Concept of Aided Phytostabilization of Contaminated Soils in Postindustrial Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Contaminated Soils and Amendments
2.2. Experimental Design
2.3. Soil Analytical Methods
2.4. Chemical Analysis of Plant Material
2.5. Data Analysis
3. Results
3.1. Plant Growth
3.2. Cr Accumulation and Translocation
3.3. Effects of Amendments on Chemical Properties of Soil
3.4. Pearson’s Correlations
3.5. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Koda, E.; Osiński, P.; Sieczka, A.; Wychowaniak, D. Areal distribution of ammonium contamination of soil-water environment in the vicinity of old municipal landfill site with vertical barrier. Water 2015, 7, 2656–2672. [Google Scholar] [CrossRef]
- Elia, G.; Cotecchia, F.; Pedone, G.; Vaunat, J.; Vardon, P.J.; Pereira, C.; Springman, S.M.; Rouainia, M.; Van Esch, J.; Koda, E.; et al. Numerical modelling of slope-vegetation-atmosphere interaction: An overview. Q. J. Eng. Geol. Hydrogeol. 2017, 50, 249–270. [Google Scholar] [CrossRef]
- Sarwar, N.; Imran, M.; Shaheen, M.R.; Ishaque, W.; Kamran, M.A.; Matloob, A.; Rehim, A.; Hussain, S. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 2017, 171, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Elbl, J.; Plošek, L.; Kintl, A.; Přichystalová, J.; Záhora, J.; Friedel, J.K. The effect of increased doses of compost on leaching of mineral nitrogen from arable land. Pol. J. Environ. Stud. 2014, 23, 697–703. [Google Scholar]
- Adamcová, D.; Vaverková, M.D.; Stejska, B.; Břoušková, E. Household solid waste composition focusing on hazardous waste. Pol. J. Environ. Stud. 2016, 25, 487–493. [Google Scholar] [CrossRef]
- Parraga-Aguado, I.; González-Alcaraz, M.N.; Schulin, R.; Conesa, H.M. The potential use of Piptatherum miliaceum for the phytomanagement of mine tailings in semiarid areas: Role of soil fertility and plant competition. J. Environ. Manag. 2015, 158, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Montiel-Rozas, M.M.; Madejón, E.; Madejón, P. Evaluation of phytostabilizer ability of three ruderal plants in mining soils restored by application of organic amendments. Ecol. Eng. 2015, 83, 431–436. [Google Scholar] [CrossRef]
- Barajas-Aceves, M.; Camarillo-Ravelo, D.; Rodríguez-Vázquez, R. Mobility and translocation of heavy metals from mine tailings in three plant species after amendment with compost and biosurfactant. Soil Sediment. Contam. 2015, 24, 223–249. [Google Scholar] [CrossRef]
- Li, X.; Huang, L. Toward a new paradigm for tailings phytostabilization-nature of the substrates, amendment options, and anthropogenic pedogenesis. Crit. Rev. Environ. Sci. Technol. 2015, 45, 813–839. [Google Scholar] [CrossRef]
- Galende, M.A.; Becerril, J.M.; Barrutia, O.; Artetxe, U.; Garbisu, C.; Hernández, A. Field assessment of the effectiveness of organic amendments for aided phytostabilization of a Pb–Zn contaminated mine soil. J. Geochem. Explor. 2014, 145, 181–189. [Google Scholar] [CrossRef]
- Friesl-Hanl, W.; Platzer, K.; Riesing, J.; Horak, O.; Waldner, G.; Watzingera, A.; Gerzabek, M.H. Non-destructive soil amendment application techniques on heavy metal-contaminated grassland: Success and long-term immobilizing efficiency. J. Environ. Manag. 2017, 186, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Kumpiene, J.; Ore, S.; Renella, G.; Mench, M.; Lagerkvist, A.; Maurice, C. Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environ. Pollut. 2006, 144, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Stefaniuk, M.; Oleszczuk, P.; Ok, Y.S. Review on nano zerovalent iron (nZVI): From synthesis to environmental applications. Chem. Eng. J. 2015, 287, 618–632. [Google Scholar] [CrossRef]
- Xu, Y.; Liang, X.; Xu, Y.; Qin, X.; Huang, Q.; Wang, L.; Sun, Y. Remediation of heavy metal-polluted agricultural soils using clay minerals: A review. Pedosphere 2017, 27, 193–204. [Google Scholar] [CrossRef]
- Christou, A.; Theologides, C.P.; Costa, C.; Kalavrouziotis, I.K.; Varnavas, S.P. Assessment of toxic heavy metals concentrations in soils and wild and cultivated plant species in Limni abandoned copper mining site, Cyprus. J. Geochem. Explor. 2017, 178, 16–22. [Google Scholar] [CrossRef]
- Emamverdian, A.; Ding, Y.; Mokhberdoran, F.; Xie, Y. Heavy metal stress and some mechanisms of plant defense response. Sci. World J. 2015, 2015, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Radziemska, M.; Vaverková, M.D.; Baryła, A. Phytostabilization-management strategy for stabilizing trace elements in contaminated soils. Int. J. Environ. Res. Public Health 2017, 14. [Google Scholar] [CrossRef] [PubMed]
- Radziemska, M.; Gusiatin, M.; Bilgin, A. Potential of using immobilizing agents in aided phytostabilization on simulated contamination of soil with lead. Ecol. Eng. 2017, 102, 490–500. [Google Scholar] [CrossRef]
- Mocek, A.; Drzymała, S. Genesis, Analysis and Soil Classification; Poznan University of Life Sciences: Poznań, Poland, 2010. (In Polish) [Google Scholar]
- U.S. Environmental Protection Agency. Environmental Protection Agency. Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils; Office of Solid Waste and Emergency Response, U.S. Government Printing Office: Washington, DC, USA, 1998.
- Pueyo, M.; López-Sanchez, J.F.; Rauret, G. Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Anal. Chim. Acta 2004, 504, 217–226. [Google Scholar] [CrossRef]
- Putwattana, N.; Kruatrachue, M.; Kumsopa, A.; Pokethitiyook, P. Evaluation of organic and inorganic amendments on maize growth and uptake of Cd and Zn from contaminated paddy soils. Int. J. Phytoremediat. 2015, 17, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Bai, J.; Lu, Q.; Zhao, Q.; Gao, Z.; Wen, X.; Liu, X. Fractionation, transfer and ecological risks of heavy metals in riparian and ditch wetlands across a 100-year chronosequence of reclamation in estuary of China. Sci. Total Environ. 2015, 517, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Mendez, M.O.; Maier, R.M. Phytostabilization of mine tailings in arid and semiarid environments-an emerging remediation technology. Environ. Health Perspect. 2008, 116, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Parra, A.; Zornoza, R.; Conesa, E.; Gómez-López, M.D.; Faz, A. Evaluation of the suitability of three Mediterranean shrub species for phytostabilization of pyritic mine soils. Catena 2016, 136, 59–65. [Google Scholar] [CrossRef]
- Gomes, M.A.C.; Hauser-Davis, R.A.; Suzuki, M.S.; Vitória, A.P. Plant chromium uptake and transport, physiological effects and recent advances in molecular investigations. Ecotoxicol. Environ. Saf. 2017, 140, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Wyszkowski, M.; Radziemska, M. Assessment of tri- and hexavalent chromium phytotoxicity on Oats (Avena sativa L.) biomass and content of nitrogen compounds. Water Air Soil Pollut. 2013, 244, 1619–1632. [Google Scholar] [CrossRef] [PubMed]
- Shanker, A.K.; Cervantes, C.; Loza-Tavera, H.; Avudainayagam, S. Chromium toxicity in plants. Environ. Int. 2005, 31, 739–753. [Google Scholar] [CrossRef] [PubMed]
- Golovatyj, S.E.; Bogatyreva, E.N.; Golovatyi, S.E. Effect of levels of chromium content in a soil and its distribution in organs of corn plants. Soil Res. Fert. 1999, 25, 197–204. [Google Scholar]
- Μolla, A.; Ioannou, Z.; Mollas, S.; Skoufogianni, E.; Dimirkou, A. Removal of chromium from soils cultivated with maize (Zea Mays) after the addition of natural minerals as soil amendments. Bull. Environ. Contam. Toxicol. 2017, 98, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Radziemska, M.; Mazur, Z. Content of selected heavy metals in Ni-contaminated soil following the application of halloysite and zeolite. J. Ecol. Eng. 2016, 17, 125–133. [Google Scholar] [CrossRef]
- Radziemska, M.; Mazur, Z.; Jeznach, J. Influence of applying halloysite and zeolite to soil contaminated with nickel on the content of selected elements in Maize (Zea mays L.). Chem. Eng. Trans. 2013, 32, 301–306. [Google Scholar]
- Sun, Y.; Wu, Q.T.; Lee, C.C.C.; Li, B.; Long, X. Cadmium sorption characteristics of soil amendments and its relationship with the cadmium uptake by hyperaccumulator and normal plants in amended soils. Int. J. Phytoremediat. 2014, 16, 496–508. [Google Scholar] [CrossRef] [PubMed]
- Szostek, R.; Ciećko, Z. Effect of soil contamination with fluorine on the yield and content of nitrogen forms in the biomass of crops. Environ. Sci. Pollut. Res. 2017, 24, 8588–8601. [Google Scholar] [CrossRef] [PubMed]
- Wyszkowski, M.; Radziemska, M. Effects of chromium (III and VI) on spring barley and maize biomass yield and content if nitrogenous compounds. J. Toxicol. Environ. Health Part A 2010, 73, 1274–1282. [Google Scholar] [CrossRef] [PubMed]
- Arshad, M.; Khan, A.H.A.; Hussain, I.; Zaman, B.; Anees, M.; Iqbal, M.; Soja, G.; Linde, C.; Yousaf, S. The reduction of chromium (VI) phytotoxicity and phytoavailability to wheat (Triticum aestivum L.) using biochar and bacteria. Appl. Soil Ecol. 2017, 114, 90–98. [Google Scholar] [CrossRef]
- Dheri, G.S.; Brar, M.S.; Malhi, S.S. Comparative phytoremediation of chromium-contaminated soils by fenugreek, spinach, and raya. Commun. Soil Sci. Plant. Anal. 2007, 38, 1655–1672. [Google Scholar] [CrossRef]
- Kanwar, M.K.; Poonam, P.S.; Bhardwaj, R. Involvement of Asada-Halliwell pathway during phytoremediation of chromium (VI) in Brassica juncea L. plants. Int. J. Phytorem. 2015, 17, 1237–1243. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.J.; Kim, H.; Seo, S.H.; Hwang, B.G.; Chang, Y.S.; Lee, J.; Lee, D.W.; Sohn, E.J.; Lee, S.J.; Lee, Y. Cytochrome b5 reductase 1 triggers serial reactions that lead to iron uptake in plants. Mol. Plant 2016, 9, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Maestri, E.; Marmiroli, M. Genetic and molecular aspects of metal tolerance and hyperaccumulation. In Metal Toxicity in Plants: Perception, Signaling and Remediation; Gupta, D.K., Sandalio, L.M., Eds.; Sprigner-Verlag: Berlin/Heidelberg, Germany, 2012; pp. 41–63. [Google Scholar]
- Feng, N.; Dagan, R.; Bitton, G. Toxicological approach for assessing the heavy metal binding capacity of soils. Soil Sediment. Contam. 2007, 16, 451–458. [Google Scholar] [CrossRef]
- Yoon, J.; Cao, X.; Zhou, Q.; Ma, L.Q. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total. Environ. 2006, 368, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Prapagdee, S.; Piyatiratitivorakul, S.; Petsom, A.; Tawinteung, N. Application of biochar for enhancing cadmium and zinc phytostabilization in Vigna radiata L. cultivation. Water Air Soil Pollut. 2014, 225, 22–33. [Google Scholar] [CrossRef]
- Abad-Valle, P.; Álvarez-Ayuso, E.; Murciego, A.; Pellitero, E. Assessment of the use of sepiolite amendment to restore heavy metal polluted mine soil. Geoderma 2016, 280, 57–66. [Google Scholar] [CrossRef]
- Huang, J.; Yuan, F.; Zeng, G.; Li, X.; Gu, Y.; Shi, L.; Liu, W.; Shi, Y. Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration. Chemosphere 2017, 173, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Wang, B.; Wang, C.; Sun, H. Tourmaline and biochar for the remediation of acid soil polluted with heavy metals. J. Environ. Chem. Eng. 2017, 5, 2107–2114. [Google Scholar] [CrossRef]
- Willscher, S.; Jablonski, L.; Fona, Z.; Rahmi, R.; Wittig, J. Phytoremediation experiments with under different pH and heavy metal soil concentrations. Hydrometallurgy 2017, 168, 153–158. [Google Scholar] [CrossRef]
- Ye, X.; Kang, S.; Wang, H.; Li, H.; Zhang, Y.; Wang, G.; Zhaoa, Y. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils. J. Hazard. Mater. 2015, 289, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kim, E.H.; Park, H.; Yoon, J.H.; Kim, J.G. In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by-products. Geoderma 2011, 161, 1–7. [Google Scholar] [CrossRef]
- Keller, C.; Marchetti, M.; Rossi, L.; Lugon-Moulin, N. Reduction of cadmium availability to tobacco (Nicotiana tabacum) plants using soil amendments in low cadmium contaminated agricultural soils: A pot experiment. Plant Soil 2005, 276, 69–84. [Google Scholar] [CrossRef]
- Bolan, N.S.; Park, J.H.; Robinson, B.; Naidu, R.; Huh, K.Y. Phytostabilization: A green approach to contaminant containment. Adv. Agron. 2011, 12, 145–204. [Google Scholar]
Parameter | Unit | Value | |||
---|---|---|---|---|---|
Soil I | Soil II | Soil III | Soil IV | ||
pH | - | 5.72 | 5.56 | 5.14 | 5.25 |
Organic matter | % d.m. | 11.12 | 12.21 | 14.11 | 11.25 |
Chromium | Mg·kg−1 d.m. | 10.14 | 48.22 | 99.24 | 148.21 |
Copper | mg·kg−1 d.m. | 20.14 | 21.11 | 21.22 | 20.78 |
Nickel | mg·kg−1 d.m. | 6.22 | 7.22 | 6.54 | 6.47 |
Zinc | mg·kg−1 d.m. | 35.22 | 38.22 | 32.14 | 33.41 |
Specific Surface Area (m2·g−1) | Chemical Composition in Oxide (wt. %) | |
---|---|---|
Dolomite | 1.22 | CaO-38.12; N2O2-22.30; C2O-20.18; SiO2-6.91; Al2O5-4.51; Fe2O3-4.41; CuO-2.28%; MgO-1.29 |
Diatomite | 29.3 | SiO2-54.72; Fe2O3-25.50; Al2O5-14.82; C2O-4.18; MgO-0.79 |
Halloysite | 49.5 | SiO2-39.6; Al2O3-37.0; Fe2O3-16.1; TiO2-2.30; CaO-0.66; MgO-0.13; Na2O-0.04; K2O-0.05; P2O5-0.52 |
Chalcedonite | 7.44 | SiO2-84.77; Al2O5-9.33; C2O-4.29; K2O-1.21; MgO-0.40 |
Soil | Control | Dolomite | Diatomite | Halloysite | Chalcedonite |
---|---|---|---|---|---|
Total/CaCl2-extractable metal concentration | |||||
Cu (mg·kg−1) | |||||
Soil I | 21.07 ± 0.78 0.26 ± 0.06 | 17.64 ± 0.28 0.20 ± 0.01 | 23.21 ± 0.95 0.17 ± 0.08 | 18.25 ± 0.13 0.18 ± 0.09 | 18.37 ± 0.67 0.17 ± 0.05 |
Soil II | 22.48 ± 0.65 0.27 ± 0.05 | 18.92 ± 0.76 0.24 ± 0.08 | 22.57 ± 1.58 0.29 ± 0.22 | 20.97 ± 0.63 0.22 ± 0.10 | 18.83 ± 0.54 0.18 ± 0.01 |
Soil III | 22.62 ± 0.15 0.35 ± 0.20 | 22.33 ± 1.12 0.26 ± 0.03 | 21.55 ± 1.75 0.29 ± 0.11 | 21.95 ± 0.55 0.28 ± 0.08 | 19.65 ± 0.57 0.18 ± 0.01 |
Soil IV | 24.89 ± 0.08 0.41 ± 0.08 | 23.92 ± 0.53 0.31 ± 0.08 | 24.07 ± 0.35 0.26 ± 0.25 | 22.94 ± 1.47 0.30 ± 0.04 | 21.30 ± 1.04 0.19 ± 0.03 |
Zn (mg·kg−1) | |||||
Soil I | 39.35 ± 0.93 1.11 ± 0.02 | 38.43 ± 1.16 0.85 ± 0.02 | 32.38 ± 1.04 0.88 ± 0.01 | 33.30 ± 0.98 0.85 ± 0.03 | 31.72 ± 0.86 0.68 ± 0.03 |
Soil II | 36.37 ± 1.07 0.96 ± 0.05 | 41.76 ± 1.88 0.78 ± 0.03 | 34.49 ± 1.12 0.96 ± 0.05 | 33.72 ± 0.65 0.88 ± 0.06 | 33.96 ± 1.48 0.88 ± 0.02 |
Soil III | 34.70 ± 1.69 0.78 ± 0.04 | 33.86 ± 5.94 0.59 ± 0.05 | 35.20 ± 1.06 1.15 ± 0.04 | 34.47 ± 1.03 0.90 ± 0.08 | 36.45 ± 1.19 0.98 ± 0.03 |
Soil IV | 35.66 ± 0.59 0.56 ± 0.03 | 37.36 ± 1.13 0.49 ± 0.08 | 34.54 ± 0.70 0.82 ± 0.07 | 36.53 ± 1.33 0.92 ± 0.05 | 38.15 ± 1.81 0.87 ± 0.04 |
Ni (mg·kg−1) | |||||
Soil I | 5.83 ± 0.11 2.28 ± 0.11 | 3.25 ± 0.06 2.01 ± 0.01 | 3.31 ± 0.09 2.01 ± 0.05 | 2.46 ± 0.10 1.54 ± 0.01 | 3.39 ± 0.03 1.85 ± 0.02 |
Soil II | 4.62 ± 0.07 1.98 ± 0.07 | 2.65 ± 0.03 1.58 ± 0.03 | 3.68 ± 0.21 2.11 ± 0.04 | 3.48 ± 0.16 1.63 ± 0.02 | 3.50 ± 0.23 1.52 ± 0.11 |
Soil III | 3.77 ± 0.03 1.74 ± 0.03 | 2.58 ± 0.12 1.24 ± 0.02 | 4.09 ± 0.03 1.58 ± 0.02 | 3.05 ± 0.05 1.58 ± 0.03 | 3.15 ± 0.06 1.85 ± 0.01 |
Soil IV | 3.51 ± 0.12 2.02 ± 0.07 | 2.63 ± 0.56 1.22 ± 0.01 | 4.20 ± 0.02 2.03 ± 0.01 | 2.64 ± 0.24 1.01 ± 0.01 | 3.50 ± 0.22 1.12 ± 0.11 |
Variables | Biomass | Cr a | Cr b | Cr c | Cr d | pH | Cu c | Cu d | Zn c | Zn d | Ni c | Ni d |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Biomass | 1 | |||||||||||
Cr a | ‒0.161 | 1 | ||||||||||
Cr b | 0.180 | 0.757 | 1 | |||||||||
Cr c | ‒0.214 | 0.821 | 0.759 | 1 | ||||||||
Cr d | ‒0.245 | 0.884 | 0.771 | 0.931 | 1 | |||||||
Ph | 0.044 | ‒0.004 | 0.298 | 0.113 | 0.085 | 1 | ||||||
Cu c | ‒0.077 | 0.546 | 0.481 | 0.574 | 0.621 | ‒0.012 | 1 | |||||
Cu d | ‒0.221 | 0.519 | 0.230 | 0.564 | 0.673 | ‒0.238 | 0.620 | 1 | ||||
Zn c | 0.084 | 0.248 | 0.151 | 0.093 | 0.150 | 0.089 | ‒0.119 | 0.161 | 1 | |||
Zn d | 0.145 | ‒0.109 | ‒0.095 | ‒0.108 | ‒0.082 | 0.501 | ‒0.080 | ‒0.028 | 0.327 | 1 | ||
Ni c | ‒0.247 | ‒0.199 | ‒0.263 | ‒0.166 | ‒0.194 | ‒0.261 | 0.173 | 0.097 | 0.139 | ‒0.337 | 1 | |
Ni d | 0.236 | ‒0.322 | ‒0.129 | ‒0.287 | ‒0.224 | 0.340 | 0.056 | ‒0.129 | ‒0.398 | 0.170 | ‒0.005 | 1 |
Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|
Biomass | 2620.784 | 4 | 655.196 | 1.930 | 0.158 |
Cr a | 124.377 | 4 | 31.094 | 0.216 | 0.925 |
Cr b | 4519.891 | 4 | 1129.973 | 0.697 | 0.606 |
Cr c | 185.470 | 4 | 46.368 | 0.032 | 0.998 |
Cr d | 70.341 | 4 | 17.585 | 0.048 | 0.995 |
Ph | 19.417 | 4 | 4.854 | 89.631 | 0.000 |
Cu c | 27.475 | 4 | 6.869 | 2.140 | 0.126 |
Cu d | 3.900 | 4 | 0.975 | 3.568 | 0.031 |
Zn c | 37.973 | 4 | 9.493 | 1.817 | 0.178 |
Zn d | 142.491 | 4 | 35.623 | 19.332 | 0.000 |
Ni c | 7.408 | 4 | 1.852 | 5.815 | 0.005 |
Ni d | 0.031 | 4 | 0.008 | 1.580 | 0.231 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radziemska, M.; Koda, E.; Bilgin, A.; Vaverková, M.D. Concept of Aided Phytostabilization of Contaminated Soils in Postindustrial Areas. Int. J. Environ. Res. Public Health 2018, 15, 24. https://doi.org/10.3390/ijerph15010024
Radziemska M, Koda E, Bilgin A, Vaverková MD. Concept of Aided Phytostabilization of Contaminated Soils in Postindustrial Areas. International Journal of Environmental Research and Public Health. 2018; 15(1):24. https://doi.org/10.3390/ijerph15010024
Chicago/Turabian StyleRadziemska, Maja, Eugeniusz Koda, Ayla Bilgin, and Mgdalena D. Vaverková. 2018. "Concept of Aided Phytostabilization of Contaminated Soils in Postindustrial Areas" International Journal of Environmental Research and Public Health 15, no. 1: 24. https://doi.org/10.3390/ijerph15010024
APA StyleRadziemska, M., Koda, E., Bilgin, A., & Vaverková, M. D. (2018). Concept of Aided Phytostabilization of Contaminated Soils in Postindustrial Areas. International Journal of Environmental Research and Public Health, 15(1), 24. https://doi.org/10.3390/ijerph15010024