Distribution and Phytoavailability of Potentially Toxic Metals in Different Fe/Mg Mine Tailings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Preparation of Tailing Soils
2.2. Pot Experiment and Laboratory Incubation
2.3. Soil Physical and Chemical Analysis
2.4. Plant Sample Analysis and Transfer Factor Calculation
2.5. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Property and Heavy Metal Concentration of Tailing Soils
3.2. Geochemical Fractions of Potentially Toxic Metals in Bulk and Rhizosphere Tailing Soils
3.3. Correlations Between Soil Metal Fraction and Plant Metal Concentration
3.4. Influence of Tailing Soils Properties on Metal Transfer Capability
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Probst, A.; Liao, B. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Sci. Total Environ. 2005, 339, 153–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acosta, J.; Faz, A.; Martínez-Martínez, S.; Zornoza, R.; Carmona, D.; Kabas, S. Multivariate statistical and GIS-based approach to evaluate potentially toxic metals behavior in mine sites for future reclamation. J. Geochem. Explor. 2011, 109, 8–17. [Google Scholar] [CrossRef]
- Yang, Q.W.; Lan, C.Y.; Shu, W.S. Copper and Zinc in a paddy field and their potential ecological impacts affected by wastewater from a lead/zinc mine, P. R. China. Environ. Monit. Assess. 2008, 147, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, L.; Ruiz, E.; Alonso-Azcárate, J.; Rincón, J. Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain. J. Environ. Manag. 2009, 90, 1106–1116. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Chaudhari, P.; Satyanaranyan, S. Impact of leaching from iron ore mines on terrestrial and aquatic environment. Int. J. Environ. Sci. 2012, 2, 2378–2386. [Google Scholar]
- Brun, L.A.; Maillet, J.; Richarte, J.; Herrmann, P.; Remy, J.C. Relationships between extractable copper, soil properties and copper uptake by wild plants in vineyard soils. Environ. Pollut. 1998, 102, 151–161. [Google Scholar] [CrossRef]
- Pichtel, J.; Kuroiwa, K.; Sawyerr, H.T. Distribution of Pb, Cd and Ba in soils and plants of two contaminated sites. Environ. Pollut. 2000, 110, 171–178. [Google Scholar] [CrossRef]
- Keller, C.; Hammer, D. Metal availability and soil toxicity after repeated croppings of Thlaspi caerulescens in metal contaminated soils. Environ. Pollut. 2004, 131, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, J.M.; Lopez-Valdivia, L.M.; Novillo, J.; Obrador, A.; Rico, M.I. Comparison of EDTA and sequential extraction tests for phytoavailability prediction of manganese and zinc in agricultural alkaline soils. Geoderma 2006, 132, 450–463. [Google Scholar] [CrossRef]
- Li, M.S.; Luo, Y.P.; Su, Z.Y. Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi, South China. Environ. Pollut. 2007, 147, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Pueyo, M.; Mateu, J.; Rigol, A.; Vidal, M.; López-Sánchez, J.F.; Rauret, G. Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils. Environ. Pollut. 2008, 152, 330–341. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, C.B.; Jin, Z.X. The distribution and phytoavailability of heavy metal fractions in rhizosphere soils of Paulowniu fortunei (seem) Hems near a Pb/Zn smelter in Guangdong, PR China. Geoderma 2009, 148, 299–306. [Google Scholar] [CrossRef]
- Hseu, Z.Y. Concentration and distribution of chromium and nickel fractions along a serpentinitic toposequence. Soil Sci. 2006, 171, 341–353. [Google Scholar] [CrossRef]
- Kumpiene, J.; Lagerkvist, A.; Maurice, C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—A review. Waste Manag. 2008, 28, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Riesen, O.; Feller, U. Redistribution of nickel, cobalt, manganese, zinc, and cadmium via the phloem in young and maturing wheat. J. Plant Nutr. 2005, 28, 421–430. [Google Scholar] [CrossRef]
- Li, J.; Naidu, R. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine. J. Environ. Sci. 2005, 17, 881–885. [Google Scholar]
- Remon, E.; Bouchardon, J.L.; Cornier, B.; Guy, B.; Leclerc, J.C.; Faure, O. Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: Implications in risk assessment and site restoration. Environ. Pollut. 2005, 137, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Shu, W.; Zhang, Z.; Lan, C.; Wong, M. Evaluation of major constraints to revegetation of lead/zinc mine tailings using bioassay techniques. Chemosphere 2002, 47, 1103–1111. [Google Scholar] [CrossRef] [Green Version]
- Chlopecka, A. Assessment of form of Cd, Zn and Pb in contaminated calcareous and gleyed soils in Southwest Poland. Sci. Total Environ. 1996, 188, 253–262. [Google Scholar] [CrossRef]
- Anju, M.; Banerjee, D.K. Comparison of two sequential extraction procedures for heavy metal partitioning in mine tailings. Chemosphere 2010, 78, 1393–1402. [Google Scholar] [CrossRef] [PubMed]
- Filgueiras, A.; Lavilla, I.; Bendicho, C. Evaluation of distribution, mobility and binding behaviour of potentially toxic metals in surficial sediments of Louro River (Galicia, Spain) using chemometric analysis: A case study. Sci. Total Environ. 2004, 330, 115–129. [Google Scholar] [CrossRef] [PubMed]
- Bradl, H.B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Int. Sci. 2004, 277, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.H.; Shan, X.Q.; Zhang, S.; Wen, B. A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley. Environ. Pollut. 2005, 137, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Huang, B.X.; Shan, X.Q. Determination of low molecular weight organic acids in soil, plants, and water by capillary zone electrophoresis. Anal. Bioanal. Chem. 2003, 375, 775–780. [Google Scholar] [CrossRef] [PubMed]
- McGowen, S.L.; Basta, N.T.; Brown, G.O. Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil. J. Environ. Qual. 2001, 30, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Chaignon, V.; Sanchez-Neira, I.; Herrmann, P.; Jaillard, B.; Hinsinger, P. Copper bioavailability and extractability as related to chemical properties of contaminated soils from a vine-growing area. Environ. Pollut. 2003, 123, 229–238. [Google Scholar] [CrossRef]
- Michaud, A.M.; Bravin, M.N.; Galleguillos, M.; Hinsinger, P. Copper uptake and phytotoxicity as assessed in situ for durum wheat (Triticum turgidum durum L.) cultivated in Cu-contaminated, former vineyard soils. Plant Soil 2007, 298, 99–111. [Google Scholar] [CrossRef]
- Wang, W.S.; Shan, X.Q.; Wen, B.; Zhang, S.Z. A method for predicting bioavailability of rare earth elements in soils to maize. Environ. Toxicol. Chem. 2004, 23, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Hall, J. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 2002, 53, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, Y.; Murray, P.; Hendershot, W.H. Trace metal speciation and bioavailability in urban soils. Environ. Pollut. 2000, 107, 137–144. [Google Scholar] [CrossRef]
- Küpper, H.; Zhao, F.J.; McGrath, S.P. Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Phys. 1999, 119, 305–312. [Google Scholar] [CrossRef]
- Wang, G.; Su, M.Y.; Chen, Y.H.; Lin, F.F.; Luo, D.; Gao, S.F. Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China. Environ. Pollut. 2006, 144, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.J.; Zhu, Y.G.; Zhai, R.H.; Chen, D.Y.; Huang, Y.Z.; Qiu, Y.; Liang, J.Z. Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environ. Int. 2004, 30, 785–791. [Google Scholar] [CrossRef] [PubMed]
- McGrath, S.; Shen, Z.; Zhao, F. Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant Soil 1997, 188, 153–159. [Google Scholar] [CrossRef]
- Al Chami, Z.; Cavoski, I.; Mondelli, D.; Miano, T. Effect of compost and manure amendments on zinc soil speciation, plant content, and translocation in an artificially contaminated soil. Environ. Sci. Pollut. Res. 2013, 20, 4766–4776. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Ali, S.; Zhang, H.; Ouyang, Y.; Qiu, B.; Wu, F.; Zhang, G. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ. Pollut. 2011, 159, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Kinraide, T.B.; Pedler, J.F.; Parker, D.R. Relative effectiveness of calcium and magnesium in the alleviation of rhizotoxicity in wheat induced by copper, zinc, aluminum, sodium, and low pH. Plant Soil 2004, 259, 201–208. [Google Scholar] [CrossRef]
- Wang, Y.M.; Kinraide, T.B.; Wang, P.; Zhou, D.M.; Hao, X.Z. Modeling rhizotoxicity and uptake of Zn and Co singly and in binary mixture in wheat in terms of the cell membrane surface electrical potential. Environ. Sci. Technol. 2013, 47, 2831–2838. [Google Scholar] [CrossRef] [PubMed]
- Tsang, D.C.; Zhou, F.; Zhang, W.; Qiu, R. Stabilization of cationic and anionic metal species in contaminated soils using sludge-derived biochar. Chemosphere 2016, 149, 263–271. [Google Scholar]
Type | pH | OM (%) | Particle Size Distribution (%) | Major Element (%) | |||||
---|---|---|---|---|---|---|---|---|---|
Clay (<2 μm) | Silt (2–50 μm) | Sand (>50 μm) | Al | Fe | Ca | Mg | |||
S | 7.38 ± 0.04a | 2.08 ± 0.04c | 1.19 ± 0.29a | 18.2 ± 1.85a | 80.6 ± 2.14a | 0.97 ± 0.18a | 4.88 ± 0.34a | 0.71 ± 1.01a | 23.1 ± 3.02b |
O | 7.72 ± 0.10b | 1.18 ± 0.06b | 1.15 ± 0.22a | 13.6 ± 3.06a | 85.3 ± 3.27a | 0.27 ± 0.04a | 5.61 ± 0.78a | 0.93 ± 0.40a | 24.9 ± 1.18b |
M | 7.65 ± 0.12b | 0.88 ± 0.10a | 1.08 ± 0.19a | 15.7 ± 3.15a | 83.3 ± 3.34a | 4.15 ± 0.79b | 15.6 ± 3.10b | 8.29 ± 1.21b | 5.72 ± 0.52a |
Type | Cr | Mn | Ni | Cu | Zn |
---|---|---|---|---|---|
Serpentine | |||||
Root | 131.2 ± 15.9a | 233.8 ± 9.18c | 254.5 ± 22.0a | 30.0 ±2.77b | 26.3 ± 4.01c |
Shoot | 32.8 ± 4.21b | 86.7 ± 4.87b | 140.7 ±12.4a | 40.7 ± 6.22ab | 32.1 ± 2.98b |
Olivine | |||||
Root | 112.2 ± 8.86b | 271.4 ± 15.6b | 211.8 ± 18.0b | 46.2 ± 7.50a | 47.4 ± 7.58a |
Shoot | 41.5 ± 3.46a | 98.6 ± 14.5a | 89.0 ± 6.51b | 51.2 ± 7.14a | 49.2 ± 5.62a |
Magnetite | |||||
Root | 85.0 ± 6.99c | 328.9 ± 15.0a | 43.0 ± 4.61c | 13.8 ± 1.55c | 33.3 ± 4.34b |
Shoot | 22.4 ± 2.90c | 57.2 ± 5.04c | 23.8 ± 2.10c | 14.1 ± 1.27c | 28.0 ± 5.01b |
Type | Cr | Mn | Ni | Cu | Zn |
---|---|---|---|---|---|
Serpentine | |||||
TF | 0.150 ± 0.020cC | 0.189 ± 0.004cC | 0.196 ± 0.012cC | 1.145 ± 0.130aA | 0.762 ± 0.105bA |
BF | 0.037 ± 0.005dC | 0.070 ± 0.001cB | 0.108 ± 0.009cB | 1.551 ± 0.264aA | 0.938 ± 0.164bA |
Olivine | |||||
TF | 0.202 ± 0.010cB | 0.353 ± 0.016bA | 0.283 ± 0.011cB | 0.686 ± 0.071aB | 0.373 ± 0.009bB |
BF | 0.075 ± 0.004dB | 0.128 ± 0.017cA | 0.119 ± 0.008cB | 0.763 ± 0.087aB | 0.397 ± 0.097bB |
Magnetite | |||||
TF | 0.332 ± 0.046bA | 0.237 ± 0.009cB | 0.870 ± 0.203aA | 0.247 ± 0.037cC | 0.388 ± 0.015bB |
BF | 0.087 ± 0.011cA | 0.041 ± 0.003cB | 0.478 ± 0.099aA | 0.253 ± 0.049bC | 0.335 ± 0.102bB |
Parameter | TF-Cr | TF-Mn | TF-Ni | TF-Cu | TF-Zn | BF-Cr | BF-Mn | BF-Ni | BF-Cu | BF-Zn |
---|---|---|---|---|---|---|---|---|---|---|
pH | 0.540 | −0.342 | 0.270 | −0.502 | −0.073 | 0.715 * | 0.314 | 0.310 | −0.699 * | −0.668 * |
OM | −0.343 | 0.716 * | −0.664 | 0.707 * | 0.492 | −0.956 ** | 0.025 | −0.716 * | 0.951 ** | 0.929 ** |
Clay | −0.127 | 0.124 | −0.170 | 0.256 | 0.746 * | −0.292 | −0.026 | −0.250 | 0.304 | 0.502 |
Silt | −0.688 * | −0.037 | −0.003 | 0.572 | 0.756 * | −0.499 | −0.527 | −0.097 | 0.453 | 0.629 |
Sand | 0.663 | 0.027 | 0.014 | −0.560 | −0.767 * | 0.493 | 0.503 | 0.109 | −0.451 | −0.631 |
Al | −0.460 | −0.922 ** | 0.968 ** | −0.491 | −0.603 | 0.613 | −0.781 * | 0.963 ** | −0.668 * | −0.584 |
Fe | −0.288 | −0.950 ** | 0.974 ** | −0.605 | −0.557 | 0.792 * | −0.650 | 0.962 ** | −0.782 * | −0.685 * |
Ca | −0.342 | −0.949 ** | 0.950 ** | −0.529 | −0.536 | 0.707 * | −0.666 | 0.973 ** | −0.807 ** | −0.724 * |
Mg | 0.426 | 0.953 ** | −0.967 ** | 0.506 | 0.541 | −0.675 * | 0.740 * | −0.976 ** | 0.754 * | 0.667 * |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Wang, Y.; Tang, D.; Zhang, X.; Zhang, L.; Zhang, H. Distribution and Phytoavailability of Potentially Toxic Metals in Different Fe/Mg Mine Tailings. Int. J. Environ. Res. Public Health 2018, 15, 2475. https://doi.org/10.3390/ijerph15112475
Yuan X, Wang Y, Tang D, Zhang X, Zhang L, Zhang H. Distribution and Phytoavailability of Potentially Toxic Metals in Different Fe/Mg Mine Tailings. International Journal of Environmental Research and Public Health. 2018; 15(11):2475. https://doi.org/10.3390/ijerph15112475
Chicago/Turabian StyleYuan, Xuyin, Yimin Wang, Doudou Tang, Xiaohui Zhang, Lei Zhang, and Haiyan Zhang. 2018. "Distribution and Phytoavailability of Potentially Toxic Metals in Different Fe/Mg Mine Tailings" International Journal of Environmental Research and Public Health 15, no. 11: 2475. https://doi.org/10.3390/ijerph15112475
APA StyleYuan, X., Wang, Y., Tang, D., Zhang, X., Zhang, L., & Zhang, H. (2018). Distribution and Phytoavailability of Potentially Toxic Metals in Different Fe/Mg Mine Tailings. International Journal of Environmental Research and Public Health, 15(11), 2475. https://doi.org/10.3390/ijerph15112475