Assessment of the Multi-Objective Reservoir Operation for Maintaining the Turbidity Maximum Zone in the Yangtze River Estuary
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Suspended Sediment Concentration Objectives for the TMZ
2.3. The Inflows of the TGR in Different Exceedance Probabilities
2.4. Suspended Sediment Concentration Calculation for the Alluvial Estuaries
2.4.1. Modification of Shape Description of Alluvial Estuaries
2.4.2. Analytical Solution for the Steady Nonuniform and Nonequilibrium Sediment Transport Model
2.4.3. Gradations of Suspended Load and Its Variability along the River
2.4.4. Sediment Settling Velocity
2.4.5. Average Sediment Transport Capacity of the Cross-Sectional Area
2.5. Multiobjective Reservoir Operation Model Development
2.5.1. Objective Function
2.5.2. Constraints
2.5.3. Improved Nondominated Sorting Genetic Algorithm III Based on the Elimination Operator (NSGA-III-EO)
Input: |
Multiobjective optimization problem; |
a termination criterion; |
: the number of population (size) considered in NSGA-III-EO; |
: a set of reference points; |
Output: |
Approximation to the Pareto optimal set and the Pareto optimal objective vectors. |
Step 1: Initialization: |
Generate reference points Z; |
Generate an initial population . Set . |
While the termination criterion is not met, generate a new offspring from parents by applying binary crossover and polynomial mutation, and then combine parent and child populations, and set ; |
Nondominated sorting of , set which are all PF of , and set ; |
Step 2: Update: |
Include all nondominated fronts in the new population , set and , until the size of new population is equal to or for the first time becomes larger than the size of the parent population, thus , and the last front to be included is ; |
Step 3: Termination criterion: |
If , then break. Output ; or else normalize the individuals in with reference points , then eliminate individuals from : ; |
Associate the normalized individual in according to the perpendicular distance of each individual of from each of the ; |
The worst individual whose associated reference point has the maximum niche count is eliminated from , then and go to Step 2. |
2.5.4. The Quantitative Relationships of Water Flow Rate along the Yangtze River
3. Results and Discussion
3.1. Calibration of the Steady Nonuniform and Nonequilibrium Sediment Transport Model for the Yangtze River Estuary
3.2. Validation of the Steady Nonuniform and Nonequilibrium Sediment Transport Model for the Yangtze River Estuary
3.3. Environmental Flow Calculation for Estuarine TMZ
3.4. Uncertainty Analysis of Objective Values between Practical Operation and Multiobjective-Optimized Reservoir Operation
3.5. Comparative Analysis of Practical Operation and Multiobjective-Optimized Operation Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Yu, Y.; Wang, C.; Wang, P.F.; Hou, J.; Qian, J. Assessment of multi-objective reservoir operation in the middle and lower Yangtze River based on a flow regime influenced by the Three Gorges Project. Ecol. Inform. 2017, 38, 115–125. [Google Scholar] [CrossRef]
- Keller, D.P.; Lee, D.Y.; Hood, R.R. Turbidity Maximum Entrapment of Phytoplankton in the Chesapeake Bay. Estuaries Coasts 2014, 37, 279–298. [Google Scholar] [CrossRef]
- Shen, Z.L.; Zhou, S.Q.; Pei, S.F. Transfer and transport of phosphorus and silica in the turbidity maximum zone of the Changjiang estuary. Estuar. Coast. Shelf Sci. 2008, 78, 481–492. [Google Scholar] [CrossRef]
- Hudson, A.S.; Talke, S.A.; Jay, D.A. Using Satellite Observations to Characterize the Response of Estuarine Turbidity Maxima to External Forcing. Estuaries Coasts 2017, 40, 343–358. [Google Scholar] [CrossRef]
- Shi, Z.; Xu, J.; Huang, X.P.; Zhang, X.; Jiang, Z.J.; Ye, F.; Liang, X.M. Relationship between nutrients and plankton biomass in the turbidity maximum zone of the Pearl River Estuary. J. Environ. Sci. 2016, 57, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.L.; Milliman, J.D.; Li, P.; Xu, K. 50,000 dams later: Erosion of the Yangtze River and its delta. Glob. Planet. Chang. 2011, 75, 14–20. [Google Scholar] [CrossRef]
- Wild, T.B.; Loucks, D.P. Managing flow, sediment, and hydropower regimes in the Sre Pok, Se San, and Se Kong Rivers of the Mekong basin. Water Resour. Res. 2014, 50, 5141–5157. [Google Scholar] [CrossRef]
- Schettini, C.A.; Paiva, B.P.; Batista, R.D.; Oliveira Filho, J.C.; Truccolo, E.C. Observation of an Estuarine Turbidity Maximum in the Highly Impacted Capibaribe Estuary, Brazil. Braz. J. Oceanogr. 2016, 64, 185–189. [Google Scholar] [CrossRef]
- Jalón-Rojas, I.; Schmidt, S.; Sottolichio, A.; Bertier, C. Tracking the turbidity maximum zone in the Loire Estuary (France) based on a long-term, high-resolution and high-frequency monitoring network. Cont. Shelf Res. 2016, 117, 1–11. [Google Scholar] [CrossRef]
- Mavuti, K.M.; Kitheka, J.U.; Nthenge, P.; Obiero, M. The Dynamics Of The Turbidity Maximum Zone In A Tropical Sabaki Estuary In Kenya. J. Environ. Sci. Water Resour. 2014, 3, 86–103. [Google Scholar]
- Shen, H.T.; Pan, A.D. Turbidity Maximum in the Changjiang Estuary; The Ocean Publishing Company: Beijing, China, 2001. [Google Scholar]
- Mitchell, S.B. Turbidity maxima in four macrotidal estuaries. Ocean. Coast. Manag. 2013, 79, 62–69. [Google Scholar] [CrossRef]
- Garnier, J.; Billen, G.; Némery, J.; Sebilo, M. Transformations of nutrients (N, P, Si) in the turbidity maximum zone of the Seine estuary and export to the sea. Estuar. Coast. Shelf Sci. 2010, 90, 129–141. [Google Scholar] [CrossRef]
- Smedt, F.D.; Vuksanovic, V.; Meerbeeck, S.V.; Reyns, D. A Time-dependent flow model for heavy metals in the scheldt estuary. Hydrobiologia 1997, 366, 143–155. [Google Scholar] [CrossRef]
- Tatoneab, L.M.; Bilosa, C.; Skorupkaa, C.N.; Colomboac, J.C. Trace metal behavior along fluvio-marine gradients in the Samborombón Bay, outer Río de la Plata estuary, Argentina. Cont. Shelf Res. 2015, 96, 27–33. [Google Scholar] [CrossRef]
- North, E.W.; Houde, E.D. Retention mechanisms of white perch (Morone americana) and striped bass (Morone saxatilis) early-life stages in an estuarine turbidity maximum: An integrative fixed-location and mapping approach. Fish. Oceanogr. 2006, 15, 429–450. [Google Scholar] [CrossRef]
- Islam, M.S.; Hibino, M.; Tanaka, M. Distribution and diets of larval and juvenile fishes: Influence of salinity gradient and turbidity maximum in a temperate estuary in upper Ariake Bay, Japan. Estuar. Coast. Shelf Sci. 2006, 68, 62–74. [Google Scholar] [CrossRef]
- Jiang, X.Z.; Lu, B.; He, Y.H. Response of the turbidity maximum zone to fluctuations in sediment discharge from river to estuary in the Changjiang Estuary (China). Estuar. Coast. Shelf Sci. 2013, 131, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z. Dynamics of the turbidity maximum in the Changjiang Estuary, China. Proc. Mar. Sci. 2002, 5, 655–669. [Google Scholar] [CrossRef]
- Shen, Z.L. A new method for the estimation of fine-sediment resuspension ratios in estuaries—Taking the turbidity maximum zone of the Changjiang (Yangtze) estuary as an example. Chin. J. Oceanol. Limnol. 2012, 30, 791–795. [Google Scholar] [CrossRef]
- Li, J.F.; Zhang, C. Sediment resuspension and implications for turbidity maximum in the Changjiang Estuary. Mar. Geol. 1998, 148, 117–124. [Google Scholar] [CrossRef]
- Shi, Z.; Kirby, R. Observations of Fine Suspended Sediment Processes in the Turbidity Maximum at the North Passage of the Changjiang Estuary, China. J. Coast. Res. 2003, 19, 529–540. [Google Scholar] [CrossRef]
- Dai, Z.J.; Chu, A.; Li, W.H.; Li, J.F.; Wu, H.L. Has Suspended Sediment Concentration Near the Mouth Bar of the Yangtze (Changjiang) Estuary Been Declining in Recent Years? J. Coast. Res. 2013, 29, 809–818. [Google Scholar] [CrossRef]
- Dai, Z.J.; Fagherazzi, S.; Mei, X.F.; Gao, J.J. Decline in suspended sediment concentration delivered by the Changjiang (Yangtze) River into the East China Sea between 1956 and 2013. Geomorphology 2016, 268, 123–132. [Google Scholar] [CrossRef]
- Chen, X.F.; Shen, Z.Y.; Yang, Y. Response of the turbidity maximum zone in the Yangtze River Estuary due to human activities during the dry season. Environ. Sci. Pollut. Res. Int 2016, 23, 18466–18481. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Sun, Z.; Han, J.; Li, Y.; Huang, L. Influence of change in river discharge and tides on stagnation points in the Yangtze River estuary. Shuikexue Adv. Water Sci. 2015, 26, 572–578. [Google Scholar] [CrossRef]
- Yang, Y.P.; Li, Y.T.; Sun, Z.H.; Fan, Y.Y. Suspended sediment load in the turbidity maximum zone at the Yangtze River Estuary: The trends and causes. J. Geogr. Sci. 2014, 24, 129–142. [Google Scholar] [CrossRef]
- Fang, H.W.; Chen, M.H.; Chen, Q.H. One-dimensional numerical simulation of non-uniform sediment transport under unsteady flows. Int. J. Sediment Res. 2008, 23, 316–328. [Google Scholar] [CrossRef]
- Shi, J.Z.; Zhou, H.Q.; Liu, H.; Zhang, Y.G. Two-dimensional horizontal modeling of fine-sediment transport at the South Channel–North Passage of the partially mixed Changjiang River estuary, China. Environ. Earth Sci. 2010, 61, 1691–1702. [Google Scholar] [CrossRef]
- Zhang, C.; Zheng, J.H.; Wang, Y.G.; Zhang, M.T.; Jeng, D.S.; Zhang, J.S. A process-based model for sediment transport under various wave and current conditions. Int. J. Sediment Res. 2011, 26, 498–512. [Google Scholar] [CrossRef]
- Park, K.; Wang, H.V.; Kim, S.C.; Oh, J.H. A Model Study of the Estuarine Turbidity Maximum along the Main Channel of the Upper Chesapeake Bay. Estuaries Coasts 2008, 31, 115–133. [Google Scholar] [CrossRef]
- Grasso, F.; Verney, R.; Hir, P.L.; Thouvenin, B.; Schulz, E.; Kervella, Y.; Fard IK, P.; Lemoine, J.P.; Dumas, F.; Garnier, V. Suspended Sediment Dynamics in the Macrotidal Seine Estuary (France): 1. Numerical Modeling of Turbidity Maximum Dynamics. J. Geophys. Res. Oceans 2018, 123, 558–577. [Google Scholar] [CrossRef]
- Tang, H.S.; Keen, T.R. Analytical Solutions for Open-Channel Temperature Response to Unsteady Thermal Discharge and Boundary Heating. J. Hydraul. Eng. 2009, 135, 327–332. [Google Scholar] [CrossRef]
- Gisen, J.I.; Savenije, H.H.; Nijzink, R.C.; Abd Wahab, A.K. Testing a 1-D analytical salt intrusion model and its predictive equations in Malaysian estuaries. Hydrol. Sci. J. 2015, 60, 156–172. [Google Scholar] [CrossRef]
- Yan, H.X.; Edwards, F.G. Effects of Land Use Change on Hydrologic Response at a Watershed Scale, Arkansas. J. Hydrol. Eng. 2013, 18, 1779–1785. [Google Scholar] [CrossRef]
- Al-Aqeeli, Y.H.; Lee, T.S.; Aziz, S.A. Enhanced genetic algorithm optimization model for a single reservoir operation based on hydropower generation: Case study of Mosul reservoir, northern Iraq. SpringerPlus 2016, 5, 797. [Google Scholar] [CrossRef] [PubMed]
- Lanini, J.S.; Dozier, A.Q.; Furey, P.R.; Kampf, S.K. Stochastic Method for Examining Vulnerability of Hydropower Generation and Reservoir Operations to Climate Change: Case Study of the Dworshak Reservoir in Idaho. J. Water Resour. Plan. Manag. 2014, 140, 05014004. [Google Scholar] [CrossRef]
- Pietrucha-Urbanik, K.; Zelazko, A. Approaches to Assess Water Distribution Failure. Period. Polytech. Civ. Eng. 2017, 61, 632–639. [Google Scholar] [CrossRef]
- Castelletti, A.; Yajima, H.; Giuliani, M.; Soncini-Sessa, R.; Weber, E. Planning the Optimal Operation of a Multi-Outlet Water Reservoir with Water Quality and Quantity Targets. J. Water Resour. Plan. Manag. 2014, 140, 496–510. [Google Scholar] [CrossRef]
- Anghileri, D.; Castelletti, A.; Pianosi, F.; Soncini-Sessa, R.; Weber, E. Optimizing Watershed Management by Coordinated Operation of Storing Facilities. J. Water Res. Plan. Manag. 2013, 139, 492–500. [Google Scholar] [CrossRef]
- Dai, L.Q.; Zhang, P.P.; Wang, Y.; Jiang, D.G.; Dai, H.C.; Mao, J.Q.; Wang, M.M. Multi-objective optimization of cascade reservoirs using NSGAII: A case study of the Three Gorges-Gezhouba cascade reservoirs in the middle Yangtze River, China. Hum. Ecol. Risk Assess. 2017, 23, 814–835. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, P.F.; Wang, C.; Qian, J.; Hou, J. Combined Monthly Inflow Forecasting and Multiobjective Ecological Reservoir Operations Model: Case Study of the Three Gorges Reservoir. J. Water Res. Plan. Manag. 2017, 143, 05017004. [Google Scholar] [CrossRef]
- Richard, S. Three Gorges Dam: Into the Unknown. Science 2008, 321, 628–632. [Google Scholar] [CrossRef]
- Li, X.; Wu, D.A. Study on the Yangtze River Estuarine Turbidity Maximum. Appl. Mech. Mater. 2011, 90–93, 2774–2777. [Google Scholar] [CrossRef]
- Shen, H.T.; He, S.L.; Pan, D.A.; Li, J.F. A study of turbidity maximum in the Changjiang Estuary. Acta Grogr. Sin. 1992, 47, 472–479. (In Chinese) [Google Scholar]
- Savenije, H.H. Salinity and Tides in Alluvial Estuaries; Delft University of Technology Water Resources Section: Delft, The Netherlands, 2012. [Google Scholar]
- Dai, Z.J.; Liu, J.T.; Wei, W.; Chen, J. Detection of the Three Gorges Dam influence on the Changjiang (Yangtze River) submerged delta. Sci. Rep. 2014, 4, 6600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, Z.J.; Fagherazzi, S.; Mei, X.F.; Chen, J.Y.; Meng, Y. Linking the infilling of the North Branch in the Changjiang (Yangtze) estuary to anthropogenic activities from 1958 to 2013. Mar. Geol. 2016, 379, 1–12. [Google Scholar] [CrossRef]
- Han, Q.W. A study of the non-equilibrium transportation of non-uniform suspended load. Chin. Sci. Bull. 1979, 17, 135–147. [Google Scholar]
- Han, Q.W. A Study on the Non-Equilibrium Transport of Suspended Load; Symp TfI, Ed.; China Water and Power Press: Beijing, China, 1980. [Google Scholar]
- Hu, M.; Huang, G.H.; Sun, W.; Li, Y.P.; Ding, X.W.; An, C.J.; Zhang, X.F.; Li, T. Multi-objective ecological reservoir operation based on water quality response models and improved genetic algorithm: A case study in Three Gorges Reservoir, China. Eng. Appl. Artif. Intell. 2014, 36, 332–346. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Guo, S.L.; Wang, C.J.; Zhou, F. Optimization of limited water level in flood season and impounding scheme for reservoir in three gorges project. J. Hydraul. Eng. 2004, 7, 86–91. (In Chinese) [Google Scholar]
- Wang, C.; Yu, Y.; Wang, P.F.; Sun, Q.Y.; Hou, J.; Qian, J. Assessment of the Ecological Reservoir Operation in the Yangtze Estuary Based on the Salinity Requirements of the Indicator Species. River Res. Appl. 2016, 32, 946–957. [Google Scholar] [CrossRef]
- Dong, Q. Three Gorges Dam: Natural flow and dam operations. Front. Ecol. Environ. 2005, 3, 75–76. [Google Scholar] [CrossRef]
- Deb, K.; Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. Evol. Comput. IEEE Trans. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Bi, X.; Wang, C. An improved NSGA-III algorithm based on elimination operator for many-objective optimization. Memetic Comput. 2017, 9, 361–383. [Google Scholar] [CrossRef]
- Yu, S.P.; Yang, J.S.; Liu, G.M. Impact assessment of Three Gorges Dam’s impoundment on river dynamics in the north branch of Yangtze River estuary, China. Environ. Earth Sci. 2014, 72, 499–509. [Google Scholar] [CrossRef]
- Zhang, E.F.; Savenije, H.H.; Wu, H.; Kong, Y.Z.; Zhu, J.R. Analytical solution for salt intrusion in the Yangtze Estuary, China. Estuar. Coast. Shelf Sci. 2011, 91, 492–501. [Google Scholar] [CrossRef]
- Liu, M.; Wu, H.L.; Li, W.H. Observational study on flow and sediment transport overtopping the south leading jetty in the Yangtze Estuary Deep-water Channel Regulation Project. Ocean Eng. 2011, 29, 129–134. (In Chinese) [Google Scholar]
- Zhai, X. Elementary Discussion of Hydrodynamic and Suspended Sediment Distribution Characteristic in the Yangtze Estuary; East China Normal University: Shanghai, China, 2006. (In Chinese) [Google Scholar]
Branch Channel | Critical Cross Section | Corresponding Period | Critical SSC for the TMZ (kg/m3) | Reference | Distance to NZ0 (km) |
---|---|---|---|---|---|
South Branch | TMZ1 (35.32 km from Xuliujing) | Pre-TGD (before 1 June 2003) | 0.9 | [25] | 17.72 |
South Branch | TMZ2 (121°20′ E) | In 1981 and 1995 | 0.7 | [18] | 25.97 |
South Channel | TMZ3 (121°45′ E) | From 1959 to 1999 | 0.7 | [27] | 76.55 |
North Passage | TMZ4 (103.15 km from Xuliujing) | Pre-TGD (before 1 June 2003) | 0.9 | [25] | 85.55 |
South Passage | TMZ5 (103.15 km from Xuliujing) | Pre-TGD (before 1 June 2003) | 0.9 | [25] | 85.55 |
Exceedance Probabilities (%) | Annual Inflow of the TGR (×108 m3/a) |
---|---|
0 | 4559.16 |
30 | 4252.89 |
50 | 4060.56 |
70 | 3869.50 |
100 | 2979.84 |
Critical Cross Section | Environmental Flows |
---|---|
TMZ1 | 2.35 |
TMZ2 | 1.75 |
TMZ3 | 1.21 |
TMZ4 | 1.62 |
TMZ5 | 1.01 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Wang, P.; Wang, C.; Wang, X.; Hu, B. Assessment of the Multi-Objective Reservoir Operation for Maintaining the Turbidity Maximum Zone in the Yangtze River Estuary. Int. J. Environ. Res. Public Health 2018, 15, 2118. https://doi.org/10.3390/ijerph15102118
Yu Y, Wang P, Wang C, Wang X, Hu B. Assessment of the Multi-Objective Reservoir Operation for Maintaining the Turbidity Maximum Zone in the Yangtze River Estuary. International Journal of Environmental Research and Public Health. 2018; 15(10):2118. https://doi.org/10.3390/ijerph15102118
Chicago/Turabian StyleYu, Yang, Peifang Wang, Chao Wang, Xun Wang, and Bin Hu. 2018. "Assessment of the Multi-Objective Reservoir Operation for Maintaining the Turbidity Maximum Zone in the Yangtze River Estuary" International Journal of Environmental Research and Public Health 15, no. 10: 2118. https://doi.org/10.3390/ijerph15102118
APA StyleYu, Y., Wang, P., Wang, C., Wang, X., & Hu, B. (2018). Assessment of the Multi-Objective Reservoir Operation for Maintaining the Turbidity Maximum Zone in the Yangtze River Estuary. International Journal of Environmental Research and Public Health, 15(10), 2118. https://doi.org/10.3390/ijerph15102118