Antimicrobial Properties of Selected Copper Alloys on Staphylococcus aureus and Escherichia coli in Different Simulations of Environmental Conditions: With vs. without Organic Contamination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chosen Copper Alloys and Their Preparation
2.2. Quantitative Culture Method to Determine the Antimicrobial Effectiveness of Copper and Its Alloys
2.3. Microscopic Assessment of the Degree of Reduction in Live Bacteria on Metallic Materials
3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
- The study confirmed the bactericidal or bacteriostatic properties of the copper alloys tested, in both variants of the experiment: with vs. without organic contamination.
- A statistically significant correlation between the copper concentration in the alloy and the level and time of bacterial density was observed only for the Escherichia coli tested strain, and not for Staphylococcus aureus.
- In the case of Staphylococcal aureus, the copper alloys tested showed better antimicrobial properties in the environment simulating organic contamination, but the survival time for this tested strain was longer in the conditions simulating no organic contamination compared to Escherichia coli.
- The use in hospitals of equipment made of copper alloys should help to prevent the spread of pathogenic micro-organisms.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- De Geyter, D.; Blommaert, L.; Verbraeken, N.; Sevenois, M.; Huyghens, M.; Martini, H.; Covens, L.; Pierard, D.; Wybo, I. The sink as a potential source of transmission of carbapenemase-producing Enteriobacteriaceae in the intensive care unit. Antimicrob. Resist. Infect. Control 2017, 6. [Google Scholar] [CrossRef] [PubMed]
- Talon, D. The role of the hospital environment in the epidemiology of multi-resistant bacteria. J. Hosp. Infect. 1999, 43, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Cruz, C.P.; Aguilar, M.J.N.; Arroyo-Helguera, O.E. Fungal and bacterial contamination on indoor surfaces of a hospital in Mexico. Jundishapur J. Microbiol. 2015, 5, 460–464. [Google Scholar] [CrossRef]
- Pittet, D.; Allegranzi, B.; Sax, H.; Dharan, S.; Pessoa-Silva, C.; Donaldson, L. Evidence-based model for hand transmission during patient care and the role of improvement practices. Lancet Infect. Dis. 2006, 6, 641–652. [Google Scholar] [CrossRef]
- Garus-Pakowska, A.; Sobala, W.; Szatko, F. Observance of hand washing procedures performed by the medical personnel before patient contact. Part I. Int. J. Occup. Med. Environ. Health 2013, 26, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Garus-Pakowska, A.; Sobala, W.; Szatko, F. Observance of hand washing procedures performer by the medical personnel after the patient contact. Part II. Int. J. Occup. Med. Environ. Health 2013, 26, 257–264. [Google Scholar] [PubMed]
- Santosaningsih, D.; Erikawati, D.; Santoso, S.; Noorhamdani, N.; Ratridewi, I.; Candradikusuma, D.; Chozin, I.; Huwae, T.; van der Donk, G.; van Boven, E.; et al. Intervening with healthcare workers, hand hygiene compliance, knowledge, and perception in a limited-resource hospital in Indonesia: A randomized controlled trial study. Antimicrob. Resist. Infect. Control 2017, 6. [Google Scholar] [CrossRef] [PubMed]
- Harbarth, S.; Tuan Soh, S.; Horner, C.; Wilcox, M.H. Is reduced susceptibility to disinfectants and antiseptics a risk in healthcare settings? A point/ counterpoint review. J. Hosp. Infect. 2014, 87, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Salgado, C.D.; Sepkowitz, K.A.; John, J.F.; Cantey, J.R.; Attaway, H.H.; Freeman, K.D.; Sharpe, P.A.; Michels, H.T.; Schmidt, M.G. Copper surfaces reduce the rate of healthcare-acquired infections in the intensive care unit. Infect. Control Hosp. Epidemiol. 2013, 34, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; von Dessauer, B.; Benavente, C.; Benadof, D.; Cifuentes, P.; Elgueta, A.; Duran, C.; Navarrete, M.S. Copper surfaces are associated with significantly lower concentrations of bacteria on selected surfaces within a pediatric intensive care unit. Am. J. Infect. Control 2015, 1–7. [Google Scholar] [CrossRef] [PubMed]
- O’Gorman, J.; Humphreys, H. Application of copper to prevent and control infection. Where are we now? J. Hosp. Infect. 2012, 81, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Gouldi, S.W.J.; Fielder, M.D.; Kelly, A.F.; Morgan, M.; Kenny, J.; Naughton, D.P. The antimicrobial properties of copper surfaces against a range of important nosocomial pathogens. Ann. Microbiol. 2009, 59, 151–156. [Google Scholar] [CrossRef]
- Michels, H.T.; Noyce, J.O.; Keevil, C.W. Effects of temperature and humidity on the efficacy of methicillin-resistant Staphylococcus aureus challenged antimicrobials containing silver and copper. Lett. Appl. Microbiol. 2009, 49, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Airey, P.; Verran, J. Potential use of copper as a hygienic surface: Problems associated with cumulative soiling and cleaning. J. Hosp. Infect. 2007, 67, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Santo, C.; Vasconcelos Morais, P.; Grass, G. Isolation and characterization of bacteria resistant to metallic copper surfaces. Appl. Environ. Microbiol. 2010, 3, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency. Test Method for Efficacy of Copper Alloys Surfaces as a Sanitizer. Available online: http://www.antimicrobialcopper.org/sites/default/files/upload/media-library/files/pdfs/us/epa_sanitizer_test_method_copper_alloy_surfaces.pdf (accessed on 21 April 2017).
- Japanese Industrial Standard JIS Z 2801 Antimicrobial Products—Test for Antibacterial Activity and Efficacy. Available online: https://law.resource.org/pub/jp/ibr/jis.z.2801.e.2010.pdf (accessed on 21 April 2017).
- Kock, R.; Becker, K.; Cookson, B.; van Gemert-Pijnen, J.E.; Harbath, S.; Kluytmans, J.; Mielke, M.; Peters, G.; Skov, R.L.; Struelens, M.J.; et al. Systemic literature analysis and review of targeted preventive measures to limit healthcare-associated infections by meticillin-resistant Staphylococcus aureus. Euro Surveill. 2014, 19, 23–49. [Google Scholar]
- Moellering, R.C., Jr. Current treatment options for community-acquired methicillin-resistant Staphylococcus aureus infection. Clin. Infect. Dis. 2008, 46, 1032–1037. [Google Scholar] [CrossRef] [PubMed]
- Wójkowska-Mach, J.; Chmielarczyk, A.; Borszewska-Kornacka, M.; Domańska, J.; Gadzinowski, J.; Gulczyńska, E.; Nowiczewski, M.; Helwich, E.; Kordek, A.; Pawlik, D.; et al. Enterobacteriaceae infections of very low birth weight infants in Polish neonatal intensive care units: Resistance and cross-transmission. Pediatr. Infect. Dis. J. 2013, 32, 594–598. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.R.; Beeching, N.J. Travellers diarrhea. Curr. Opin. Infect. Dis. 2010, 23, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Nandre, R.M.; Ruan, X.; Duan, Q.; Sach, D.A.; Zhang, W. Antibodies derived from an enterotoxigenic Escherichia coli (ETEC) adhesin tip MEFA (multiepitope fusion antigen) against adherence of nine ETEC adhesins: CFA/I, CS1, CS2, CS3, CS4, CS5, CS6, CS21 and EtpA. Vaccine 2016, 34, 3620–3625. [Google Scholar] [CrossRef] [PubMed]
- Souli, M.; Galani, I.; Plachouras, D.; Panagea, T.; Armaganidis, A.; Petrikkos, G.; Giamarellou, H. Antimicrobial activity of copper surfaces against carbapenemase-producing contemporary Gram-negative clinical isolates. J. Antimicrob. Chemother. 2012. [Google Scholar] [CrossRef] [PubMed]
- Oie, S.; Hosokawa, I.; Kamiya, A. Contamination of room door handles by methicillin-sensitive/methicillin-resistant Staphylococcus aureus. J. Hosp. Infect. 2002, 51, 140–143. [Google Scholar] [CrossRef] [PubMed]
- Molecular Probes, Live/Dead BackLight, Bacterial Viability Kits, Product Information (Revised: 15 July 2004). Available online: https://tools.thermofisher.com/content/sfs/manuals/mp07007.pdf (accessed on 12 March 2017).
- Noyce, J.O.; Michels, H.; Keevil, C.W. Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment. J. Hosp. Infect. 2006, 63, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Mehtar, S.; Wiid, I.; Todorov, S.D. The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: An in-vitro study. J. Hosp. Infect. 2008, 68, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Weaver, L.; Michel, H.T.; Keevil, C.W. Survival of Clostridium difficile on copper and steel: Futuristic options for hospital hygiene. J. Hosp. Infect. 2008, 68, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Ojeil, M.; Jermann, C.; Holah, J.; Denyer, S.P.; Maillard, J.-Y. Evaluation of new in vitro efficacy test for antimicrobial surface activity reflecting UK hospital conditions. J. Hosp. Infect. 2013, 85, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Weaver, L.; Noyce, J.O.; Michels, H.T.; Keevil, C.W. Potential action of copper surfaces on methicillin-resistant Staphylococcus aureus. J. Appl. Microbiol. 2010, 109, 2200–2205. [Google Scholar] [CrossRef] [PubMed]
- Steindl, G.; Heuberger, S.; Springer, B. Antimicrobial effect of copper on multidrug-resistant bacteria. Vet. Med. Austria 2012, 99, 38–43. [Google Scholar]
- Santo, C.E.; Wen Lam, E.; Elowsky, C.G.; Quaranta, D.; Domaille, D.W.; Chang, C.J.; Grass, G. Bacterial killing by dry metallic copper surfaces. Appl. Environ. Microbiol. 2011, 77, 794–802. [Google Scholar] [CrossRef] [PubMed]
- Hong, R.; Kang, T.Y.; Michels, C.A.; Gad, N. Membrane lipid peroxidation in copper alloy-mediated contact killing of Escherichia coli. Appl. Environ. Microbiol. 2012, 78, 1776–1784. [Google Scholar] [CrossRef] [PubMed]
- Bleichert, P.; Santo, C.E.; Hanczaruk, M.; Meyer, H.; Grass, G. Inactivation of bacterial and viral biothreat agents on metallic copper surfaces. Biometals 2014, 27, 1179–1189. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Gunther, S.; Hubschmann, T.; Wick, L.Y.; Harms, H.; Muller, S. Limits of propidium iodide as a cell viability indicator for environmental bacteria. Cytom. Part A 2007, 71A, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Stiefel, P.; Schmidt-Emrich, S.; Maniura-Weber, K.; Ren, Q. Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. BMC Microbiol. 2015, 15, 36. [Google Scholar] [CrossRef] [PubMed]
- Różańska, A.; Romaniszyn, D.; Chmielarczyk, A.; Bulanda, M. Bacteria contamination of touch surfaces in Polish hospital wards. Med. Pr. 2017, 68, 459–467. [Google Scholar] [CrossRef] [PubMed]
Common Name | UNS * Code | Cu | As | Bi | Cd | Fe | Mn | Al | Ni | P | Pb | Sb | Si | Sn | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Copper Cu-ETP | C11000 | 99.9 | 0.0 | 0.001 | 0.001 | 0.002 | 0.001 | 0.0 | 0.0 | 0.030 | 0.002 | 0.000 | 0.008 | 0.0 | 0.0 |
Red Brass CuZn15 | C23000 | 85.7 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.0 | 0.001 | 0.001 | 0.001 | 0.001 | 0.010 | 0.001 | 14.3. |
Yellow Brass CuZn37 | C27400 | 63.2 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.06 | 0.001 | 0.004 | 0.001 | 0.008 | 0.0 | 36.7 |
Phosphor Bronze CuSn6 | C51900 | 94.1 | 0.006 | 0.002 | 0.0 | 0.001 | 0.001 | 0.016 | 0.01 | 0.222 | 0.038 | 0.001 | 0.002 | 5.5. | 0.1 |
Nickel-Aluminium Bronze CuAl10Ni5Fe4 | C63000 | 82.2 | 0.03 | 0.001 | 0.002 | 3.5. | 0.6 | 8.9. | 4.6. | 0.003 | 0.004 | 0.001 | 0.009 | 0.03 | 0.1 |
Cupronickel CuNi10Fe1Mn | C70600 | 87.8 | 0.001 | 0.001 | 0.001 | 1.5. | 0.6 | 0.001 | 10.0 | 0.004 | 0.002 | 0.001 | 0.005 | 0.01 | 0.1 |
Nickel silver CuNi18Zn20 | C75200 | 63.1 | 0.001 | 0.001 | 0.001 | 0.027 | 0.12 | 0.001 | 17.9. | 0.001 | 0.001 | 0.008 | 0.001 | 0.001 | 18.9. |
Nickel silver CuNi12Zn20 | C75700 | 64.7 | 0.001 | 0.001 | 0.001 | 0.009 | 0.25 | 0.001 | 12.0 | 0.002 | 0.001 | 0.001 | 0.001 | 0.002 | 23.4. |
Stainless Steel | S30400 | Fe 68.8, C 0.07, Cr 19, Mn 2, N 0.1, Ni 10, P 0.045, S 0.015, Si 1 |
Suspension Version | TSB | NaCl | ||
---|---|---|---|---|
Bacteria, metallic material | R2 | fitted function (x = time in minutes) | R2 | fitted function (x = time in minutes) |
EC, Cu | 0.997 | y = 7,539,362.8 x−0.007x | 1 | y = 2,000,000 e−2.660x |
SA, Cu | 0.999 | y = 7,480,509.3 e−0.038x | 0.857 | y = 12,717,251 x−0.014x |
EC, CuZn15 | 0.873 | y = 9,839,313.2 x−0.006x | 1 | y = 8,500,000 e−2.726x |
SA, CuZn15 | 0.862 | y = 13,774,193 x−0.006x | 0.998 | y = 13,037,934 x−0.030x |
EC, CuZn37 | 0.996 | y = (4,509,969 − 14,996.8x)/(1 − 0.042x + 0.001x2) | 1 | y = 7,500,000 e−0.414x |
SA, CuZn37 | 0.982 | y = 10,395,963 x−0.005x | 0.978 | y = 11,082,599 x−0.021x |
EC, CuSn6 | 1 | y = 5,416,646.2 e−0.097x | 1 | y = 8,825,000 e−2.726x |
SA, CuSn6 | 1 | y = 11,333,353 e−0.109x | 1 | y = 21,999,999 e−0.369x |
EC, CuNi10Fe1Mn | 0.972 | y = 5,559,082.2 x−0.007x | 1 | y = 7,100,000 e−2.726x |
SA, CuNi10Fe1Mn | 0.971 | y = 7,562,494.3 e−0.053x | 1 | y = 7,999,117.9 e−0.148x |
EC, CuNi12Zn24 | 0.965 | y = 5,223,933.5 x−0.002x | 1 | y = 4,018,201.9 x−0.029x |
SA, CuNi12Zn24 | 0.987 | y = 9,523,622.2 x−0.005x | 0.995 | y = 9,585,646.5 x−0.023x |
EC, CuNi18Zn20 | 0.951 | y = 3,871,243.3 e−0.013x | 1 | y = 10,000,000 e−0.504x |
SA, CuNi18Zn20 | 0.996 | y = 4,816,607.3 e−0.133x | 0.984 | y = 1,246,559.1 x−0.014x |
EC, CuAl10Ni5Fe4 | 0.817 | y = 12,483,105 x−0.002x | 1 | y = 3,950,000 e−2.660x |
SA, CuAl10Ni5Fe4 | 0.806 | y = 4,625,374.2 x−0.001x | 0.999 | y = 19,999,988 e−0,350x |
EC, Stainless steel | 0.995 | y = 12,787,135 x−0.0002x | 0.908 | y = 9,518,771.8 e−0.005x |
SA, Stainless steel | 0.924 | y = 4,156,727.5 x−0.001x | 0.886 | y = (2,472,541.6 + 178,879.83x)/(1 − 0.014x + 0.0003x2) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Różańska, A.; Chmielarczyk, A.; Romaniszyn, D.; Sroka-Oleksiak, A.; Bulanda, M.; Walkowicz, M.; Osuch, P.; Knych, T. Antimicrobial Properties of Selected Copper Alloys on Staphylococcus aureus and Escherichia coli in Different Simulations of Environmental Conditions: With vs. without Organic Contamination. Int. J. Environ. Res. Public Health 2017, 14, 813. https://doi.org/10.3390/ijerph14070813
Różańska A, Chmielarczyk A, Romaniszyn D, Sroka-Oleksiak A, Bulanda M, Walkowicz M, Osuch P, Knych T. Antimicrobial Properties of Selected Copper Alloys on Staphylococcus aureus and Escherichia coli in Different Simulations of Environmental Conditions: With vs. without Organic Contamination. International Journal of Environmental Research and Public Health. 2017; 14(7):813. https://doi.org/10.3390/ijerph14070813
Chicago/Turabian StyleRóżańska, Anna, Agnieszka Chmielarczyk, Dorota Romaniszyn, Agnieszka Sroka-Oleksiak, Małgorzata Bulanda, Monika Walkowicz, Piotr Osuch, and Tadeusz Knych. 2017. "Antimicrobial Properties of Selected Copper Alloys on Staphylococcus aureus and Escherichia coli in Different Simulations of Environmental Conditions: With vs. without Organic Contamination" International Journal of Environmental Research and Public Health 14, no. 7: 813. https://doi.org/10.3390/ijerph14070813
APA StyleRóżańska, A., Chmielarczyk, A., Romaniszyn, D., Sroka-Oleksiak, A., Bulanda, M., Walkowicz, M., Osuch, P., & Knych, T. (2017). Antimicrobial Properties of Selected Copper Alloys on Staphylococcus aureus and Escherichia coli in Different Simulations of Environmental Conditions: With vs. without Organic Contamination. International Journal of Environmental Research and Public Health, 14(7), 813. https://doi.org/10.3390/ijerph14070813