty-six [34,51,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82] |
Immune function and inflammation | |||
Immune function | ↓: Five [68,70,85,87,89] –: One [88] | ↓: One [70] –: Two [68,87] | Six [68,70,85,87,88,89] |
Inflammation | ↑: Six [69,89,90,91,92,93] | ↑: One [92] –: One [89] | Six [69,89,90,91,92,93] |
Metabolic and haemostatic function | |||
Fibrinogen/impaired fibrinolysis | ↑: Two [95,96] –: Four [65,66,94,97] | ↑: Three [66,94,96] | Six [65,66,94,95,96,97] |
Dyslipidemia | ↑: Seven [60,93,95,97,103,104,105] –: Two [101,102] | ↑: Two [97,104] –: One [60] | Nine [60,93,95,97,101,102,103,104,105] |
Metabolic syndrome | ↑: Six [69,110,111,112,113,114] | ↑: One [94] –: One [112] | Seven [69,94,110,111,112,113,114] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siegrist, J.; Li, J. Work Stress and Altered Biomarkers: A Synthesis of Findings Based on the Effort–Reward Imbalance Model. Int. J. Environ. Res. Public Health 2017, 14, 1373. https://doi.org/10.3390/ijerph14111373
Siegrist J, Li J. Work Stress and Altered Biomarkers: A Synthesis of Findings Based on the Effort–Reward Imbalance Model. International Journal of Environmental Research and Public Health. 2017; 14(11):1373. https://doi.org/10.3390/ijerph14111373
Chicago/Turabian StyleSiegrist, Johannes, and Jian Li. 2017. "Work Stress and Altered Biomarkers: A Synthesis of Findings Based on the Effort–Reward Imbalance Model" International Journal of Environmental Research and Public Health 14, no. 11: 1373. https://doi.org/10.3390/ijerph14111373
APA StyleSiegrist, J., & Li, J. (2017). Work Stress and Altered Biomarkers: A Synthesis of Findings Based on the Effort–Reward Imbalance Model. International Journal of Environmental Research and Public Health, 14(11), 1373. https://doi.org/10.3390/ijerph14111373