Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist
Abstract
:1. Introduction
2. The Young Are Especially Vulnerable to Air Pollution and Climate Change
3. Fossil-Fuel Combustion is the Major Source of Global Air Pollution and CO2
4. Fossil-Fuel Combustion-Related Air Pollutants and Climate Change are a Major Cause of Environmental Injustice
5. The Health Impacts of Air Pollution in Children Include Mortality and Neurodevelopmental Problems
6. Climate Change is Linked to Serious Health Impacts in Children Including Mortality and Developmental Impairment
7. Prenatal or Childhood Exposure to Air Toxics and Climate Change Can Have Long-Term and Synergistic or Combined Health Impacts
8. Economic Benefits of Action are Underestimated but Significant
- Avoided health costs attributed to the US Clean Air amendments: ~$2 trillion for the year 2020 [105];
- A prediction of ~$250 billion/year by 2030 ($140 billion to $1050 billion) in avoided health costs from clean energy policies in the US [106];
- An estimated cost of ~$187 billion/year due to air pollution from coal combustion in the US [108];
- Gains in lifetime earnings related to a hypothetical 25% reduction in PAH in NYC air: $215 million for each annual NYC birth cohort of Medicaid births [109];
- An estimate of $3.5 trillion/year in costs of ambient air pollution in OECD countries, India and China [1];
- Total annual costs of air pollution currently estimated to be approximately 0.3 per cent of global GDP and expected to increase to approximately 1 per cent of GDP by 2060 [110];
- Reductions in airborne particulate matter between 2001 and 2010 in Taiyuan, Shanxi province, China associated with 2810 fewer premature deaths, 31,810 fewer hospital admissions, 141,457 fewer outpatient visits, 969 fewer emergency department visits, 951 fewer cases of bronchitis and more than 30,000 fewer DALYs attributed to air pollution in Taiyuan in 2010 compared to 2001. The decrease in the estimated cost of premature death due to air pollution: 3.83 billion Yuan, or approximately $621 million USD [111];
- Estimated cost of deaths from air pollution to the global economy: about $225 billion in lost labor income and more than $5 trillion in welfare losses in 2013 (World Bank/Institute for Health Metrics and Evaluation study, cited in WHO, Clear the Air) [112];
- Estimated ~$14 billion cost due to six climate-change-related events in the US between 2002 and 2009 [113];
- The expected benefits of the California climate change program: a $76 billion increase in the state’s Gross State Product, a $48 billion increase in real household incomes, and the creation of 403,000 new efficiency- and climate-driven jobs [114];
- Between 1980 and 2017, the cost of 208 extreme weather and climate events in the US: at least $1 billion each, with total damages of more than $1.1 trillion, and a similar increase in these costly events happening around the world [115];
- The estimated global cost of climate change from deaths and diseases such as diarrhea, malnutrition, malaria, and heat stress up to $4 billion per year by 2030 [116];
- Globally, up to $230 billion of avoided external health costs each year by 2030 with an increase to 36% renewables in global energy consumption by 2030 [1].
9. Solutions Exist and Interventions are Being Mounted
- Clean technologies that reduce industrial smokestack emissions; improved management of urban and agricultural waste, including the capture of methane gas emitted from waste sites as an alternative to incineration (for use as biogas);
- Shifting to clean modes of power generation; prioritizing rapid urban transit, walking and cycling networks in cities as well as rail inter-urban freight and passenger travel; shifting from heavy-duty diesel vehicles to low-emission vehicles and fuels, including fuels with reduced sulfur content;
- Improving the energy efficiency of buildings and making cities more compact, and thus energy efficient;
- Increased use of low-emissions fuels and renewable combustion-free power sources (like solar, wind or hydropower); co-generation of heat and power; and distributed energy generation (e.g., mini-grids and rooftop solar-power generation).
10. Conclusions
Conflicts of Interest
References
- Watts, N.; Adger, W.N.; Agnolucci, P.; Blackstock, J.; Byass, P.; Cai, W.; Chaytor, S.; Colbourn, T.; Collins, M.; Cooper, A.; et al. Health and climate change: Policy responses to protect public health. Lancet 2015, 386, 1861–1914. [Google Scholar] [CrossRef]
- Perera, F.P. Multiple threats to child health from fossil fuel combustion: Impacts of air pollution and climate change. Environ. Health Perspect. 2017, 125, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Yael Friedman, T.L. Cities Taking Action: How the 100C Network is Building Urban Resilience; The Rockefeller Foundation: New York, NY, USA, 2017; p. 74. [Google Scholar]
- Giedd, J. Brain development, IX: Human brain growth. Am. J. Psychiatry 1999, 156, 4. [Google Scholar] [CrossRef] [PubMed]
- Crelin, E.S. Functional Anatomy of the Newborn; Yale University Press: New Haven, CT, USA, 1973. [Google Scholar]
- Perera, F.P.; Tang, D.; Whyatt, R.M.; Lederman, S.A.; Jedrychowski, W. Comparison of PAH-DNA Adducts in Four Populations of Mothers and Newborns in the U.S., Poland and China. In Proceedings of the 95th AACR Annual Meeting, Orlando, FL, USA, 27–31 March 2004; American Association for Cancer Research: Orlando, FL, USA; p. 454. [Google Scholar]
- Dolinoy, D.C.; Weidman, J.R.; Jirtle, R.L. Epigenetic gene regulation: Linking early developmental environment to adult disease. Reprod. Toxicol. 2007, 23, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Heindel, J.J. The fetal basis of adult disease: Role of environmental exposures—Introduction. Birth Defects Res. A Clin. Mol. Teratol. 2005, 73, 131–132. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Principles for Evaluating Health Risks in Children Associated with Exposure to Chemicals (Environmental Health Criteria; 237); World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Xu, Z.; Sheffield, P.E.; Hu, W.; Su, H.; Yu, W.; Qi, X.; Tong, S. Climate change and children’s health—A call for research on what works to protect children. Int. J. Environ. Res. Public Health 2012, 9, 3298–3316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, K.R.; Corvalan, C.F.; Kjellstrom, T. How much global ill health is attributable to environmental factors? Epidemiology 1999, 10, 573–584. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Healthy Environments for Children: Initiating an Alliance for Action; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Zhang, Y.; Bi, P.; Hiller, J.E. Climate change and disability-adjusted life years. J. Environ. Health 2007, 70, 32–36. [Google Scholar] [PubMed]
- US Environmental Protection Agency. Greenhouse Gas Emissions. Available online: https://www3.epa.gov/climatechange/ghgemissions/ (accessed on 12 October 2017).
- World Energy Council. World Energy Resources 2013 Survey: Summary; World Energy Council: London, UK, 2013; p. 29. [Google Scholar]
- U.S. Energy Information Administration. Primary Energy Consumption by Source and Sector, 2014; U.S. Energy Information Administration: Washington, DC, USA, 2014.
- International Energy Agency (IEA). Weo-2016 Special Report Energy and Air Pollution; International Energy Agency: Paris, France, 2016; p. 266. [Google Scholar]
- World Health Organization. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease. 2016. Available online: http://who.int/phe/publications/air-pollution-global-assessment/en/ (accessed on 7 September 2017).
- World Health Organization. Household Air Pollution and Health. 2016. Available online: http://www.who.int/mediacentre/factsheets/fs292/en/ (accessed on 12 October 2017).
- World Health Organization. Air Quality Guidelines Global Update 2005. Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide; WHO: Geneva, Switzerland, 2005. [Google Scholar]
- UNICEF. Clear the Air for Children. 2016. Available online: www.unicef.org/publications/index_92957.html (accessed on 6 October 2017).
- World Health Organization. Who Indoor Air Quality Guidelines: Household Fuel Combustion; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- Wuebbles, D.J.; Fahey, D.W.; Hibbard, K.A.; DeAngelo, B.; Doherty, S.; Hayhoe, K.; Horton, R.; Kossin, J.P.; Taylor, A.M.W.; Weaver, C.P. Climate Science Special Report: A Sustained Assessment Activity of the U.S. Global Change Research Program; U.S. Global Change Research Program: Washington, DC, USA, 2017; p. 669.
- IEA. CO2 Emissions from Fuel Combustion—2016 Edition—Key CO2 Emissions Trends. 2016. Available online: https://www.iea.org/publications/freepublications/publication/co2-emissions-from-fuel-combustion---2016-edition---excerpt---key-trends.html (accessed on 6 October 2017).
- NOAA. Noaa’s Greenhouse Gas Index Up 40 Percent Since 1990. 2017. Available online: http://www.noaa.gov/news/noaa-s-greenhouse-gas-index-up-40-percent-since-1990 (accessed on 4 October 2017).
- Climate Central. Highest Levels in 800,000 Years. Available online: http://www.climatecentral.org/gallery/graphics/highest-levels-in-800000-years (accessed on 27 September 2017).
- NETL. Cost and Performance Baseline for Fossil Energy Plants Volume 1: Revision 3; National Energy Technology Laboratory: Albany, OR, USA, 2015; p. 240.
- Myhre, G.; Shindell, D.; Bréon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- EIA. Energy-Related CO2 Emissions from Natural Gas Surpass Coal as Fuel Use Patterns Change. Available online: www.eia.gov/todayinenergy/detail.php?id=27552# (accessed on 2 October 2017).
- EIA. EIA—International Energy Outlook 2017. Available online: www.eia.gov/outlooks/ieo/ (accessed on 27 September 2017).
- EIA. In Total Energy. Available online: https://www.eia.gov/totalenergy/ (accessed on 11 December 2017).
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The lancet commission on pollution and health. Lancet 2017. [Google Scholar] [CrossRef]
- World Health Organization. 7 Million Premature Deaths Annually Linked to Air Pollution. 2014. Available online: http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/ (accessed on 27 September 2017).
- World Health Organization. Global Status Report on Noncommunicable Diseases; World Health Organizations: Geneva, Switzerland, 2010; p. 176. [Google Scholar]
- Chakraborty, J.; Zandbergen, P.A. Children at risk: Measuring racial/ethnic disparities in potential exposure to air pollution at school and home. J. Epidemiol. Community Health 2007, 61, 1074–1079. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Garcidueñas, L.; Torres-Jardón, R. Air pollution, socioeconomic status, and children’s cognition in megacities: The Mexico City scenario. Front. Psychol. 2012, 3, 217. [Google Scholar] [CrossRef] [PubMed]
- UNICEF. Unless We Act Now: The Impact of Climate Change on Children; UNICEF: New York, NY, USA, 2015; p. 81. [Google Scholar]
- UNICEF. Children Living in Poverty. 2017. Available online: http://www.unicef.org/sowc05/english/poverty.html (accessed on 27 September 2017).
- Vishnevetsky, J.; Tang, D.; Chang, H.W.; Roen, E.L.; Wang, Y.; Rauh, V.; Wang, S.; Miller, R.L.; Herbstman, J.; Perera, F.P. Combined effects of prenatal polycyclic aromatic hydrocarbons and material hardship on child IQ. Neurotoxicol. Teratol. 2015, 49, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Perera, F.P.; Wheelock, K.; Wang, Y.; Tang, D.; Margolis, A.E.; Badia, G.; Cowell, W.; Miller, R.L.; Rauh, V.; Wang, S.; et al. Combined effects of prenatal exposure to polycyclic aromatic hydrocarbons and material hardship on child adhd behavior problems. Environ. Res. 2018, 160, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Perera, F.P.; Wang, S.; Rauh, V.; Zhou, H.; Stigter, L.; Camann, D.; Jedrychowski, W.; Mroz, E.; Majewska, R. Prenatal exposure to air pollution, maternal psychological distress, and child behavior. Pediatrics 2013, 132, e1284–e1294. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Ambient (Outdoor) Air Quality and Health. 2016. Available online: http://www.who.int/mediacentre/factsheets/fs313/en/ (accessed on 17 October 2017).
- World Health Organization. The Cost of a Polluted Environment: 1.7 Million Child Deaths a Year, Says WHO. 2017. Available online: http://www.who.int/mediacentre/news/releases/2017/pollution-child-death/en/ (accessed on 17 October 2017).
- Cowell, W.J.; Bellinger, D.C.; Coull, B.A.; Gennings, C.; Wright, R.O.; Wright, R.J. Associations between prenatal exposure to black carbon and memory domains in urban children: Modification by sex and prenatal stress. PLoS ONE 2015, 10, e0142492. [Google Scholar] [CrossRef] [PubMed]
- Fuertes, E.; Standl, M.; Forns, J.; Berdel, D.; Garcia-Aymerich, J.; Markevych, I.; Schulte-Koerne, G.; Sugiri, D.; Schikowski, T.; Tiesler, C.M.; et al. Traffic-related air pollution and hyperactivity/inattention, dyslexia and dyscalculia in adolescents of the german giniplus and lisaplus birth cohorts. Environ. Int. 2016, 97, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Guxens, M.; Sunyer, J. A review of epidemiological studies on neuropsychological effects of air pollution. Swiss Med. Wkly. 2012, 141, w13322. [Google Scholar] [PubMed]
- Guxens, M.; Garcia-Esteban, R.; Giorgis-Allemand, L.; Forns, J.; Badaloni, C.; Ballester, F.; Beelen, R.; Cesaroni, G.; Chatzi, L.; de Agostini, M.; et al. Air pollution during pregnancy and childhood cognitive and psychomotor development: Six european birth cohorts. Epidemiology 2014, 25, 636–647. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.H.; Gold, D.R.; Rifas-Shiman, S.L.; Melly, S.J.; Zanobetti, A.; Coull, B.A.; Schwartz, J.D.; Gryparis, A.; Kloog, I.; Koutrakis, P.; et al. Prenatal and childhood traffic-related air pollution exposure and childhood executive function and behavior. Neurotoxicol. Teratol. 2016, 57, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.H.; Gold, D.R.; Rifas-Shiman, S.L.; Melly, S.J.; Zanobetti, A.; Coull, B.A.; Schwartz, J.D.; Gryparis, A.; Kloog, I.; Koutrakis, P.; et al. Prenatal and childhood traffic-related pollution exposure and childhood cognition in the project viva cohort (Massachusetts, USA). Environ. Health Perspect. 2015, 123, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.C.; Yang, S.K.; Lin, K.C.; Ho, W.C.; Hsieh, W.S.; Shu, B.C.; Chen, P.C. Multilevel analysis of air pollution and early childhood neurobehavioral development. Int. J. Environ. Res. Public Health 2014, 11, 6827–6841. [Google Scholar] [CrossRef] [PubMed]
- Morales, E.; Garcia-Esteban, R.; de la Cruz, O.A.; Basterrechea, M.; Lertxundi, A.; de Dicastillo, M.D.; Zabaleta, C.; Sunyer, J. Intrauterine and early postnatal exposure to outdoor air pollution and lung function at preschool age. Thorax 2015, 70, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Porta, D.; Narduzzi, S.; Badaloni, C.; Bucci, S.; Cesaroni, G.; Colelli, V.; Davoli, M.; Sunyer, J.; Zirro, E.; Schwartz, J.; et al. Air pollution and cognitive development at age 7 in a prospective italian birth cohort. Epidemiology 2016, 27, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Suglia, S.F.; Gryparis, A.; Wright, R.O.; Schwartz, J.; Wright, R.J. Association of black carbon with cognition among children in a prospective birth cohort study. Am. J. Epidemiol. 2008, 167, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Park, H.; Hong, Y.C.; Ha, M.; Kim, Y.; Kim, B.N.; Kim, Y.; Roh, Y.M.; Lee, B.E.; Ryu, J.M.; et al. Prenatal exposure to PM10 and NO2 and children’s neurodevelopment from birth to 24 months of age: Mothers and children’s environmental health (MOCEH) study. Sci. Total Environ. 2014, 481, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Pujol, J.; Martinez-Vilavella, G.; Macia, D.; Fenoll, R.; Alvarez-Pedrerol, M.; Rivas, I.; Forns, J.; Blanco-Hinojo, L.; Capellades, J.; Querol, X.; et al. Traffic pollution exposure is associated with altered brain connectivity in school children. Neuroimage 2016, 129, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.H.; Hsu, H.H.; Coull, B.A.; Bellinger, D.C.; Kloog, I.; Schwartz, J.; Wright, R.O.; Wright, R.J. Prenatal particulate air pollution and neurodevelopment in urban children: Examining sensitive windows and sex-specific associations. Environ. Int. 2016, 87, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Min, J.Y.; Min, K.B. Exposure to ambient PM10 and NO2 and the incidence of attention-deficit hyperactivity disorder in childhood. Environ. Int. 2017, 99, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Yorifuji, T.; Kashima, S.; Higa Diez, M.; Kado, Y.; Sanada, S.; Doi, H. Prenatal exposure to traffic-related air pollution and child behavioral development milestone delays in Japan. Epidemiology 2016, 27, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Volk, H.E.; Hertz-Picciotto, I.; Delwiche, L.; Lurmann, F.; McConnell, R. Residential proximity to freeways and autism in the charge study. Environ. Health Perspect. 2011, 119, 873–877. [Google Scholar] [CrossRef] [PubMed]
- Volk, H.E.; Lurmann, F.; Penfold, B.; Hertz-Picciotto, I.; McConnell, R. Traffic-related air pollution, particulate matter, and autism. JAMA Psychiatry 2013, 70, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Becerra, T.A.; Wilhelm, M.; Olsen, J.; Cockburn, M.; Ritz, B. Ambient air pollution and autism in Los Angeles County, California. Environ. Health Perspect. 2013, 121, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Raz, R.; Roberts, A.L.; Lyall, K.; Hart, J.E.; Just, A.C.; Laden, F.; Weisskopf, M.G. Autism spectrum disorder and particulate matter air pollution before, during, and after pregnancy: A nested case-control analysis within the Nurses’ Health Study II Cohort. Environ. Health Perspect. 2015, 123, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Talbott, E.O.; Marshall, L.P.; Rager, J.R.; Arena, V.C.; Sharma, R.K.; Stacy, S.L. Air toxics and the risk of autism spectrum disorder: The results of a population based case-control study in Southwestern Pennsylvania. Environ. Health 2015, 14, 80. [Google Scholar] [CrossRef] [PubMed]
- Gong, T.; Almqvist, C.; Bolte, S.; Lichtenstein, P.; Anckarsater, H.; Lind, T.; Lundholm, C.; Pershagen, G. Exposure to air pollution from traffic and neurodevelopmental disorders in Swedish twins. Twin Res. Hum. Genet. 2014, 17, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Guxens, M.; Ghassabian, A.; Gong, T.; Garcia-Esteban, R.; Porta, D.; Giorgis-Allemand, L.; Almqvist, C.; Aranbarri, A.; Beelen, R.; Badaloni, C.; et al. Air pollution exposure during pregnancy and childhood autistic traits in four european population-based cohort studies: The ESCAPE project. Environ. Health Perspect. 2016, 124, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Lam, J.; Sutton, P.; Kalkbrenner, A.; Windham, G.; Halladay, A.; Koustas, E.; Lawler, C.; Davidson, L.; Daniels, N.; Newschaffer, C.; et al. A systematic review and meta-analysis of multiple airborne pollutants and autism spectrum disorder. PLoS ONE 2016, 11, e0161851. [Google Scholar] [CrossRef] [PubMed]
- Lyall, K.; Croen, L.; Daniels, J.; Fallin, M.D.; Ladd-Acosta, C.; Lee, B.K.; Park, B.Y.; Snyder, N.W.; Schendel, D.; Volk, H.; et al. The changing epidemiology of autism spectrum disorders. Annu. Rev. Public Health 2017, 38, 81–102. [Google Scholar] [CrossRef] [PubMed]
- Flores-Pajot, M.C.; Ofner, M.; Do, M.T.; Lavigne, E.; Villeneuve, P.J. Childhood autism spectrum disorders and exposure to nitrogen dioxide, and particulate matter air pollution: A review and meta-analysis. Environ. Res. 2016, 151, 763–776. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Garcidueñas, L.; Torres-Jardón, R.; Kulesza, R.J.; Park, S.-B.; D’Angiulli, A. Air pollution and detrimental effects on children’s brain. The need for a multidisciplinary approach to the issue complexity and challenges. Fron. Hum. Neurosci. 2014, 8, 613. [Google Scholar]
- Calderon-Garciduenas, L.; Kavanaugh, M.; Block, M.; D’Angiulli, A.; Delgado-Chavez, R.; Torres-Jardon, R.; Gonzalez-Maciel, A.; Reynoso-Robles, R.; Osnaya, N.; Villarreal-Calderon, R.; et al. Neuroinflammation, hyperphosphorylated tau, diffuse amyloid plaques, and down-regulation of the cellular prion protein in air pollution exposed children and young adults. J. Alzheimers Dis. 2012, 28, 93–107. [Google Scholar] [PubMed]
- Edwards, S.C.; Jedrychowski, W.; Butscher, M.; Camann, D.; Kieltyka, A.; Mroz, E.; Flak, E.; Li, Z.; Wang, S.; Rauh, V.; et al. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and children’s intelligence at 5 years of age in a prospective cohort study in Poland. Environ. Health Perspect. 2010, 118, 1326–1331. [Google Scholar] [CrossRef] [PubMed]
- Genkinger, J.M.; Stigter, L.; Jedrychowski, W.; Huang, T.J.; Wang, S.; Roen, E.L.; Majewska, R.; Kieltyka, A.; Mroz, E.; Perera, F.P. Prenatal polycyclic aromatic hydrocarbon (PAH) exposure, antioxidant levels and behavioral development of children ages 6–9. Environ. Res. 2015, 140, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kalia, V.; Perera, F.; Herbstman, J.; Li, T.; Nie, J.; Qu, L.R.; Yu, J.; Tang, D. Prenatal airborne polycyclic aromatic hydrocarbon exposure, LINE1 methylation and child development in a Chinese cohort. Environ. Int. 2017, 99, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Perera, F.; Li, T.Y.; Lin, C.; Tang, D. Effects of prenatal polycyclic aromatic hydrocarbon exposure and environmental tobacco smoke on child IQ in a Chinese cohort. Environ. Res. 2012, 114, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Perera, F.P.; Tang, D.; Qu, L.; Li, T.Y. Significant Decrease in Cord Blood PAH-DNA Adducts Following Closure of a Coal-Burning Power Plant in Chongqing, China, Proceedings of the 2008 AACR Annual Meeting, San Diego, CA, USA, 12–16 April 2008; American Association for Cancer Research: San Diego, CA, USA, 2008. [Google Scholar]
- Perera, F.; Phillips, D.H.; Wang, Y.; Roen, E.; Herbstman, J.; Rauh, V.; Wang, S.; Tang, D. Prenatal exposure to polycyclic aromatic hydrocarbons/aromatics, BDNF and child development. Environ. Res. 2015, 142, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Perera, F.P.; Li, Z.; Whyatt, R.; Hoepner, L.; Wang, S.; Camann, D.; Rauh, V. Prenatal airborne polycyclic aromatic hydrocarbon exposure and child IQ at age 5 years. Pediatrics 2009, 124, e195–e202. [Google Scholar] [CrossRef] [PubMed]
- Perera, F.P.; Rauh, V.; Whyatt, R.M.; Tsai, W.Y.; Tang, D.; Diaz, D.; Hoepner, L.; Barr, D.; Tu, Y.H.; Camann, D.; et al. Effect of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 years of life among inner-city children. Environ. Health Perspect. 2006, 114, 1287–1292. [Google Scholar] [CrossRef] [PubMed]
- Perera, F.P.; Tang, D.; Rauh, V.; Tu, Y.H.; Tsai, W.Y.; Becker, M.; Stein, J.L.; King, J.; Del Priore, G.; Lederman, S.A. Relationship between polycyclic aromatic hydrocarbon-DNA adducts, environmental tobacco smoke, and child development in the World Trade Center Cohort. Environ. Health Perspect. 2007, 115, 1497–1502. [Google Scholar] [CrossRef] [PubMed]
- Peterson, B.S.; Rauh, V.A.; Bansal, R.; Hao, X.; Toth, Z.; Nati, G.; Walsh, K.; Miller, R.L.; Arias, F.; Semanek, D.; et al. Effects of prenatal exposure to air pollutants (polycyclic aromatic hydrocarbons) on the development of brain white matter, cognition, and behavior in later childhood. JAMA Psychiatry 2015, 72, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Li, T.Y.; Chow, J.C.; Kulkarni, S.U.; Watson, J.G.; Ho, S.S.; Quan, Z.Y.; Qu, L.R.; Perera, F. Air pollution effects on fetal and child development: A cohort comparison in China. Environ. Pollut. 2014, 185, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Li, T.Y.; Liu, J.J.; Zhou, Z.J.; Yuan, T.; Chen, Y.H.; Rauh, V.A.; Xie, J.; Perera, F. Effects of prenatal exposure to coal burning pollutants on children’s development in China. Environ. Health Perspect. 2008, 116, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chanock, S.; Tang, D.; Li, Z.; Edwards, S.; Jedrychowski, W.; Perera, F.P. Effect of gene-environment interactions on mental development in African American, dominican, and caucasian mothers and newborns. Ann. Hum. Genet. 2010, 74, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Perera, F.P.; Tang, D.; Wang, S.; Vishnevetsky, J.; Zhang, B.; Diaz, D.; Camann, D.; Rauh, V. Prenatal polycyclic aromatic hydrocarbon (PAH) exposure and child behavior at age 6–7 years. Environ. Health Perspect. 2012, 120, 921–926. [Google Scholar] [CrossRef] [PubMed]
- Perera, F.P.; Chang, H.; Tang, D.; Roen, E.L.; Herbstman, J.; Camann, D.; Miller, R.L.; Wang, S.; Rauh, V. Early-life exposure to polycyclic aromatic hydrocarbons and ADHD behavior problems. PLoS ONE 2014, 9, e111670. [Google Scholar] [CrossRef] [PubMed]
- Perera, F.P.; Wang, S.; Vishnevetsky, J.; Zhang, B.; Cole, K.J.; Tang, D.; Rauh, V.; Phillips, D.H. PAH/aromatic DNA adducts in cord blood and behavior scores in New York City children. Environ. Health Perspect. 2011, 119, 1176–1181. [Google Scholar] [CrossRef] [PubMed]
- Margolis, A.E.; Herbstman, J.B.; Davis, K.S.; Thomas, V.K.; Tang, D.; Wang, Y.; Wang, S.; Perera, F.P.; Peterson, B.S.; Rauh, V.A. Longitudinal effects of prenatal exposure to air pollutants on self-regulatory capacities and social competence. J. Child. Psychol. Psychiatry 2016, 57, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Perera, F.; Vishnevetsky, J.; Herbstman, J.B.; Calafat, A.M.; Xiong, W.; Rauh, V.; Wang, S. Prenatal bisphenol a exposure and child behavior in an inner-city cohort. Environ. Health Perspect. 2012, 120, 1190–1194. [Google Scholar] [CrossRef] [PubMed]
- Kalia, V.; Perera, F.; Tang, D. Environmental pollutants and neurodevelopment: Review of benefits from closure of a coal-burning power plant in Tongliang, China. Glob. Pediatr. Health 2017, 4, 2333794x17721609. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Lin, C.; Qu, L. Shorter Telomere Length in Cord Blood Associated with Prenatal Air Pollution Exposure: Benefits of Intervention; Columbia University: New York, NY, USA, 2017; in press. [Google Scholar]
- Morse, S.B.; Zheng, H.; Tang, Y.; Roth, J. Early school-age outcomes of late preterm infants. Pediatrics 2009, 123, e622–e629. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.; Liang, S.; Yang, S.; Trevathan, E.; Huang, Z.; Yang, R.; Wang, J.; Hu, K.; Zhang, Y.; Vaughn, M.; et al. Ambient air pollution and preterm birth: A prospective birth cohort study in Wuhan, China. Int. J. Hyg. Environ. Health 2016, 219, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Malley, C.S.; Kuylenstierna, J.C.; Vallack, H.W.; Henze, D.K.; Blencowe, H.; Ashmore, M.R. Preterm birth associated with maternal fine particulate matter exposure: A global, regional and national assessment. Environ. Int. 2017, 101, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Dadvand, P.; Parker, J.; Bell, M.L.; Bonzini, M.; Brauer, M.; Darrow, L.A.; Gehring, U.; Glinianaia, S.V.; Gouveia, N.; Ha, E.H.; et al. Maternal exposure to particulate air pollution and term birth weight: A multi-country evaluation of effect and heterogeneity. Environ. Health Perspect. 2013, 121, 267–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burris, H.H.; Collins, J.W.; Wright, R.O. Racial/ethnic disparities in preterm birth: Clues from environmental exposures. Curr. Opin. Pediatr. 2011, 23, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Trasande, L.; Malecha, P.; Attina, T.M. Particulate matter exposure and preterm birth: Estimates of U.S. Attributable burden and economic costs. Environ. Health Perspect. 2016, 124, 1913–1918. [Google Scholar] [CrossRef] [PubMed]
- Aguayo, V.M.; Menon, P. Stop stunting: Improving child feeding, women’s nutrition and household sanitation in South Asia. Matern. Child Nutr. 2016, 12 (Suppl. 1.), 3–11. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of Food Security and Nutrition in the World 2017. Building Resilience for Peace and Food Security; FAO: Rome, Italy, 2017; p. 132. [Google Scholar]
- US EPA. Understanding the Link between Climate Change and Extreme Weather. Climate Change Science 2016. Available online: https://www.epa.gov/climate-change-science/understanding-link-between-climate-change-and-extreme-weather (accessed on 18 April 2017).
- National Oceanic and Atmospheric Administration (NOAA). Global and Regional Sea Level Rise Scenarios for the United States; NOAA: Washington, DC, USA, 2017; p. 75.
- Bean, J. 9.5 Million People Experience Flooding in Southeast Asia. Pacific Disaster Centre Weather Wall: World’s Weather and Disaster News. 2011. Available online: http://weather.pdc.org/index.php/2011/11/18/9-5-million-people-experience-flooding-in-southeast-asia/ (accessed on 17 October 2017)).
- Save the Children. Legacy of Disasters: The Impact of Climate Change on Children. 2007. Available online: http://www.savethechildren.org.uk/sites/default/files/docs/legacy-of-disasters_1.pdf (accessed on 17 October 2017).
- UNICEF. 16 Million Children Affected by Massive Flooding in South Asia, with Millions More at Risk. 2017. Available online: https://www.unicef.org/media/media_100719.html (accessed on 22 September 2017).
- Atkin, E. The toxic air in California is a public health crisis. New Repub. 2017. Available online: https://newrepublic.com/article/145259/toxic-air-california-public-health-crisis (accessed on 12 December 2017).
- EPA. The Benefits and Costs of the Clean Air Act from 1990 to 2020. Available online: https://www.epa.gov/sites/production/files/2015-07/documents/summaryreport.pdf (accessed on 12 December 2017).
- Shindell, D.T.; Lee, Y.; Faluvegi, G. Climate and health impacts of us emissions reductions consistent with 2 degrees C. Nat. Clim. Chang. 2016, 6, 503–507. [Google Scholar] [CrossRef]
- Machol, B.; Rizk, S. Economic value of U.S. Fossil fuel electricity health impacts. Environ. Int. 2013, 52, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Union of Concerned Scientists. The Hidden Costs of Fossil Fuels. 30 August 2016. Available online: http://www.ucsusa.org/clean-energy/coal-and-other-fossil-fuels/hidden-cost-of-fossils#bf-toc-0 (accessed on 18 April 2017).
- Perera, F.; Weiland, K.; Neidell, M.; Wang, S. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and IQ: Estimated benefit of pollution reduction. J. Public Health Policy 2014, 35, 327–336. [Google Scholar] [CrossRef] [PubMed]
- OECD. The Economic Consequences of Outdoor Air Pollution; OECD: Paris, France, 2016; p. 20. [Google Scholar]
- Tang, D.; Wang, C.; Nie, J.; Chen, R.; Niu, Q.; Kan, H.; Chen, B.; Perera, F. Health benefits of improving air quality in Taiyuan, China. Environ. Int. 2014, 73, 235–242. [Google Scholar] [CrossRef] [PubMed]
- The World Bank. The Cost of Air Pollution. Strengthening the Economic Case for Action; The World Bank: Washington, DC, USA, 2016; p. 122. [Google Scholar]
- Knowlton, K.; Rotkin-Ellman, M.; Geballe, L.; Max, W.; Solomon, G.M. Six climate change-related events in the United States accounted for about $14 billion in lost lives and health costs. Health Aff. (Millwood) 2011, 30, 2167–2176. [Google Scholar] [CrossRef] [PubMed]
- Roland-Holst, D. Energy Efficiency, Innovation, and Job Creation in California; University of California: Berkeley, CA, USA, 2008; p. 82. [Google Scholar]
- NOAA National Centers for Environmental Information. U.S. Billion-Dollar Weather and Climate Disasters. 2017. Available online: https://www.ncdc.noaa.gov/billions/ (accessed on 5 September 2017).
- World Health Organization. Climate Change and Health. 2017. Available online: http://www.who.int/mediacentre/factsheets/fs266/en/ (accessed on 28 September 2017).
- Gould, S.; Berko, J.; Miller, J.; Gonzalez, C.; Rudolph, L. Climate Change, Health, and Equity: Opportunities for Action; Public Health Institute: Oakland, CA, USA, 2015. [Google Scholar]
- NRDC. Ahmedabad Heat Action Plan 2016. Available online: https://www.nrdc.org/sites/default/files/ahmedabad-heat-action-plan-2016.pdf (accessed on 5 September 2017).
- Abt Associates. Regional Greenhouse Gas Initiatve Improves Health, Saves Lives, and Generates 5.7 billion in Benefits. 2017. Available online: http://www.abtassociates.com/NewsReleases/2017/RGGI-Improves-Health,-Saves-Lives,-and-Generates-$.aspx (accessed on 20 November 2017).
- United Nations. The Paris Agreement. 2015. Available online: http://unfccc.int/files/essential_background/convention/application/pdf/english_paris_agreement.pdf (accessed on 12 December 2017).
- EPA. Climate Change in the United States: Benefits of Global Action. Available online: https://www.epa.gov/sites/production/files/2015-06/documents/cirareport.pdf (accessed on 17 October 2017).
- Waskow, D. Examining the International Climate Negotiations. In Testimony of David Waskow, Hearing Before the U.S. Senate Committee on Environment and Public Works; 2015. Available online: https://www.epw.senate.gov/public/index.cfm/hearings?ID=0BFAE2BB-416F-40A1-9698-5BED0FE72BDC (accessed on 21 December 2017).
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perera, F. Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist. Int. J. Environ. Res. Public Health 2018, 15, 16. https://doi.org/10.3390/ijerph15010016
Perera F. Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist. International Journal of Environmental Research and Public Health. 2018; 15(1):16. https://doi.org/10.3390/ijerph15010016
Chicago/Turabian StylePerera, Frederica. 2018. "Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist" International Journal of Environmental Research and Public Health 15, no. 1: 16. https://doi.org/10.3390/ijerph15010016
APA StylePerera, F. (2018). Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist. International Journal of Environmental Research and Public Health, 15(1), 16. https://doi.org/10.3390/ijerph15010016