Health Impacts of Climate Change-Induced Subzero Temperature Fires
Abstract
:1. Introduction
2. The Dangers of Fire to the Human Health
2.1. Heat Release Rate (HRR) in Fires
2.2. Heat Release Rate (HRR) in Fires
2.3. Compartment Fire Development
2.4. Wildfire Development
2.5. Influence of Fuel Moisture Content (FMC)
3. Air Relative Humidity (RH) and Drying Processes
3.1. Cold Climate Fire Risk
3.2. Fire Risk and Cold Climate Changes
4. Health Impacts of Four Recent Subzero Temperatures Fires
4.1. The Lærdalsøyri Fire, Norway, 18 January 2014
4.2. The Résidence du Havre Nursing Home Fire, Quebec, 23 January 2014
4.3. The Flatanger Wildland Fire, Norway, 28 January 2014
4.4. The September 2007 North Face Tundra Fire, Alaska
5. Risk Implications
6. Potential Mitigating Measures
6.1. Establishing the Mental Risk Picture
6.2. Table Top Training
6.3. Practical Physics and Enclosure Fire Dynamics Demonstrations
6.4. Practical Physics and Wildfire Dynamics Demonstrations
6.5. Learning from Other Sectors
6.6. Relocate Emergency Responders According to the Risk?
6.7. Automatic Fire Suppression Systems
6.8. Wild Fire Risk Mitigation
6.9. Mitigating Children Fire Distress
7. Discussion
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Losnegård, G. Norske Ulykker og Katastrofar/Norwegian Accidents and Catastrophes; Skald: Leikanger, Norway, 2013; ISBN 978-82-7959-196-2. [Google Scholar]
- Abe, K.; Kazama, R. A psycholigical analysis of the evacuation behaviour at the great Sakata fire. Int. J. Mass Emerg. Disaster. 1985, 3, 133–146. [Google Scholar]
- Himoto, K.; Tanaka, T. A model for the fire-fighting activity of local residents in urban fires. Fire Saf. J. 2012, 54, 154–166. [Google Scholar] [CrossRef]
- Maranghides, A.; Mell, W. A case study of a community affected by the Witch and Guejito wildland fires. Fire Technol. 2011, 47, 379–420. [Google Scholar] [CrossRef]
- Simms, C.D. Canada’s Fort McMurray fire: Mitigating global risks. Lancet Glob. Health 2016, 48, e520. [Google Scholar] [CrossRef]
- Joly, K.; Bente, P.; Dau, J. Response of overwintering caribou to burned habitat in northwest Alaska. Arctic 2007, 60, 401–410. [Google Scholar] [CrossRef]
- Log, T.; Thuestad, G.; Velle, L.G.; Khattri, S.K.; Kleppe, G. Unmanaged heathland—A fire risk in subzero temperatures? Fire Saf. J. 2017, 90, 62–71. [Google Scholar] [CrossRef]
- Log, T. Cold Climate Fire Risk; A Case Study of the Lærdalsøyri Fire, January 2014. Fire Technol. 2016, 52, 1825–1843. [Google Scholar] [CrossRef]
- Delâge, C. Rapport du Commissaire Aux Incendies du Québec. Available online: https://www.coroner.gouv.qc.ca/fileadmin/Coroners/Rapport_d_enquete_-_L_Isle-Verte.pdf (accessed on 18 July 2017).
- Drysdale, D.D. Thermochemistry. In SFPE Handbook of Fire Protection Engineering, 5th ed.; Morgan, J.H., Ed.; Springer: Berlin, Germany, 2015; pp. 138–150. [Google Scholar]
- Drysdale, D.D. An Introduction to Fire Dynamics, 3rd ed.; Wiley: Hoboken, NJ, USA, 2011; ISBN 978-0-470-31903-1. [Google Scholar]
- Dries, D.J.; Endorf, F.W. Inhalation injury: Epidemiology, pathology, treatment Strategies. Scand. J. Trauma Resusc. Emerg. Med. 2013, 21, 31. [Google Scholar] [CrossRef] [PubMed]
- Stoll, A.; Greene, L.C. Relationship between pain and tissue damage due to thermal radiation. J. Appl. Physiol. 1959, 14, 373–383. [Google Scholar] [PubMed]
- Marx, J. Thermal burns. In Rosen’s Emergency Medicine: Concepts and Clinical Practice, 7th ed.; Elsevier: Maryland Heights, MO, USA, 2010; ISBN 978-0-323-05472-0. [Google Scholar]
- Wieczorek, C.J.; Dembsey, N.A. Effects of Thermal Radiation on People: Predicting 1st and 2nd Degree Skin Burns. In SFPE Handbook of Fire Protection Engineering, 5th ed.; Morgan, J.H., Ed.; Springer: Berlin, Germany, 2015; pp. 2705–2737. [Google Scholar]
- Log, T. Skin temperatures of a pre-cooled wet person exposed to engulfing flames. Fire Saf. J. 2017, 89, 1–6. [Google Scholar] [CrossRef]
- Mathers, C.; Fat, D.M.; Boerma, J.T. The Global Burden of Disease: 2004 Update; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Sadeghi-Bazargani, H.; Mohammadi, R.; Ayubi, E.; Almasi-Hashiani, A.; Pakzad, R.; Sullman, M.J.M.; Safiri, S. Caregiver-related predictors of thermal burn injuries among Iranian children: A case-control study. PLoS ONE 2017, 12, e0170982. [Google Scholar] [CrossRef] [PubMed]
- Ostry, A.; Ogborn, M.; Bassil, K.L.; Takaro, T.K.; Allen, D.M. Climate change and health in British Columbia: Projected impacts and a proposed agenda for adaptation research and policy. Int. J. Environ. Res. Public Health 2010, 7, 1018–1035. [Google Scholar] [CrossRef] [PubMed]
- Youssouf, H.; Liousse, C.; Roblou, L.; Assamoi, L.; Salonen, R.O.; Maesano, C.; Banerjee, S.; Annesi-Maesano, I. Non-Accidental health impacts of wildfire smoke. Int. J. Environ. Res. Public Health 2014, 11, 11772–11804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLean, K.E.; Yao, J.; Henderson, S.B. An Evaluation of the British Columbia Asthma Monitoring System (BCAMS) and PM2.5 Exposure Metrics during the 2014 Forest Fire Season. Int. J. Environ. Res. Public Health 2015, 12, 6710–6724. [Google Scholar] [CrossRef] [PubMed]
- Davies, G.M.; Gray, A.; Rein, G.; Legg, C.J. Peat consumption and carbon loss due to smouldering wildfire in a temperate peatland. For. Ecol. Manag. 2013, 308, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Rein, G. Smouldering fires and natural fuels. In Fire Phenomena in the Earth System—An. Interdisciplinary Approach to Fire Science; Belcher, C., Ed.; Wiley and Sons: London, UK, 2013; pp. 15–34. ISBN 978-0-470-65748-5. [Google Scholar]
- Rocha, A.V.; Loranty, M.M.; Higuera, P.E.; Mack, M.C.; Hu, F.S.; Jones, B.M.; Breen, A.L.; Rastetter, E.B.; Goetz, S.J.; Shaver, G.R. The footprint of Alaskan tundra fires during the past half-century: Implications for surface properties and radiative forcing. Environ. Res. Lett. 2012, 7, 044039. [Google Scholar] [CrossRef]
- Babrauskas, V.; Peacock, R. Heat Release Rate: The Single Most Important Variable in Fire Hazard. Fire Saf. J. 1992, 18, 255–272. [Google Scholar] [CrossRef]
- Kraaijeveld, A.; Log, T. Vertical Flame Spread in Wooden Corners as a Function of Fuel Moisture Content. In Proceedings of the 15th International Conference Fire and Materials 2017, San Francisco, SF, USA, 6–8 February 2017; pp. 307–318. [Google Scholar]
- Kraaijeveld, A.; Gunnarshaug, A.; Schei, B.; Log, T. Burning rate and time to flashover in wooden 1/4 scale compartments as a function of fuel moisture content. Proceeding of the 8th International Fire Science & Engineering Conference, Interflam 2016, Windsor, UK, 4–6 July 2016; pp. 553–558. [Google Scholar]
- Finney, A.M.; Cohen, J.D.; Forthofer, J.M.; McAllister, S.S.; Gollner, M.J.; Gorham, D.J.; Saito, K.; Akafuah, N.K.; English, J.D. Role of buoyant flame dynamics in wildfire spread. Proc. Natl. Acad. Sci. USA 2015, 112, 9833–9838. [Google Scholar] [CrossRef] [PubMed]
- Koo, E.; Pagni, P.J.; Weise, D.R.; Woycheese, J.P. Firebrands and spotting ignition in large-scale fires. Int. J. Wildland Fire 2010, 19, 818–843. [Google Scholar] [CrossRef]
- Tetens, O. Uber einige meteorologische Begriffe. Z. Geophys. 1930, 6, 297. [Google Scholar]
- Kalamees, T.; Korpi, M.; Vinha, J.; Kurnitski, J. The effects of ventilation systems and building fabric on the stability of indoor temperature and humidity in Finnish detached houses. Build. Environ. 2009, 44, 1643–1650. [Google Scholar] [CrossRef]
- Log, T. Water Droplets Evaporating on Horizontal semi-infinite solids at room temperature. Appl. Therm. Eng. 2016, 93, 214–222. [Google Scholar] [CrossRef]
- Pirsko, A.R.; Fons, W.L. Frequency of Urban Building Fires as Related to Daily Weather Conditions. Available online: https://www.fs.fed.us/psw/publications/documents/cfres_series/cfres_itr_afswp866.pdf (accessed on 18 July 2017).
- Rohrer-Mirtschink, S.; Forster, N.; Giovanoli, P.; Guggenheim, M. Major burn injuries associated with Christmas celebrations: A 41-year experience from Switzerland. Ann. Burns Fire Disaster 2015, 28, 71–75. [Google Scholar]
- Othman, N.; Kendrick, D. Epidemiology of burn injuries in the East Mediterranean region: A systematic review. BMC Public Health 2010, 10, 83. [Google Scholar] [CrossRef] [PubMed]
- Peck, M.D. Epidemiology of burns throughout the world. Part I: Distribution and risk factors. Burns 2011, 37, 1087–1100. [Google Scholar] [CrossRef] [PubMed]
- Log, T. Indoor relative humidity as a fire risk indicator. Build. Environ. 2017, 111, 238–248. [Google Scholar] [CrossRef]
- Salin, J.-G. Inclusion of the sorption hysteresis phenomenon in future drying models. Some basic considerations. Maderas Cienc. Tecnol. 2011, 13, 173–182. [Google Scholar] [CrossRef]
- Chapais Buries Its Fire Victims. Available online: http://pgnewspapers.pgpl.ca/fedora/repository/pgc%3A1980-01-07-07/PDF/Page%20PDF (accessed on 18 July 2017).
- Geysen, W.; Van Hees, P.; Tuovinen, P.; Persson, B. Use of zone and field models for the fire investigation of the Switel Hotel fire (Antwerp 1994). Proceeding of the 8th International Fire Science & Engineering Conference, Interflam 2016, Windsor, UK, 4–6 July 2016; pp. 553–558. [Google Scholar]
- Van Hees, P.; Tuovinen, H.; Persson, B.; Geysen, W. Simulation of the Switel. Hotel Fire. Available online: http://portal.research.lu.se/portal/files/4376779/4438313.pdf (accessed on 18 July 2017).
- Xiong, L.; Bruck, D.; Ball, M. Comparative investigation of “survival” and fatality factors in accidental residential fires. Fire Saf. J. 2015, 73, 37–47. [Google Scholar] [CrossRef]
- Climate Change 2014: Synthesis Report. Available online: https://www.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_FINAL_full_wcover.pdf (accessed on 10 March 2017).
- Liu, J.; Curry, J.A.; Wang, H.; Song, M.; Horton, R.M. Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA 2012, 109, 4074–4079. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Zhang, X.; Yang, X.; Francis, J.A. Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ. Res. Lett. 2013, 8, 014036. [Google Scholar] [CrossRef]
- Steen-Hansen, A.; Bøe, G.A.; Hox, K.; Mikalsen, R.F.; Stensaas, J.P.; Storesund, K. Evaluation of fire spread in the large Lærdal fire, January 2014. Proceeding of the 14th International Fire and Materials Conference and Exhibition, San Francisco, CA, USA, 2–4 February 2015; pp. 1014–1024. [Google Scholar]
- Taleb, N.N. The Black Swan: The Impact of the Highly Improbable; Random House: New York, NY, USA, 2007; ISBN 978-0-14-103459-1. [Google Scholar]
- Aven, T. Implications of black swans to the foundations and practice of risk assessment and management. Reliab. Eng. Syst. Saf. 2015, 134, 83–91. [Google Scholar] [CrossRef]
- DSB. Brannene i Lærdal, Flatanger op på Frøya Vinteren 2014; Norwegian Directorate for Civil Protection: Tønsberg, Norway, 2014; p. 55. ISBN 978-82-7768-342-3. (In Norwegian) [Google Scholar]
- Roslin, A. Fire and Ice. Available online: http://zweb-s3.uploads.s3.amazonaws.com/carp/2011/08/ZoomerNursinghome.pdf (accessed on 13 March 2017).
- Joly, K.; Jandt, R.R.; Klein, D.R. Decrease of lichens in Arctic ecosystems: The role of wildfire, caribou, reindeer, competition and climate in north-western Alaska. Polar Res. 2009, 28, 433–442. [Google Scholar] [CrossRef]
- Abella, S.R. Disturbance and plant succession in the mojave and sonoran deserts of the American southwest. Int. J. Environ. Res. Public Health 2010, 7, 1248–1284. [Google Scholar] [CrossRef] [PubMed]
- Gustine, D.D.; Brinkman, T.J.; Lindgren, M.A.; Schmidt, J.I.; Rupp, S.T.; Adams, L.G. Climate-Driven effects of fire on winter habitat for caribou in the alaskan-yukon arctic. PLoS ONE 2014, 9, e100588. [Google Scholar] [CrossRef] [PubMed]
- Boustras, G.; Boukas, N. Forest fires’ impact on tourism development: A comparative comparative study of Greece and Cyprus. Manag. Environ. Qual. 2013, 24, 498–511. [Google Scholar] [CrossRef]
- Holte, M.R.; Kjærås, L.T.; Arnhus, A.; Borg, A. Evaluation of the Fires: Lærdal, Flatanger and Frøya; PricewaterhouseCoopers AS: London, UK, 2014; p. 91. (In Norwegian) [Google Scholar]
- Challands, N. The Relationships between Fire Service Response Time and Fire Outcomes. Fire Technol. 2010, 46, 665–676. [Google Scholar] [CrossRef]
- Pérez, J.; Maldonado, S.; López-Ospina, H. A fleet management model for the Santiago fire department. Fire Saf. J. 2016, 82, 1–11. [Google Scholar] [CrossRef]
- Averill, J.D.; Moore-Merrell, L.; Barowy, A.; Santos, R.; Peacock, R.; Notarianni, K.A.; Wissoker, D. Report on residential fireground field experiments. In NIST Technical Note, 1661; Robinson, B., Ed.; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2010; p. 104. [Google Scholar]
- Reglen, D.; Scheller, D.S. Fire department turnout times: A contextual analysis. J. Homel. Secur. Emerg. Manag. 2016, 13, 167–189. [Google Scholar] [CrossRef]
- Williams-Bell, F.M.; Murphy, B.M.; Kapralos, B.; Hogue, A.; Weckman, E.J. Using serious games and virtual simulation for training in the fire service: A review. Fire Technol. 2015, 51, 553–584. [Google Scholar] [CrossRef]
- Heldal, I.; Wijkmark, H.C.; Pareto, L. Simulation and serious games for firefighter training: Challenges for effective use. NOKOBIT 2016, 24, 12. [Google Scholar]
- Metallinou, M.M. Learning through a pipe line emergency response exercise series. J. Conting. Crisis Manag. 2017, in press. [Google Scholar]
- Sommer, M.; Njå, O.; Lussand, K. Police officers’ learning in relation to emergency management: A case study. Int. J. Disaster Risk Reduct. 2017, 21, 70–84. [Google Scholar] [CrossRef]
- How Fuel Moisture Content (FMC) Influence Time to Flashover. Available online: https://drive.google.com/file/d/0BxgeziwrttH4dnEyaU1GcXpFWGs/view (accessed on 19 July 2017).
- Jones-Lee, M.; Aven, T. ALARP—What does it really mean? Reliab. Eng. Syst. Saf. 2011, 96, 877–882. [Google Scholar] [CrossRef]
- Log, T.; Cannon-Brookes, P. ‘Water mist’ for fire protection of historic buildings and museums. Mus. Manag. Curatorship 1995, 14, 283–298. [Google Scholar] [CrossRef]
- Saito, N.; Ogawa, Y.; Saso, Y.; Liao, C.; Sakei, R. Flame-extinguishing concentrations and peak concentrations of N2, Ar, CO2 and their mixtures for hydrocarbon fuels. Fire Saf. J. 1996, 27, 185–200. [Google Scholar] [CrossRef]
- Gimingham, C.H. Biological Flora of the British Isles: Calluna vulgaris (L.) Hull. J. Ecol. 1960, 48, 455–483. [Google Scholar] [CrossRef]
- Vandvik, V.; Töpper, J.P.; Cook, Z.; Daws, M.I.; Heegaard, E.; Måren, I.E.; Velle, L.G. Management-driven evolution in a domesticated ecosystem. Biol. Lett. 2014, 10, 20131082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diotte, M.; Bergeron, Y. Fire and the distribution of Juniperus communis L. in the Boreal Forest of Quebec, Canada. J. Biogeogr. 1989, 16, 91–96. [Google Scholar] [CrossRef]
- Mattsson, M.; Eriksson, L. Taktikboken Brand/The Tactics Book Fire; Informationsbolaget: Malmö, Sweden, 2015; ISBN 978-9-16-337133-2. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metallinou, M.-M.; Log, T. Health Impacts of Climate Change-Induced Subzero Temperature Fires. Int. J. Environ. Res. Public Health 2017, 14, 814. https://doi.org/10.3390/ijerph14070814
Metallinou M-M, Log T. Health Impacts of Climate Change-Induced Subzero Temperature Fires. International Journal of Environmental Research and Public Health. 2017; 14(7):814. https://doi.org/10.3390/ijerph14070814
Chicago/Turabian StyleMetallinou, Maria-Monika, and Torgrim Log. 2017. "Health Impacts of Climate Change-Induced Subzero Temperature Fires" International Journal of Environmental Research and Public Health 14, no. 7: 814. https://doi.org/10.3390/ijerph14070814
APA StyleMetallinou, M. -M., & Log, T. (2017). Health Impacts of Climate Change-Induced Subzero Temperature Fires. International Journal of Environmental Research and Public Health, 14(7), 814. https://doi.org/10.3390/ijerph14070814