Hazard Ranking Method for Populations Exposed to Arsenic in Private Water Supplies: Relation to Bedrock Geology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Rationale for Simplified Geological Classification
2.4. Recruitment of Households Using PWS
2.5. Transformations of Arsenic Distributions
2.6. Geological Differences of Arsenic Distribution
2.7. Hazard Assessment Model
- More than 10% of the dwellings over the PCV was highest risk-rank 1;
- 5–10% of dwellings over the PCV-rank 2;
- 1–5% of dwellings over the PCV-rank 3;
- Less than 1% of dwellings over the PCV was the lowest risk-rank 4.
3. Results
3.1. Study Population and Arsenic Concentrations Measured
3.2. Transformations of Arsenic Distributions
3.3. Geological Differences of Arsenic Distribution
3.4. Hazard Assessment Model
4. Discussion
4.1. Chemical Hazards in PWS
4.2. The Tracking Approach
4.3. Limitations
4.4. Communication
4.5. Implications of This Work and Next Steps
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Log-Transformed Data | Assumption Made for Distribution | ||||
---|---|---|---|---|---|
Geology/Rock Type (SBGC) | Number of Properties Sampled | Transformation for Normal Distribution | Q–Q Plot | Chi Square Test p Value * | - |
02 Granites and felsic intrusions | 93 | log | 0.471 | Log normal | |
03 Bude and Crackington Formations | 11 | Insufficient observations | 0.861 | log normality assumed | |
04 Lower Carboniferous and Volcanics | 19 | Insufficient observations | 0.139 | log normality assumed | |
05 Middle amd Upper Devonian, with Tamar Gp | 73 | log | 0.049 | Log normal | |
06 Meadfoot and Dartmouth Formations | 69 | log | 0.256 | Log normal | |
07 Gramscatho Formation | 66 | none | 0.009 | Log normality assumed | |
08 Minor Basic and ultrabasic intrusions | 3 | Insufficient observations | Insufficient observations | log normality assumed | |
09 Mylor Slate Formation | 18 | Insufficient observations | 0.180 | log normality assumed | |
10 Lizard and Start Complexes | 16 | Insufficient observations | 0.0004 | log normality assumed | |
01 Mineralised | 140 | none | 0.017 | log normality assumed | |
Non-mineralised (groups 2–10) | 368 | none | <0.001 | n/a | |
All | 508 | none | <0.001 | n/a |
References
- Drinking Water Inspectorate (DWI). Drinking Water 2014: Private Water Supplies in England, July 2015. Available online: http://dwi.defra.gov.uk/about/annual-report/2014/pws-eng.pdf (accessed on 7 June 2017).
- Bartholomay, R.C.; Carter, J.M.; Qi, S.L.; Squillace, P.J.; Rowe, G.L. Summary of Selected U.S Geological Survey Data on Domestic Well Water Quality for the Centers for Disease Control’s National Environmental Public Health Tracking Program; U.S. Geological Survey Scientific Investigations Report 2007-5213; CDC Stacks: Atlanta, GA, USA, 2007; p. 57.
- Flanagan, S.V.; Johnston, R.B.; Zheng, Y. Arsenic in tube well water in Bangladesh: Health and economic impacts and implications for arsenic mitigation. Bull. World Health Organ. 2012, 90, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Frisbie, S.H.; Mitchell, E.J.; Mastera, L.J.; Maynard, D.M.; Yusuf, A.Z.; Siddiq, M.Y.; Ortega, R.; Dunn, R.K.; Westerman, D.S.; Bacquart, T.; et al. Public health strategies for western Bangladesh that address arsenic, manganese, uranium, and other toxic elements in drinking water. Environ. Health Perspect. 2009, 117, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Polya, D.A.; Middleton, D.R.S. Arsenic in drinking water: Sources & human exposure routes. In Best Practice Guide on the Control of Arsenic in Drinking Water; Bhattacharya, P., Polya, D.A., Jovanovic, D., Eds.; IWA Publishing: London, UK, 2017; Chapter 1; ISBN 13-978-1-84339385-6. [Google Scholar]
- Chakraborti, D.; Das, B.; Rahman, M.M.; Nayak, B.; Pal, A.; Sengupta, M.K.; Ahamed, S.; Hossain, M.A.; Chowdhury, U.K.; Biswas, B.K.; et al. Arsenic in groundwater of the Kolkata Municipal Corporation (KMC), India: Critical review and modes of mitigation. Chemosphere 2017, 180, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Chakraborti, D.; Rahman, M.M.; Das, B.; Chatterjee, A.; Das, D.; Nayak, B.; Pal, A.; Chowdhury, U.K.; Ahmed, S.; Biswas, B.K.; et al. Groundwater Arsenic Contamination and its Health Effects In India. Hydrogeol. J. 2017, 25, 1165–1181. [Google Scholar] [CrossRef]
- Nordstrom, D.K. Worldwide Occurrences of Arsenic in Ground Water. Science 2002, 296, 2143–2145. [Google Scholar] [CrossRef] [PubMed]
- NRC (National Research Council). Arsenic in Drinking Water: 2001 Update; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- World Health Organisation (WHO). Environmental Health Criteria Document 224 Arsenic and Arsenic Compounds. In International Programme on Chemical Safety (IPCS); WHO Regional Office for Europe: Copenhagen, Denmark, 2001. [Google Scholar]
- International Agency for Research on Cancer (IARC). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2012; Volume 100C, pp. 41–85. [Google Scholar]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef]
- Smith, A.H.; University of California at Berkeley, Berkeley, CA, USA. Personal communication, 2017.
- Centers for Disease Control and Prevention (US). National Environmental Public Health Tracking. 2017. Available online: http://www.cdc.gov/nceh/tracking/ (accessed on 14 June 2017).
- Jordan, M.; Duclos, C.; Kintziger, K.; Gray, A.; Bonometti, M.A. Using an environmental public health tracking biomonitoring study to validate safe water restoration efforts in Florida. J. Public Health Manag. Pract. 2015, 21 (Suppl. 2), S75–S79. [Google Scholar] [CrossRef] [PubMed]
- Katner, A.; Lackovic, M.; Streva, K.; Paul, V.; Trachtman, W.C. Evaluation of available data sources to prioritize parishes for arsenic monitoring and outreach related to private well drinking water. J. Public Health Manag. Pract. 2015, 21 (Suppl. 2), S93–S101. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, S.V.; Spayd, S.E.; Procopio, N.A.; Chillrud, S.N.; Braman, S.; Zheng, Y. Arsenic in private well water part 1 of 3: Impact of the New Jersey Private Well Testing act on household testing and mitigation behavior. Sci. Total Environ. 2016, 562, 999–1009. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, S.V.; Spayd, S.E.; Procopio, N.A.; Chillrud, S.N.; Braman, S.; Zheng, Y. Arsenic in private well water part 2 of 3: Who benefits the most from traditional testing promotion? Sci. Total Environ. 2016, 562, 1010–1018. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, S.V.; Spayd, S.E.; Procopio, N.A.; Chillrud, S.N.; Braman, S.; Zheng, Y. Arsenic in private well water part 3 of 3: Socioeconomic vulnerability to exposure in Maine and New Jersey. Sci. Total Environ. 2016, 562, 1019–1030. [Google Scholar] [CrossRef] [PubMed]
- Behbod, B.; Lauriola, P.; Leonardi, G.; Crabbe, H.; Close, R.; Staatsen, B.; Knudsen, L.E.; Hoogh, K.; de Medina, S.; Semenza, J.C.; et al. Environmental and public health tracking to advance knowledge for planetary health. Eur. J. Public Health 2016, 26, 900. [Google Scholar] [CrossRef] [PubMed]
- Lado, L.R.; Polya, D.; Winkel, L.; Berg, M.; Hegan, A. Modelling arsenic hazard in Cambodia: A geostatistical approach using ancillary data. Appl. Geochem. 2008, 23, 3010–3018. [Google Scholar] [CrossRef]
- Winkel, L.; Berg, M.; Amini, M.; Hug, S.J.; Annette Johnson, C. Predicting groundwater arsenic contamination in Southeast Asia from surface parameters. Nat. Geosci. 2008, 1, 536–542. [Google Scholar] [CrossRef]
- Amini, M.; Abbaspour, K.M.; Berg, M.; Winkel, L.; Hug, S.F.; Hoehn, E.; Yang, H.; Johnson, A. Statistical Modeling of Global Geogenic Arsenic Contamination in Groundwater. Environ. Sci. Technol. 2008, 42, 3669–3675. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Lado, L.; Sun, G.; Berg, M.; Zhang, Q.; Xue, H.; Zheng, Q.; Johnson, C.A. Groundwater arsenic contamination throughout China. Science 2013, 341, 866–868. [Google Scholar] [CrossRef] [PubMed]
- Sovann, C.; Polya, D.A. Improved groundwater geogenic hazard map for Cambodia. Environ. Chem. 2014, 11, 538–546. [Google Scholar] [CrossRef]
- Bretzler, A.; Berg, M.; Winkel, L.; Amini, M.; Rodriguez-Lado, L.; Sovann, C.; Polya, D.A.; Johnson, A. Geostatistical modelling of arsenic hazard in groundwaters. In Best Practice Guide on the Control of Arsenic in Drinking Water; Bhattacharya, P., Polya, D.A., Jovanovic, D., Eds.; IWA Publishing: London, UK, 2017; Chapter A2; ISBN 139-7-81-84339385-6. [Google Scholar]
- Ayotte, J.; Montgomery, S.; Flanagan, S.; Robinson, K. Arsenic in Groundwater in Eastern New England: Occurrence, Controls, and Human Health Implications. Environ. Sci. Technol. 2003, 37, 2075–2083. [Google Scholar] [CrossRef] [PubMed]
- The Private Water Supplies (England) Regulations 2016. Available online: http://www.legislation.gov.uk/uksi/2016/618/pdfs/uksi_20160618_en.pdf (accessed on 14 June 2017).
- Drinking Water Inspectorate (DWI). Drinking Water 2016: Private Water Supplies in England, July 2017. 2017. Available online: http://dwi.defra.gov.uk/about/annual-report/2017/pws-eng.pdf (accessed on 23 October 2017).
- Ander, E.L.; Watts, M.J.; Smedley, P.L.; Hamilton, E.M.; Close, R.; Crabbe, H.; Fletcher, T.; Studden, M.; Rimell, A.; Leonardi, G. Variability in private drinking water supply chemistry, and the impact of domestic treatment systems on water quality. Environ. Geochem. Health 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crabbe, H.; Close, R.; Rimmell, A.; Leonardi, G.; Watts, M.J.; Ander, E.L.; Hamilton, E.M.; Middleton, D.R.S.; Smedley, P.L.; Gregory, M.; et al. Estimating the population exposed to arsenic from groundwater-sourced private drinking water supplies in Cornwall, UK. In Best Practice Guide on the Control of Arsenic in Drinking Water; Bhattacharya, P., Polya, D.A., Jovanovic, D., Eds.; IWA Publishing: London, UK, 2017; Chapter A3; pp. 161–170. ISBN 139-7-81-84339385-6. [Google Scholar]
- World Health Organization (WHO). Guidelines for Drinking-Water Quality: Fourth Edition. 2011. Available online: http://whqlibdoc.who.int/publications/2011/9789241548151_eng.pdf?ua=1 (accessed on 14 June 2017).
- The Private Water Supplies Regulations 2009. Available online: http://dwi.defra.gov.uk/stakeholders/legislation/pwsregs2009.pdf (accessed on 14 June 2017).
- Middleton, D.R.S.; Watts, M.J.; Hamilton, E.M.; Ander, E.L.; Close, R.M.; Exley, K.S.; Crabbe, H.; Leonardi, G.S.; Fletcher, T.; Polya, D.A. Urinary arsenic profiles reveal exposures to inorganic arsenic from private drinking water supplies in Cornwall, UK. Sci. Rep. 2016. [Google Scholar] [CrossRef] [PubMed]
- Middleton, D.R.S.; Watts, M.J.; Hamilton, E.M.; Fletcher, T.; Leonardi, G.S.; Close, R.M.; Exley, K.S.; Crabbe, H.; Polya, D.A. Prolonged exposure to arsenic in UK private water supplies: Toenail, hair and drinking water concentrations. Environ. Sci. Process. Impacts 2016, 18, 562–574. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, G.S.; Studden, M. Environmental Public Health Tracking Proof of Concept Study—Arsenic in Private Drinking Water Supplies (Hazard Tracking); Internal Report; Health Protection Agency: London, UK, 2010.
- Hattis, D.; Burmaster, D.E. Assessment of variability and uncertainty distributions for practical risk analyses. Risk Anal. 1994, 14, 713–730. [Google Scholar] [CrossRef]
- Wrixon, A.D.; Green, B.M.R.; Lomas, P.R.; Miles, J.C.H.; Cliff, K.D.; Francis, E.A.; Driscoll, C.M.H.; James, A.C.; O’Riordan, M.C.O. Natural Radiation Exposure in UK Dwellings; NRPB-R190; NRPB (National Radiological Protection Board): Oxfordshire, UK, 1988; p. 188. [Google Scholar]
- Daraktchieva, Z.; Miles, J.C.H.; McColl, N. Radon, the lognormal distribution and deviation from it. J. Radiol. Prot. 2014, 34, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Domenico, P.A.; Schwartz, F.W. Physical and Chemical Hydrogeology, 2nd ed.; Wiley: New York, NY, USA, 1998; ISBN 978-0-471-59762-9. [Google Scholar]
- Close, R.; Studden, M.; Leonardi, G. Private Water Supply Study—Interim Report of Field Study Phase; Internal Report; Health Protection Agency (PHE): London, UK, 2012. [Google Scholar]
- Scott, D. Tukey’s Ladder of Powers Description. 2017. Available online: http://onlinestatbook.com/2/transformations/tukey.html (accessed on 16 June 2017).
- Armitage, P.; Berry, G. Statistical Methods in Medical Research, 3rd ed.; Blackwell: Oxford, UK, 1994. [Google Scholar]
- Ott, W.R. A physical explanation of the lognormality of pollutant concentrations. J. Air Waste Manag. Assoc. 1990, 40, 1378–1383. [Google Scholar] [CrossRef]
- Nicolli, H.B.; Suriano, J.M.; Peral, M.A.G.; Ferpozzi, L.H.; Baleani, O.A. Groundwater contamination with arsenic and other trace elements in an area of the pampa, province of Córdoba, Argentina. Environ. Geol. Water Sci. 1989, 14, 3–16. [Google Scholar] [CrossRef]
- Shumway, R.H.; Azari, R.S.; Kayhanian, M. Statistical approaches to estimating mean water quality concentrations with detection limits. Environ. Sci. Technol. 2002, 36, 3345–3353. [Google Scholar] [CrossRef] [PubMed]
- Lark, R.M.; Bearcock, J.M.; Ander, E.L. How does temporal variation affect the value of stream water as a medium for regional geochemical survey? J. Geochem. Explor. 2016, 169, 211–233. [Google Scholar] [CrossRef]
- British Standards Institute (BSI). Soil Quality: Guidance on the Determination of Background Values; BS EN ISO 19258:2011; International Organization for Standardization: Geneva, Switzerland, 2011. [Google Scholar]
- Chen, M.; Ma, L.Q.; Hoogeweg, C.G.; Harris, W.G. Arsenic background concentrations in Florida, USA Surface soils: Determination and Interpretation. Environ. Forensics 2001, 2, 117–126. [Google Scholar] [CrossRef]
- Samanta, G.; Sharma, R.; Roychowdhuryb, T.; Chakrabortic, D. Arsenic and other elements in hair, nails, and skin-scales of arsenic victims in West Bengal, India. Sci. Total Environ. 2004, 326, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Levene, H. Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling; Olkin, I., Ghurye, S.G., Hoeffding, W., Madow, W.G., Mann., H.B., Eds.; Stanford University Press: Redwood City, CA, USA, 1960; pp. 278–292. [Google Scholar]
- ONS Urban/Rural Classification. Available online: http://www.ons.gov.uk/ons/guide-method/geography/products/area-classifications/rural-urban-definition-and-la/rural-urban-definition--england-and-wales-/index.html (accessed on 15 June 2017).
- Office of National Statistics (ONS). Mid-Year Population Estimates for Cornwall. 2015. Available online: http://www.ons.gov.uk/ons/rel/pop-estimate/population-estimates-for-uk--england-and-wales--scotland-and-northern-ireland/mid-2014/stb---mid-2014-uk-population-estimates.html (accessed on 16 June 2017).
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Arsenic. US Department of Health and Human Services, Public Health Service: Washington, DC, USA, 2007. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=22&tid=3 (accessed on 16 June 2017).
- United State Environmental Protection Agency (USEPA). Integrated Risk Information System (IRIS): Arsenic, Inorganic, CASRN 7440-38-2. Available online: https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0278_summary.pdf (accessed on 16 June 2017).
- Drinking Water Inspectorate (DWI). Drinking Water 2015: Private Water Supplies in England, July 2015. 2016. Available online: http://dwi.defra.gov.uk/about/annual-report/2015/pws-eng.pdf (accessed on 14 June 2017).
- Ayotte, J.D. Arsenic hazard and associated health risks: New England, USA aquifers. In Best Practice Guide on the Control of Arsenic in Drinking Water; Bhattacharya, P., Polya, D.A., Jovanovic, D., Eds.; IWA Publishing: London, UK, 2017; Chapter A1; ISBN 139-7-81-84339385-6. [Google Scholar]
- Abernathy, C.O.; Thomas, D.J.; Calderon, R.L. Health effects and risk assessment of arsenic. J. Nutr. 2003, 133, 1536S–1538S. [Google Scholar] [PubMed]
- Leonardi, G.; Vahter, M.; Clemens, F.; Goessler, W.; Gurzau, E.; Hemminki, K.; Hough, R.; Koppova, K.; Kumar, R.; Rudnai, P.; et al. Inorganic Arsenic and Basal Cell Carcinoma in Areas of Hungary, Romania, and Slovakia: A Case—Control Study. Environ. Health Perspect. 2012, 120, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.H.; Hopenhayn-Rich, C.; Bates, M.N.; Goeden, H.M.; Hertz-Picciotto, I.; Duggan, H.M.; Wood, R.; Kosnett, M.J.; Smith, M.T. Cancer risks from arsenic in drinking water. Environ. Health Perspect. 1992, 97, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.H.; Hopenhayn-Rich, C.; Bates, M.N.; Goeden, H.M.; Hertz-Picciotto, I.; Duggan, H.M. Health risk assessment of inorganic arsenic intake of Cambodia residents through groundwater drinking pathway. Water Res. 2010, 44, 5777–5788. [Google Scholar]
- Middleton, D.R.S.; Watts, M.J.; Beriro, D.J.; Hamilton, E.M.; Leonardi, G.S.; Fletcher, T.; Close, R.; Polya, D.A. Arsenic in residential soil and household dust in Cornwall, South West England: Potential human exposure and the influence of historical mining. Environ. Sci. Process. Impacts 2017, 19, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Klinck, B.; Palumbo-Roe, B.; Cave, M.; Wragg, J. Arsenic Dispersal and Bioaccessibility in Mine Contaminated Soils: A Case Study from an Abandoned Arsenic Mine in Devon, UK, British Geological Survey (BGS) Research Report RR/04/003. Available online: http://nora.nerc.ac.uk/3681/1/RR04003.pdf (accessed on 16 June 2017).
- Palumbo-Roe, B.; Klinck, B. Bioaccessibility of arsenic in mine waste-contaminated soils: A case study from an abandoned arsenic mine in SW England (UK). J. Environ. Sci. Health 2007, 42, 1251–1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camm, G.S.; Glass, H.J.; Bryce, D.W.; Butcher, A.R. Characterisation of a mining-related arsenic-contaminated site, Cornwall, UK. J. Geochem. Explor. 2004, 82, 1–15. [Google Scholar] [CrossRef]
- Hossain, M.; Bhattacharya, P.; Frape, S.K.; Jacks, G.; Islam, M.M.; Rahman, M.M.; von Brömssenae, M.; Hasand, M.A.; Ahmed, K.M. Sediment color tool for targeting arsenic-safe aquifers for the installation of shallow drinking water tubewells. Sci. Total Environ. 2014, 493, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Ayotte, J.D.; Nolan, B.T.; Nuckols, J.R.; Canton, K.P.; Robinson, G.R.; Baris, D.; Hayes, L.; Karagas, M.; Bress, W.; Silverman, D.T.; et al. Modeling the probability of arsenic in groundwater in New England as a tool for exposure assessment. Environ. Sci. Technol. 2006, 40, 3578–3585. [Google Scholar] [CrossRef] [PubMed]
- Bondu, R.; Cloutier, V.; Rosa, E.; Benzaazoua, M. Mobility and speciation of geogenic arsenic in bedrock groundwater from the Canadian Shield in western Quebec, Canada. Sci. Total Environ. 2017, 574, 509–519. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation (WHO). Safety Evaluation of Certain Contaminants in Food. In Food Additives 2011: Geneva and Rome; Series: 63, FAO JECFA Monographs 8; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- UK Teratology Information Service (UKTIS). Exposure to Arsenic in Pregnancy, (Accessed via TOXBASE for the UK) v1.1. 2012. Available online: http://www.medicinesinpregnancy.org/bumps/monographs/EXPOSURE-TO-ARSENIC-IN-PREGNANCY/ (accessed on 16 June 2017).
- Smith, A.H.; Steinmaus, C.M. Health effects of arsenic and Chromium in drinking Water: Recent human findings. Annu. Rev. Public Health 2009, 30, 107–122. [Google Scholar] [CrossRef] [PubMed]
- Hopenhayn, C. Arsenic in Drinking Water: Impact on human health. Elements 2006, 2, 103–107. [Google Scholar] [CrossRef]
- Johnson, L.R.; Farmer, J.G. Urinary arsenic concentrations and speciation in Cornwall residents. Environ. Geochem. Health 1989, 11, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Florida Statutes 2016, Chapter 373, Part III: Water Resources, Regulation of Wells. Available online: http://law.justia.com/codes/florida/2016/title-xxviii/chapter-373/part-iii/ (accessed on 17 February 2017).
- Ander, L.; Lark, M.; Smedley, P.; Watts, M.; Hamilton, E.; Fletcher, T.; Crabbe, H.; Close, R.; Studden, M.; Leonardi, G. Testing how voluntary participation requirements in an environmental study affect the planned random sample design outcomes: Implications for the predictions of values and their uncertainty. EGU Gen. Assem. Conf. Abstr. 2015, 17, 15629. [Google Scholar]
- Smedley, P.L.; Allen, D. Baseline Report Series: 16, the Granites of South-West England; BGS Commissioned Report CR/04/255; British Geological Survey, NERC 2004. Available online: http://nora.nerc.ac.uk/3547/1/CR04255N.pdf (accessed on 16 June 2017).
- Xu, J.; Thornton, I. Arsenic in garden soils and vegetable crops in Cornwall, England: Implications for human health. Environ. Geochem. Health 1985, 7, 131–133. [Google Scholar] [CrossRef] [PubMed]
- Farago, M.E.; Thornton, I.; Kavanagh, P.; Elliott, P.; Leonardi, G.S. Health aspects of human exposure to high arsenic concentrations in soil in south-west England. In Arsenic: Exposure and Health Effects; Abernathy, C.O., Calderon, R.L., Chappell, W.R., Eds.; Springer: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Miles, J.C.H.; Appleton, J.D. Mapping variation in radon potential both between and within geological units. J. Radiol. Prot. 2005, 25, 257–276. [Google Scholar] [CrossRef] [PubMed]
- Kavanagh, P.; Farago, M.E.; Thornton, I.; Goessler, W.; Kuehnelt, D.; Schlagenhaufen, C.; Irgolic, K.J. Urinary arsenic species in Devon and Cornwall residents, UK. A pilot study. Analyst 1998, 123, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Button, M.; Jenkin, G.R.T.; Harrington, C.F.; Watts, M.J. Human toenails as biomarkers of exposure to elevated environmental arsenic. J. Environ. Monit. 2009, 11, 610–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mondal, D.; Banerjee, M.; Kundu, M.; Banerjee, N.; Bhattacharya, U.; Giri, A.K.; Ganguli, B.; Sen Roy, S.; Polya, D.A. Comparison of drinking water, raw rice and cooking of rice as arsenic exposure routes in three contrasting areas of West Bengal, India. Environ. Geochem. Health 2010, 32, 463–477. [Google Scholar] [CrossRef] [PubMed]
- British Geological Survey (BGS). Arsenic: Are We Exposed? 2017. Available online: http://www.bgs.ac.uk/sciencefacilities/laboratories/geochemistry/igf/Biomonitoring/arsenicSW.html (accessed on 12 April 2017).
- PHE (Public Health England). Information for the Public on the Effects of Arsenic. 2016. Available online: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/562431/arsenic_general_information.pdf (accessed on 16 June 2017).
- Yassi, A.; Kjellstrom, T.; de Kok, T.; Guidotti, T. Risk Assessment Chapter in ‘Basic Environmental Health’, Chapter 3; Oxford University Press: Oxford, UK, 2001; pp. 104–142. [Google Scholar]
- Zeka, A. Exposure assessment for epidemiology. In Essentials of Environmental Epidemiology for Health Protection: A Handbook for Field Professionals; Kreis, I.A., Busby, A., Leonardi, G.L., Meara, J., Murray, V., Eds.; Oxford University Press: Oxford, UK, 2013; Chapter 8; pp. 68–76. [Google Scholar]
- Nieuwenhuijsen, M.J. Exposure Assessment in Occupational and Environmental Epidemiology; OUP: Oxford, UK, 2003. [Google Scholar]
- Council of the European Union. The Quality of Water Intended for Human Consumption. Council Directive 98/83/EC. 1998. Available online: http://ec.europa.eu/environment/water/water-drink/legislation_en.html (accessed on 16 June 2017).
Geology/Rock Type (SBGC) | Number of Dwellings Sampled | Percentage of Total Dwellings | Arithmetic Mean As | Median As * | Minimum As $ | 25% Tile | 75% Tile | Maximum As | Geometric Mean As | Geometric Standard Deviation As | % of Dwellings Measured at Levels: (As μg/L) | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<1 | 1–5 | 5–10 | >10 | |||||||||||
01 Mineralised | 140 | 28 | 6.46 | 0.71 | 0.02 | 0.22 | 2.67 | 231 | 0.885 | 1.805 | 58 | 27 | 6 | 9 |
02 Granites and felsic intrusions | 93 | 18 | 1.24 | 0.5 | 0.02 | 0.26 | 1.13 | 20.5 | 0.575 | 1.214 | 71 | 27 | 1 | 1 |
03 Bude and Crackington Formations | 11 | 2 | 0.12 | 0.09 | 0.02 | 0.04 | 0.17 | 0.37 | 0.086 | 0.885 | 100 | 0 | 0 | 0 |
04 Lower Carboniferous and Volcanics | 19 | 4 | 33.13 | 0.4 | 0.05 | 0.25 | 4.37 | 435 | 1.213 | 2.542 | 58 | 21 | 0 | 21 |
05 Middle and Upper Devonian, with Tamar Gp | 73 | 14 | 5.08 | 0.42 | 0.02 | 0.18 | 1.97 | 178 | 0.622 | 1.819 | 68 | 15 | 11 | 5 |
06 Meadfoot and Dartmouth Formations | 69 | 14 | 1.51 | 0.38 | 0.02 | 0.12 | 1.19 | 14.2 | 0.441 | 1.577 | 68 | 25 | 3 | 4 |
07 Gramscatho Formation | 66 | 13 | 0.40 | 0.17 | 0.02 | 0.09 | 0.32 | 5.13 | 0.175 | 1.109 | 94 | 3 | 3 | 0 |
08 Minor Basic and ultrabasic intrusions | 3 | <1 | 0.12 | 0.08 | 0.03 | 0.03 | 0.24 | 0.24 | 0.083 | 1.040 | 100 | 0 | 0 | 0 |
09 Mylor Slate Formation | 18 | 4 | 4.64 | 0.38 | 0.06 | 0.15 | 3.61 | 25.6 | 0.665 | 2.024 | 72 | 6 | 6 | 17 |
10 Lizard and Start Complexes | 16 | 3 | 0.33 | 0.13 | 0.04 | 0.12 | 0.15 | 3.29 | 0.141 | 0.977 | 94 | 6 | 0 | 0 |
Non-mineralised (groups 2–10) | 368 | 72 | 3.63 | 0.31 | 0.02 | 0.13 | 0.92 | 435 | 0.411 | 1.637 | 76 | 17 | 4 | 4 |
All | 508 | 100 | 4.41 | 0.37 | 0.02 | 0.15 | 1.46 | 435 | 0.508 | 1.718 | 71 | 19 | 4 | 6 |
Log Transformed Data | % of Dwellings over the Geological Groups Predicted at Levels: (As μg/L) | Hazard Ranking | ||||||
---|---|---|---|---|---|---|---|---|
Geology/Rock Type (SBGC) | Number of Dwellings Sampled | Geometric Mean | Geometric Standard Deviation | <1 | 1–5 | 5–10 | >10 | |
01 Mineralised | 140 | 0.885 | 1.805 | 52.7 | 30.4 | 7.91 | 8.95 | 2 |
02 Granites and felsic intrusions | 93 | 0.575 | 1.214 | 67.6 | 28.7 | 2.81 | 0.93 | 4 |
03 Bude and Crackington Formations | 11 | 0.086 | 0.885 | 99.7 | 0.28 | 0 | 0 | 4 |
04 Lower Carboniferous and Volcanics | 19 | 1.213 | 2.542 | 47.0 | 24.2 | 8.54 | 20.3 | 1 |
05 Middle and Upper Devonian, with Tamar Gp | 73 | 0.622 | 1.819 | 60.3 | 27.1 | 6.25 | 6.34 | 2 |
06 Meadfoot and Dartmouth Formations | 69 | 0.441 | 1.577 | 69.8 | 24.0 | 3.79 | 2.38 | 3 |
07 Gramscatho Formation | 66 | 0.175 | 1.109 | 94.2 | 5.67 | 0.11 | 0.01 | 4 |
08 Minor Basic and ultrabasic intrusions | 3 | 0.083 | 1.040 | 99.2 | 0.73 | 0.07 | 0.04 | 4 |
09 Mylor Slate Formation | 18 | 0.665 | 2.024 | 58.0 | 26.1 | 6.92 | 9.03 | 2 |
10 Lizard and Start Complexes | 16 | 0.141 | 0.977 | 97.8 | 2.23 | 0.01 | 0 | 4 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crabbe, H.; Fletcher, T.; Close, R.; Watts, M.J.; Ander, E.L.; Smedley, P.L.; Verlander, N.Q.; Gregory, M.; Middleton, D.R.S.; Polya, D.A.; et al. Hazard Ranking Method for Populations Exposed to Arsenic in Private Water Supplies: Relation to Bedrock Geology. Int. J. Environ. Res. Public Health 2017, 14, 1490. https://doi.org/10.3390/ijerph14121490
Crabbe H, Fletcher T, Close R, Watts MJ, Ander EL, Smedley PL, Verlander NQ, Gregory M, Middleton DRS, Polya DA, et al. Hazard Ranking Method for Populations Exposed to Arsenic in Private Water Supplies: Relation to Bedrock Geology. International Journal of Environmental Research and Public Health. 2017; 14(12):1490. https://doi.org/10.3390/ijerph14121490
Chicago/Turabian StyleCrabbe, Helen, Tony Fletcher, Rebecca Close, Michael J. Watts, E. Louise Ander, Pauline L. Smedley, Neville Q. Verlander, Martin Gregory, Daniel R. S. Middleton, David A. Polya, and et al. 2017. "Hazard Ranking Method for Populations Exposed to Arsenic in Private Water Supplies: Relation to Bedrock Geology" International Journal of Environmental Research and Public Health 14, no. 12: 1490. https://doi.org/10.3390/ijerph14121490
APA StyleCrabbe, H., Fletcher, T., Close, R., Watts, M. J., Ander, E. L., Smedley, P. L., Verlander, N. Q., Gregory, M., Middleton, D. R. S., Polya, D. A., Studden, M., & Leonardi, G. S. (2017). Hazard Ranking Method for Populations Exposed to Arsenic in Private Water Supplies: Relation to Bedrock Geology. International Journal of Environmental Research and Public Health, 14(12), 1490. https://doi.org/10.3390/ijerph14121490