Degradation of Triclosan and Carbamazepine in Two Agricultural and Garden Soils with Different Textures Amended with Composted Sewage Sludge
Abstract
:1. Introduction
2. Methods and Materials
2.1. Soils and CSS
2.2. Incubation Experiments
2.3. Laboratory Analysis
2.3.1. Physicochemical Analysis
2.3.2. PPCPs Determination
2.3.3. Soil Enzyme Determination
2.4. Data Analysis
3. Results and Discussion
3.1. Physicochemical Properties
3.2. Degradation of TCS and CBZ
3.3. The Relationship between Soil Physicochemical Properties and Half-Life of TCS and CBZ
3.4. Correlations between Soil Enzymes and Ct/C0 of TCS and CBZ
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Qin, Q.; Chen, X.; Zhuang, J. The surface-pore integrated effect of soil organic matter on retention and transport of pharmaceuticals and personal care products in soils. Sci. Total Environ. 2017, 599–600, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J. The fate and impact of pharmaceuticals and personal care products in agricultural soils irrigated with reclaimed water. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1379–1408. [Google Scholar]
- Ben, E.M.; Tarchitzky, J.; Chen, Y.; Shenker, M.; Chefetz, B. Composted biosolids and treated wastewater as sources of pharmaceuticals and personal care products for plant uptake: A case study with carbamazepine. Environ. Pollut. 2018, 232, 164–172. [Google Scholar]
- McClellan, K.; Halden, R.U. Pharmaceuticals and personal care products in archived U.S. Biosolids from the 2001 EPA national sewage sludge survey. Water Res. 2010, 44, 658–668. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dodgen, L.; Ye, Q.; Gan, J. Degradation kinetics and metabolites of carbamazepine in soil. Environ. Sci. Technol. 2013, 47, 3678–3684. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Dodgen, L.K.; Conkle, J.L.; Gan, J. Plant uptake of pharmaceutical and personal care products from recycled water and biosolids: A review. Sci. Total Environ. 2015, 536, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wu, L.; Chang, A.C. Degradation and adsorption of selected pharmaceuticals and personal care products (PPCPs) in agricultural soils. Chemosphere 2009, 77, 1299–1305. [Google Scholar] [CrossRef] [PubMed]
- Borgman, O.; Chefetz, B. Combined effects of biosolids application and irrigation with reclaimed wastewater on transport of pharmaceutical compounds in arable soils. Water Res. 2013, 47, 3431–3443. [Google Scholar] [CrossRef] [PubMed]
- Grossberger, A.; Hadar, Y.; Borch, T.; Chefetz, B. Biodegradability of pharmaceutical compounds in agricultural soils irrigated with treated wastewater. Environ. Pollut. 2014, 185, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Sanganyado, E.; Ye, Q.; Gan, J. Meta-analysis of biosolid effects on persistence of triclosan and triclocarban in soil. Environ. Pollut. 2016, 210, 137–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z. Introducing relative potency quotient approach associated with probabilistic cumulative risk assessment to derive soil standards for pesticide mixtures. Environ. Pollut. 2018, 242, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, Z.; Jennings, A. A standard-value-based comparison tool to analyze U.S. Soil regulations for the top 100 concerned pollutants. Sci. Total Environ. 2019, 647, 663–675. [Google Scholar] [CrossRef] [PubMed]
- Yueh, M.-F.; Taniguchi, K.; Chen, S.; Evans, R.M.; Hammock, B.D.; Karin, M.; Tukey, R.H. The commonly used antimicrobial additive triclosan is a liver tumor promoter. Proc. Natl. Acad. Sci. USA 2014, 111, 17200–17205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, J.W.; Xia, K. Fate of triclosan and triclocarban in soil columns with and without biosolids surface application. Environ. Toxicol. Chem. 2012, 31, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Agyin-Birikorang, S.; Miller, M.; O’Connor, G.A. Retention-release characteristics of triclocarban and triclosan in biosolids, soils, and biosolids-amended soils. Environ. Toxicol. Chem. 2010, 29, 1925–1933. [Google Scholar] [CrossRef] [PubMed]
- Anger, C.T.; Sueper, C.; Blumentritt, D.J.; McNeill, K.; Engstrom, D.R.; Arnold, W.A. Quantification of triclosan, chlorinated triclosan derivatives, and their dioxin photoproducts in lacustrine sediment cores. Environ. Sci. Technol. 2013, 47, 1833–1843. [Google Scholar] [CrossRef] [PubMed]
- Dinwiddie, M.; Terry, P.; Chen, J. Recent evidence regarding triclosan and cancer risk. Int. J. Environ. Res. Public Health 2014, 11, 2209–2217. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.; Genco, M.C.; Megrelis, L.; Ruderman, J.V. Effects of bisphenol A and triclocarban on brain-specific expression of aromatase in early zebrafish embryos. Proc. Natl. Acad. Sci. USA 2011, 108, 17732–17737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Geißen, S.-U.; Gal, C. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 2008, 73, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
- Orange Water and Sewer Authority Wastewater Biosolids Recycling. Available online: https://www.owasa.org/Data/Sites/1/media/about/topic%20summaries/biosolids-recycling---june-2018.pdf (accessed on 26 October 2018).
- Singh, R.P.; Agrawal, M. Potential benefits and risks of land application of sewage sludge. Waste Manag. 2008, 28, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, V.; de Araujo, A.S.F.; Vaish, B.; Bartelt-Hunt, S.; Singh, P.; Singh, R.P. Biological response of using municipal solid waste compost in agriculture as fertilizer supplement. Rev. Environ. Sci. Bio/Technol. 2016, 15, 677–696. [Google Scholar] [CrossRef]
- Kodešová, R.; Kočárek, M.; Klement, A.; Golovko, O.; Koba, O.; Fér, M.; Nikodem, A.; Vondráčková, L.; Jakšík, O.; Grabic, R. An analysis of the dissipation of pharmaceuticals under thirteen different soil conditions. Sci. Total Environ. 2016, 544, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, S.C.; Boxall, A.B.A. Factors affecting the degradation of pharmaceuticals in agricultural soils. Environ. Toxicol. Chem. 2009, 28, 2546–2554. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.F.; Williams, C.F.; Adamsen, F.J. Sorption–desorption of carbamazepine from irrigated soils. J. Environ. Qual. 2006, 35, 1779–1783. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Spongberg, A.L.; Witter, J.D. Adsorption and degradation of triclosan and triclocarban in soils and biosolids-amended soils. J. Agric. Food Chem. 2009, 57, 4900–4905. [Google Scholar] [CrossRef] [PubMed]
- Al-Rajab, A.J.; Sabourin, L.; Scott, A.; Lapen, D.R.; Topp, E. Impact of biosolids on the persistence and dissipation pathways of triclosan and triclocarban in an agricultural soil. Sci. Total Environ. 2009, 407, 5978–5985. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Pan, X.; Chen, L.K.; Liu, W.; Christie, P.; Luo, Y.; Wu, L. Effects of different concentrations and application frequencies of oxytetracycline on soil enzyme activities and microbial community diversity. Eur. J. Soil Biol. 2016, 76, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Wang, D.; Dong, B.; Tang, F.; Wang, B.; Fang, H.; Yu, Y. Dissipation of carbendazim and chloramphenicol alone and in combination and their effects on soil fungal: Bacterial ratios and soil enzyme activities. Chemosphere 2011, 84, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Bao, S. Soil Agricutral Chemical Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2013. (In Chinese) [Google Scholar]
- International Organization for Standardization. Particle Size Analysis—Laser Diffraction Methods (ISO 13320:2009); International Organization for Standardization: Geneva, Switzerland, 2009. [Google Scholar]
- Yang, K.; Zhang, T.; Shao, Y.; Tian, C.; Cattle, S.; Zhu, Y.; Song, J. Fractionation, bioaccessibility, and risk assessment of heavy metals in the soil of an urban recreational area amended with composted sewage sludge. Int. J. Environ. Res. Public Health 2018, 15, 613. [Google Scholar] [CrossRef] [PubMed]
- Serra-Wittling, C.; Houot, S.; Barriuso, E. Soil enzymatic response to addition of municipal solid-waste compost. Biol. Fertil. Soils 1995, 20, 226–236. [Google Scholar] [CrossRef]
- Lu, R. Soil Agricultural Chemical Analysis Method; China’s Agricultural Science and Technology Press: Beijing, China, 1999. [Google Scholar]
- Guan, S.; Zhang, D.; Zhang, Z. Soil Enzyme and Its Research Methods; China Agriculture Press: Beijing, China, 1986. (In Chinese) [Google Scholar]
- Durán-Álvarez, J.C.; Prado, B.; González, D.; Sánchez, Y.; Jiménez-Cisneros, B. Environmental fate of naproxen, carbamazepine and triclosan in wastewater, surface water and wastewater irrigated soil—Results of laboratory scale experiments. Sci. Total Environ. 2015, 538, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Al-Rajab, A.J.; Sabourin, L.; Lapen, D.R.; Topp, E. Dissipation of triclosan, triclocarban, carbamazepine and naproxen in agricultural soil following surface or sub-surface application of dewatered municipal biosolids. Sci. Total Environ. 2015, 512–513, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Dalkmann, P.; Siebe, C.; Amelung, W.; Schloter, M.; Siemens, J. Does long-term irrigation with untreated wastewater accelerate the dissipation of pharmaceuticals in soil? Environ. Sci. Technol. 2014, 48, 4963–4970. [Google Scholar] [CrossRef] [PubMed]
- Walters, E.; McClellan, K.; Halden, R.U. Occurrence and loss over three years of 72 pharmaceuticals and personal care products from biosolids–soil mixtures in outdoor mesocosms. Water Res. 2010, 44, 6011–6020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaultier, J.; Farenhorst, A.; Cathcart, J.; Goddard, T. Degradation of [carboxyl-14C] 2,4-D and [ring-u-14C] 2,4-D in 114 agricultural soils as affected by soil organic carbon content. Soil Biol. Biochem. 2008, 40, 217–227. [Google Scholar] [CrossRef]
- Alvey, S.; Crowley, D. Influence of organic amendments on biodegradation of atrazine as a nitrogen source. J. Environ. Qual. 1995, 24, 1156–1162. [Google Scholar] [CrossRef]
- Xu, J.; Chen, W.; Wu, L.; Chang, A.C. Adsorption and degradation of ketoprofen in soils. J. Environ. Qual. 2009, 38, 1177–1182. [Google Scholar] [CrossRef] [PubMed]
- Foolad, M.; Hu, J.; Tran, N.H.; Ong, S.L. Sorption and biodegradation characteristics of the selected pharmaceuticals and personal care products onto tropical soil. Water Sci. Technol. 2015, 73, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Kodešová, R.; Grabic, R.; Kočárek, M.; Klement, A.; Golovko, O.; Fér, M.; Nikodem, A.; Jakšík, O. Pharmaceuticals’ sorptions relative to properties of thirteen different soils. Sci. Total Environ. 2015, 511, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Pietri, J.C.A.; Brookes, P.C. Relationships between soil pH and microbial properties in a UK arable soil. Soil Biol. Biochem. 2008, 40, 1856–1861. [Google Scholar] [CrossRef]
- Dick, W.A.; Cheng, L.; Wang, P. Soil acid and alkaline phosphatase activity as pH adjustment indicators. Soil Biol. Biochem. 2000, 32, 1915–1919. [Google Scholar] [CrossRef]
- Pan, M.; Chu, L.M. Adsorption and degradation of five selected antibiotics in agricultural soil. Sci. Total Environ. 2016, 545–546, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Revitt, D.M.; Balogh, T.; Jones, H. Sorption behaviours and transport potentials for selected pharmaceuticals and triclosan in two sterilised soils. J. Soils Sediments 2015, 15, 594–606. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, Y.; Wu, L. Sorption and degradation of pharmaceuticals and personal care products (PPCPs) in soils. Environ. Sci. Pollut. Res. 2013, 20, 4261–4267. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-L.; Lin, S.-S.; Dai, C.-M.; Shi, L.; Zhou, X.-F. Sorption–desorption and transport of trimethoprim and sulfonamide antibiotics in agricultural soil: Effect of soil type, dissolved organic matter, and pH. Environ. Sci. Pollut. Res. 2014, 21, 5827–5835. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, P.; Sarmah, A.K.; Manley-Harris, M. Co-contaminants and factors affecting the sorption behaviour of two sulfonamides in pasture soils. Environ. Pollut. 2013, 180, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-Diva, R.A.; Vasudevan, D.; MacKay, A.A. Trends in soil sorption coefficients within common antimicrobial families. Chemosphere 2010, 79, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Das, B.; Lee, L.; Rao, P.; Hultgren, R. Sorption and degradation of steroid hormones in soils during transport: Column studies and model evaluation. Environ. Sci. Technol. 2004, 38, 1460–1470. [Google Scholar] [CrossRef] [PubMed]
- Bååth, E. Effects of heavy metals in soil on microbial processes and populations (a review). Water Air Soil Pollut. 1989, 47, 335–379. [Google Scholar] [CrossRef]
- Mudhoo, A.; Kumar, S. Effects of heavy metals as stress factors on anaerobic digestion processes and biogas production from biomass. Int. J. Environ. Sci. Technol. 2013, 10, 1383–1398. [Google Scholar] [CrossRef] [Green Version]
Soil Types | pH | TOC a (g/kg) | CEC b (cmol(+)/kg) | EC c (μs/cm) | Clay (%) | Slit (%) | Sand (%) |
---|---|---|---|---|---|---|---|
A0 | 8.16 | 10.63 | 6.37 | 345 | 4.7 | 17.3 | 78.0 |
A5 | 7.87 | 14.70 | 7.45 | 674 | 5.6 | 20.2 | 74.2 |
A10 | 7.83 | 19.27 | 9.69 | 928 | 5.7 | 22.2 | 72.1 |
A25 | 7.73 | 26.97 | 11.12 | 1544 | 5.4 | 24.7 | 69.8 |
G0 | 8.41 | 3.72 | 17.41 | 157 | 12.2 | 34.7 | 53.1 |
G5 | 8.05 | 9.73 | 23.24 | 490 | 11.5 | 33.6 | 54.9 |
G10 | 7.95 | 15.10 | 18.42 | 744 | 11.7 | 34.6 | 53.7 |
G25 | 7.75 | 32.23 | 19.27 | 1424 | 10.2 | 34.8 | 55.0 |
CSS | 7.50 | 148.67 | 45.4 | 5 373 | 6.0 | 32.5 | 61.5 |
Soil + Treatments | CSS Addition Rate (%) | TCS | CBZ | ||
---|---|---|---|---|---|
k a (1/d) | t1/2 (d) | k (1/d) | t1/2 (d) | ||
A0 | Control | 0.1429 | 4.85 | 0.0013 | 533.19 |
A5 | 5 | 0.0381 | 18.19 | 0.0009 | 770.16 |
A10 | 10 | 0.0268 | 25.86 | 0.0006 | 1155.24 |
A25 | 25 | 0.0125 | 55.45 | 0.0005 | 1386.29 |
G0 | Control | 0.1873 | 3.70 | 0.0017 | 407.73 |
G5 | 5 | 0.0357 | 19.42 | 0.0007 | 990.21 |
G10 | 10 | 0.0196 | 35.36 | 0.0013 | 533.19 |
G25 | 25 | 0.0098 | 70.73 | 0.0004 | 1732.87 |
Ct/C0 of TCS | Urease | Catalase | Dehydrogenase | Alkaline Phosphatase |
A0 | 0.792 | −0.105 | 0.695 | −0.762 |
A5 | 0.352 | −0.335 | −0.264 | −0.894 |
A10 | 0.721 | −0.588 | −0.340 | −0.701 |
A25 | 0.580 | −0.396 | 0.077 | −0.778 |
G0 | −0.709 | −0.626 | −0.213 | 0.050 |
G5 | −0.842 | −0.676 | −0.185 | −0.513 |
G10 | −0.983 ** | −0.568 | −0.410 | −0.744 |
G25 | −0.914 * | −0.654 | −0.211 | −0.936 * |
Ct/C0 of CBZ | Urease | Catalase | Dehydrogenase | Alkaline phosphatase |
A0 | 0.828 | −0.339 | 0.532 | −0.926 * |
A5 | 0.160 | −0.655 | −0.130 | −0.755 |
A10 | 0.856 | −0.680 | −0.072 | −0.620 |
A25 | 0.830 | −0.679 | −0.044 | −0.508 |
G0 | −0.601 | −0.761 | −0.006 | −0.296 |
G5 | −0.870 | −0.646 | 0.356 | −0.258 |
G10 | −0.921 * | −0.688 | −0.160 | −0.657 |
G25 | −0.684 | −0.809 | −0.172 | −0.473 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Y.; Yang, K.; Jia, R.; Tian, C.; Zhu, Y. Degradation of Triclosan and Carbamazepine in Two Agricultural and Garden Soils with Different Textures Amended with Composted Sewage Sludge. Int. J. Environ. Res. Public Health 2018, 15, 2557. https://doi.org/10.3390/ijerph15112557
Shao Y, Yang K, Jia R, Tian C, Zhu Y. Degradation of Triclosan and Carbamazepine in Two Agricultural and Garden Soils with Different Textures Amended with Composted Sewage Sludge. International Journal of Environmental Research and Public Health. 2018; 15(11):2557. https://doi.org/10.3390/ijerph15112557
Chicago/Turabian StyleShao, Yanqiu, Kai Yang, Rongchang Jia, Chao Tian, and Ying Zhu. 2018. "Degradation of Triclosan and Carbamazepine in Two Agricultural and Garden Soils with Different Textures Amended with Composted Sewage Sludge" International Journal of Environmental Research and Public Health 15, no. 11: 2557. https://doi.org/10.3390/ijerph15112557
APA StyleShao, Y., Yang, K., Jia, R., Tian, C., & Zhu, Y. (2018). Degradation of Triclosan and Carbamazepine in Two Agricultural and Garden Soils with Different Textures Amended with Composted Sewage Sludge. International Journal of Environmental Research and Public Health, 15(11), 2557. https://doi.org/10.3390/ijerph15112557