Modeling of Trace Metal Migration and Accumulation Processes in a Soil-Wheat System in Lihe Watershed, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Samples Collection and Test
2.3. Wheat Plants Absorb Trace Metals Model
2.3.1. Wheat Growth and Trace Metal Accumulation
2.3.2. Trace Metal Absorption Rate in Wheat
2.4. Parameters
2.5. Accuracy Evaluation
2.5.1. Verification of the Modeling Results
2.5.2. Monte Carlo Verification
3. Results
3.1. Wheat Growth Process
3.2. Trace Metal Accumulation Process
3.3. Accuracy Evaluation
3.3.1. Verification of the Modeling Results
3.3.2. Monte Carlo Verification
3.4. Risk Evaluation of Wheat Trace Metal Pollution
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duruibe, J.O.; Ogwuegbu, M.O.C. Heavy metal pollution and human biotoxic effects. Int. J. Phys. Sci. 2007, 2, 112–118. [Google Scholar]
- Li, Y.; Mei, L.; Zhou, S.; Jia, Z.; Wang, J.; Li, B.; Wang, C.; Wu, S. Analysis of historical sources of heavy metals in Lake Taihu based on the positive matrix factorization model. Int. J. Environ. Res. Public Health 2018, 15, 1540. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Bonhomme, C.; Van den Bout, B.; Jetten, V.; Chebbo, G. Integrating atmospheric deposition, soil erosion and sewer transport models to assess the transfer of traffic-related pollutants in urban areas. Environ. Model. Softw. 2017, 96, 158–171. [Google Scholar] [CrossRef]
- Wei, B.G.; Yang, L.S. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Zhang, H. Accumulation of heavy metals in roadside soil in urban area and the related impacting factors. Int. J. Environ. Res. Public Health 2018, 15, 1064. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Ying, Y. Combined toxicity of copper and cadmium to six rice genotypes (Oryza sativa L.). J. Environ. Sci. 2009, 21, 647–653. [Google Scholar] [CrossRef]
- Liao, Z. Environmental Chemistry and Biological Effects of Trace Elements; China Environmental Science Press: Beijing, China, 1993. [Google Scholar]
- Krapivin, V.F.; Phillips, G.W. Application of a global model to the study of Arctic basin pollution: Radionuclides, heavy metals and oil hydrocarbons. Environ. Model. Softw. 2001, 16, 1–17. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection. National survey of soil pollution status. China Environ. Prot. Ind. 2014, 36, 10–11. [Google Scholar]
- Marquez, J.E.; Pourret, O.; Faucon, M.P.; Weber, S.; Hoang, T.B.H.; Martinez, R.E. Effect of cadmium, copper and lead on the growth of rice in the coal mining region of Quang Ninh, Cam-Pha (Vietnam). Sustainability 2018, 10, 1758. [Google Scholar] [CrossRef]
- Jiang, R.; Wang, M.; Chen, W.; Li, X. Ecological risk evaluation of combined pollution of herbicide siduron and heavy metals in soils. Sci. Total Environ. 2018, 626, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Gall, J.E.; Boyd, R.S.; Rajakaruna, N. Transfer of heavy metals through terrestrial food webs: A review. Environ. Monit. Assess. 2015, 187, 201. [Google Scholar] [CrossRef] [PubMed]
- Yang, N. Present situation of soil heavy metal pollution and harm and its repair technology. Petrochem. Ind. Technol. 2017, 24, 155. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Teng, Y.; Lu, S.; Wang, Y.; Wang, J. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 2015, 512, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Shao, T.; Pan, L.; Chen, Z.; Wang, R.; Li, W.; Qin, Q.; He, Y. Content of heavy metal in the dust of leisure squares and its health risk assessment—A case study of Yanta District in Xi’an. Int. J. Environ. Res. Public Health 2018, 15, 394. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.U.; Malik, R.N.; Muhammad, S.; Ullah, F.; Qadir, A. Health risk assessment of consumption of heavy metals in market food crops from Sialkot and Gujranwala Districts, Pakistan. Hum. Ecol. Risk Assess. 2015, 21, 327–337. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.H.; Yang, J.C.; Liu, H.; Dai, J.L. Health risk to residents and stimulation to inherent bacteria of various heavy metals in soil. Sci. Total Environ. 2015, 508, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Singhirunnusorn, W. Distribution and health risk assessment of heavy metals in surface dusts of Maha Sarakham Municipality. Procedia-Soc. Behav. Sci. 2012, 50, 280–293. [Google Scholar] [CrossRef]
- Silveira, M.L.; Azevedoalleoni, L.R.F.; Guimarães, L.R.G. Biosolids and heavy metals in soils. Sci. Agric. 2003, 60, 793–806. [Google Scholar] [CrossRef]
- French, C.J.; Dickinson, N.M.; Putwain, P.D. Woody biomass phytoremediation of contaminated brownfield land. Environ. Pollut. 2006, 141, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Schrauzer, G.N. Trace elements in the environment biogeochemistry, biotechnology and bioremediation. Biol. Trace Element Res. 2006, 109, 301. [Google Scholar] [CrossRef]
- Lyu, X. Study on the Law of Plants Absorbing Heavy Metals in the Soil. Master’s Thesis, Nanjing University of Science and Technology, Nanjing, China, 2014. [Google Scholar]
- Ghori, Z.; Iftikhar, H.; Bhatti, M.F.; Nasar-um-Minullah; Sharma, I.; Kazi, A.G.; Ahmad, P. Chapter 15—Phytoextraction: The use of plants to remove heavy metals from soil. Plant Met. Interact. 2016, 385–409. [Google Scholar] [CrossRef]
- Trapp, S. Plant uptake and transport models for neutral and ionic chemicals. Environ. Sci. Pollut. Res. 2004, 11, 33–39. [Google Scholar] [CrossRef]
- Li, H.X.; Lin, W.B.; Li, Y.Q.; Nie, Y.J.; Liu, F.J.; Zhao, X.H. Simulation and verification for model of phytoremediation on heavy metal contaminated sediment. Environ. Sci. 2011, 32, 2119–2124. [Google Scholar]
- Tan, K.H. Soil sampling, preparation, and analysis. Soil Sampl. Prep. Anal. 2003, 41, 319–321. [Google Scholar]
- Muhammad, S.; Shah, M.T.; Khan, S. Heavy metal concentrations in soil and wild plants growing around Pb–Zn sulfide terrain in the Kohistan region, northern Pakistan. Microchem. J. 2011, 99, 67–75. [Google Scholar] [CrossRef]
- Tian, K.; Huang, B.; Xing, Z.; Hu, W. Geochemical baseline establishment and ecological risk evaluation of heavy metals in greenhouse soils from Dongtai, China. Ecol. Indic. 2017, 72, 510–520. [Google Scholar] [CrossRef]
- Yan-Qing, G.U.; You-Li, G.U.; Bai, Q.; Gong, M.D.; Zhu, W.Q. Heavy metals accumulation characteristics of vegetables in Hangzhou City, China. J. Agric. Resour. Environ. 2015, 32, 401–410. [Google Scholar]
- Obasi, N.A.; Akubugwo, E.I.; Kalu, K.M.; Ugbogu, O.C. Speciation of heavy metals and phyto-accumulation potentials of selected plants on major dumpsites in Umuahia, Abia State, Nigeria. Int. J. Curr. Biochem. Res. 2013, 1, 16–28. [Google Scholar]
- Fantke, P.; Charles, R.; de Alencastro, L.F.; Friedrich, R.; Jolliet, O. Plant uptake of pesticides and human health: Dynamic modeling of residues in wheat and ingestion intake. Chemosphere 2011, 85, 1639–1647. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.L. Effects of soil properties on crop Cd uptake and prediction of Cd concentration in grains. J. Agro-Environ. Sci. 2007, 26, 699–703. [Google Scholar]
- Cheng, W.; Zhang, G.; Yao, H.; Dominy, P.; Wu, W.; Wang, R. Possibility of predicting heavy-metal contents in rice grains based on DTPA-extracted levels in soil. Commun. Soil Sci. Plant Anal. 2004, 35, 2731–2745. [Google Scholar] [CrossRef]
- Zhao, K. Spatial Relationships of Heavy Metals in Soil-Rice System and the Quantitative Model. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2010. [Google Scholar]
- Peng, C. Modeling Heavy Metals and Polycyclic Aromatic Hydrocarbons Accumulations in Urban Soils. Ph.D. Thesis, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China, 2013. [Google Scholar]
- Shi, Y. Simulation of the absorption, migration and accumulation process of heavy metal elements in soil-crop system. Environ. Sci. 2016, 37, 3996–4003. [Google Scholar]
- Machwitz, M.; Giustarini, L.; Bossung, C.; Frantz, D.; Schlerf, M.; Lilienthal, H.; Wandera, L.; Matgen, P.; Hoffmann, L.; Udelhoven, T. Enhanced biomass prediction by assimilating satellite data into a crop growth model. Environ. Model. Softw. 2014, 62, 437–453. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, S.; Shi, Y.; Wang, C.; Li, B.; Li, Y.; Wu, S. Heavy metals in food crops, soil, and water in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested. Sci. Total Environ. 2018, 615, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Rein, A.; Legind, C.N.; Trapp, S. New concepts for dynamic plant uptake models. SAR QSAR Environ. Res. 2011, 22, 191–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, H.; Mackay, D. A novel and simple model of the uptake of organic chemicals by vegetation from air and soil. Chemosphere 1997, 35, 959–977. [Google Scholar] [CrossRef]
- Verma, P.; George, K.V.; Singh, H.V.; Singh, S.K.; Juwarkar, A.; Singh, R.N. Modeling rhizofiltration: Heavy-metal uptake by plant roots. Environ. Model. Assess. 2006, 11, 387–394. [Google Scholar] [CrossRef]
- Trapp, S.; Rasmussen, D.; Samsøe-Petersen, L. Fruit tree model for uptake of organic compounds from soil. SAR QSAR Environ. Res. 2003, 14, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Metropolis, N.; Ulam, S. The monte Carlo method. J. Am. Stat. Assoc. 1949, 44, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zhu, G.; Helian, L.I.; Han, X.; Jumei, L.I.; Yibing, M.A. Accumulation and bioavailability of heavy metals in a soil-wheat/maize system with long-term sewage sludge amendments. J. Integr. Agric. 2018, 17, 1861–1870. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, C.; Cao, S.; Cheng, L.; Wu, G.; Guo, J. Heavy metal accumulation and health risk assessment in soil-wheat system under different nitrogen levels. Sci. Total Environ. 2018, 622, 1499–1508. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wu, W.; Liu, F.; Liao, R.; Hu, Y. Accumulation of heavy metals in soil-crop systems: A review for wheat and corn. Environ. Sci. Pollut. Res. Int. 2017, 24, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.M.; Ibrahim, S.M.; El-Hady, Y.A.A.; Sayed, A.S.A. Assessment of bioavailability of some heavy metals to wheat and faba bean in Sahl El-Tina, Egypt. Agric. Res. 2018, 7, 72–82. [Google Scholar] [CrossRef]
- Du, F.; Yang, Z.; Liu, P.; Wang, L. Accumulation, translocation, and assessment of heavy metals in the soil-rice systems near a mine-impacted region. Environ. Sci. Pollut. Res. 2018, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Hao, P.; Cheng, Y.; Ahmed, I.M.; Cao, F. Effect of combined application of lead, cadmium, chromium and copper on grain, leaf and stem heavy metal contents at different growth stages in rice. Ecotoxicol. Environ. Saf. 2018, 162, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Ogunkunle, C.O.; Varun, M.; Jimoh, M.A.; Olorunmaiye, K.S.; Fatoba, P.O. Evaluating the trace metal pollution of an urban paddy soil and bioaccumulation in rice (Oryza sativa L.) with the associated dietary risks to local population: A case study of Ilorin, north-central Nigeria. Environ. Earth Sci. 2016, 75, 1383–1394. [Google Scholar] [CrossRef]
- Su, C.; Tang, J.; Pan, X.; Huang, Q.; Zou, S. Distribution research of heavy metal in the corn plants. Chin. Agric. Sci. Bull. 2011, 27, 323–327. [Google Scholar]
- Nocito, F.F.; Lancilli, C.; Dendena, B.; Lucchini, G.; Sacchi, G.A. Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation. Plant Cell Environ. 2011, 34, 994–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schweizer, S.A.; Seitz, B.; van der Heijden, M.G.A.; Schulin, R.; Tandy, S. Impact of organic and conventional farming systems on wheat grain uptake and soil bioavailability of zinc and cadmium. Sci. Total Environ. 2018, 639, 608–616. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.I.; Ahmad, K.; Rehman, S.; Siddique, S.; Bashir, H.; Zafar, A.; Sohail, M.; Ali, S.A.; Cazzato, E.; De Mastro, G. Health risk assessment of heavy metals in wheat using different water qualities: Implication for human health. Environ. Sci. Pollut. Res. 2017, 24, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, F.L.; Yuan, J.; Sheng, G.D. Altered transfer of heavy metals from soil to Chinese cabbage with film mulching. Ecotoxicol. Environ. Saf. 2012, 77, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, Y.; Li, C.; Ni, X.; Ma, W.; Wei, H. Assessing soil metal levels in an industrial environment of northwestern china and the phytoremediation potential of its native plants. Sustainability 2018, 10, 2686. [Google Scholar] [CrossRef]
Item | Root (R) | Stem (St) | Leaf (L) | Grain (G) |
---|---|---|---|---|
rS−i | rS−R | rS−R rR−St | rS−R rR−St rSt−L | rS−R rR−St rSt−G |
rA−i | rA−L rL−St rSt−R | rA−L rL−St | rA−L | rA−G |
Data Type | Parameter | Source |
---|---|---|
Soil data | Soil weight MS | This study |
Soil trace metal contents Cs, Ct | This study | |
Atmosphere data | Trace metals contents in the atmosphere CA | This study |
Adsorption rate of atmospheric particles fp | Rein, etc., 2011 [40] | |
Deposition velocity of particles vdep | Rein, etc., 2011 [40] | |
Crop data | The initial mass of wheat each part Mi,0 | This study |
The maximum mass of wheat each part Mi,max | This study | |
The water content of wheat each part Wi | This study | |
The surface area of wheat each part Ai | This study | |
The growth coefficient of wheat each part Gi | Rein, etc., 2011 [40] | |
Partitioning coefficient | Soil-water KSw | Fantke, etc., 2011 [32]; Hung, 1997 [41] |
Atmosphere-water KAw | Rein, etc., 2011 [40] | |
Root-water KRw | Fantke, etc., 2011 [32] | |
Stem-water KStw | Fantke, etc., 2011 [32] | |
Leaf-water KLw | Fantke, etc., 2011 [32] | |
Grain-water KGw | Fantke, etc., 2011 [32] | |
Flux Q | Rein, etc., 2011 [40]; Hung, 1997 [41] | |
Other data | Volume conversion factor fc | Fantke, etc., 2011 [32] |
Diffusion rate DR | Verma, 2006 [42] | |
The permeability of leaf and grain PL, PG | Trapp, etc., 2007 [43] |
Item | Mi,0 (kg) | Mi,max (kg) | Gi |
---|---|---|---|
Root (R) | 0.0025 | 0.25 | 0.0075 |
Stem (St) | 0.00125 | 0.45 | 0.08 |
Leaf (L) | 0.00125 | 0.05 | 0.08 |
Grain (G) | 0.0000056 | 0.56 | 0.14 |
Element | Cu | Cd | Pb | Ni |
---|---|---|---|---|
Root (R) | 16.25 ± 6.76 | 0.72 ± 0.14 | 16.26 ± 8.42 | 9.14 ± 6.56 |
Stem (St) | 3.55 ± 1.48 | 0.21 ± 0.04 | 1.44 ± 0.7 | 2.84 ± 2.04 |
Leaf (L) | 6.07 ± 2.52 | 0.43 ± 0.08 | 7.31 ± 3.79 | 3.40 ± 2.44 |
Grain (G) | 5.25 ± 2.18 | 0.1 ± 0.02 | 0.54 ± 0.28 | 0.82 ± 0.59 |
Element | Cu | Cd | Pb | Ni |
---|---|---|---|---|
Csoil/mg·kg−1 | 22.1 | 0.6 | 36.3 | 28.9 |
BCFsw | 1.41 | 2.43 | 0.7 | 0.56 |
BCFsg | 0.24 | 0.17 | 0.01 | 0.03 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, G.; Wu, S.; Yuan, Y.; Li, F.; Chen, L.; Yan, D. Modeling of Trace Metal Migration and Accumulation Processes in a Soil-Wheat System in Lihe Watershed, China. Int. J. Environ. Res. Public Health 2018, 15, 2432. https://doi.org/10.3390/ijerph15112432
Tong G, Wu S, Yuan Y, Li F, Chen L, Yan D. Modeling of Trace Metal Migration and Accumulation Processes in a Soil-Wheat System in Lihe Watershed, China. International Journal of Environmental Research and Public Health. 2018; 15(11):2432. https://doi.org/10.3390/ijerph15112432
Chicago/Turabian StyleTong, Guijie, Shaohua Wu, Yujie Yuan, Fufu Li, Lian Chen, and Daohao Yan. 2018. "Modeling of Trace Metal Migration and Accumulation Processes in a Soil-Wheat System in Lihe Watershed, China" International Journal of Environmental Research and Public Health 15, no. 11: 2432. https://doi.org/10.3390/ijerph15112432
APA StyleTong, G., Wu, S., Yuan, Y., Li, F., Chen, L., & Yan, D. (2018). Modeling of Trace Metal Migration and Accumulation Processes in a Soil-Wheat System in Lihe Watershed, China. International Journal of Environmental Research and Public Health, 15(11), 2432. https://doi.org/10.3390/ijerph15112432