Accumulation of As, Cd, and Pb in Sixteen Wheat Cultivars Grown in Contaminated Soils and Associated Health Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Wheat Cultivars
2.3. Field Experiments
2.4. Sample Collection
2.5. Sample Preparation and Chemical Analysis
2.6. Quality Control and Quality Assurance
2.7. Data Analysis
2.7.1. Bioaccumulation Factors (BCFs)
2.7.2. Health Risk Assessment
2.7.3. Statistical Analysis
3. Results and Discussion
3.1. Soil Properties
3.2. Heavy Metal Concentrations in Wheat Tissues
3.3. Comparison of As, Cd, and Pb Concentrations in Wheat Grains with the Maximum Permitted Concentration (MPC)(GB2762-2017 China)
3.4. Correlation of Grain As, Cd, and Pb Concentrations and Soil Properties
3.5. Bioaccumulation Factors (BCFs) in Different Wheat Cultivars
3.6. Health Risk Assessment of As, Cd, and Pb via Wheat Consumption
4. Conclusions
Author Contributions
Funding
Conflicts of interest
References
- Wei, B.G.; Yang, L.S. A review of heavy metal contaminations in urban soils, urban road dusts, and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Wade, M.J.; Davis, B.K.; Carlisle, J.S.; Klein, A.K.; Valoppi, L.M. Environmental transformation of toxic metals. Occup. Med. 1993, 8, 574–601. [Google Scholar] [PubMed]
- Gu, J.G.; Zhou, Q.X.; Wang, X. Reused path of heavy metal pollution in soils and its research advance. J. Basic Sci. Eng. 2003, 11, 143–151. (In Chinese) [Google Scholar]
- Wu, S.H.; Shi, Y.X.; Zhou, S.L.; Wang, C.H.; Chen, H. Modeling and mapping of critical loads for heavy metals in Kunshan soil. Sci. Total Environ. 2016, 569–570, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.R.; Ma, J.; Wu, F.Y.; Ju, T.N.; Gong, Y.W.; Zhang, Y.Y. Mass balance-based inventory of heavy metals inputs to and outputs from agricultural soils in Zhejiang Province, China. Sci. Total Environ. 2019, 649, 1269–1280. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Tie, B.Q.; Song, Z.G.; Liao, B.H.; Lepo, J.E.; Huang, Y.Z. Heavy metal pollution and potential health risk assessment of white rice around mine areas in Hunan Province, China. Food Secur. 2015, 7, 45–54. [Google Scholar] [CrossRef]
- ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological Profile for Arsenic; ATSDR: Atlanta, GA, USA, 2007.
- Chou, H.Y.; Hsueh, Y.M.; Liaw, K.F.; Horng, S.F.; Chiang, M.H.; Pu, Y.S.; Lin, J.S.; Huang, C.H.; Chen, C.J. Incidence of internal cancers and ingested inorganic arsenic: A seven-year fallow-up study in Taiwan. Cancer Res. 1995, 55, 1296–1300. [Google Scholar]
- Melak, C.; Ferreccio, D.; Kalman, R.; Parra, R.; Acevedo, J.; Perez, L.; Cortes, S.; Smith, A.H.; Yuan, Y.; Liaw, J.; et al. Arsenic methylation and lung and bladder cancer in a case-control study in Northern Chile. Toxicol. Appl. Pharm. 2014, 274, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Klaassen, C.D.; Liu, J.; Diwan, B.A. Metallothionein protection of cadmium toxicity. Toxicol. Appl. Pharm. 2009, 238, 215–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Türkdogan, M.K.; Kilicel, F.; Kara, K.; Tuncer, I.; Uygan, I. Heavy metals in soil, vegetables and fruit in the endemic upper gastrointestinal cancer region of Turkey. Environ. Toxicol. Phar. 2003, 13, 175–179. [Google Scholar] [CrossRef]
- Waisberg, M.; Joseph, P.; Hale, B.; Beyersmann, D. Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 2003, 192, 95–117. [Google Scholar] [CrossRef]
- Navas-Acien, A.; Guallar, E.; Silbergeld, E.K.; Rothenberg, S.J. Lead exposure and cardiovascular disease: A systematic review. Environ. Health Persp. 2007, 115, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Ekong, E.B.; Jaar, B.G.; Weaver, V.M. Lead-related nephrotoxicity: A review of the epidemiologic evidence. Kidney Int. 2006, 70, 2074–2084. [Google Scholar] [CrossRef] [PubMed]
- Dawson, D. Study into origins of collectivist and individualist psychology provides food for thought. Rice Wheat. 2015, 4, 36–41. [Google Scholar]
- Harmankaya, M.; Ozcan, M.M.; Gezgin, S. Variation of heavy metal and micro and macro element concentrations of bread and durum wheats and their relationship in grain of Turkish. Environ. Monit. Assess. 2012, 184, 5511–5521. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.W.; Nan, Z.R.; Wang, S.L.; Zhao, Z.J. Accumulation and distribution of cadmium and leasd in wheat (Triticum aestivum L.) grown in contaminated soils from the Oasis, North-West China. J. Sci. Food Agric. 2011, 91, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Cheng, M.M.; Li, R. Environmental effects of applying heavy metal-containing municipal sewage sluge on wheat-rice rotation system on different types of soil. Chin. J. Appl. Ecol. 2012, 23, 376–382. [Google Scholar]
- Nie, S.W.; Huang, S.M.; Zhang, S.Q. Effects of varieties heavy metals stress on wheat grain yields of tow genotypes and the main ingredients. J. Agro Environ. Sci. 2012, 31, 455–463. [Google Scholar]
- Chinse Soil Taxonomy Research Group. Keys to Chinese Soil Taxonomy, 3rd ed.; University of Science and Technology China Press: Hefei, China, 2001. [Google Scholar]
- Li, L.; Ma, C.; Xing, W.; Xiang, G.; Yan, Q. Changes of lead levels and the physicochemical properties of soils in the vicinity of a lead smelter in the North China Plain. Acta Agric. Boreali-Occident. Sin. 2012, 21, 186–194. [Google Scholar]
- Ran, Y.; Xing, W.; Liang, S.; Xiang, G.; Li, L. Heavy metal availability in soil near a lead smelter in the North China Plain. Asian J. Ecotoxicol. 2010, 5, 592–598. [Google Scholar]
- Lu, R.K. Analytical Methods of Agricultural Chemistry in Soil; China Agricultural Scientech Press: Beijing, China, 1999; pp. 45–46. (In Chinese) [Google Scholar]
- USEPA (Unite States Environmental Protection Agency). Method 3050B. In Acid Digestion of Sediments, Sludges and Soil; USEPA: Washington, DC, USA, 1996. [Google Scholar]
- Ma, J.; Mi, Y.H.; Li, Q.W.; Chen, L.; Du, L.J.; He, L.Z.; Lei, M. Reduction, methylation, and translocation of arsenic in Panax notogineseng grown under field conditions in arsenic-contaminated soils. Sci. Total Environ. 2016, 550, 893–899. [Google Scholar] [CrossRef] [PubMed]
- USEPA (Unite States Environmental Protection Agency). Risk-Based Concentration Table, Region III; USEPA: Washington, DC, USA, 1996.
- USEPA (Unite States Environmental Protection Agency). Risk-Based Concentration Table, Philadelphia PA; USEPA: Washington, DC, USA, 2000.
- Zhai, F.Y.; Yang, X.G. A Survey on the Chinese National Health and Nutrition II: The National Diet and Nutrition in 2002; Peoples Medial Publishing House: Beijing, China, 2006; pp. 145–146. [Google Scholar]
- Yang, X.G.; Zhai, F.Y. A Survey on the Chinese National Health and Nutrient III: The Resident Constitution and Nutrition in 2002; Peoples Medial Publishing House: Beijing, China, 2006; pp. 55–58. [Google Scholar]
- USEPA (Unite States Environmental Protection Agency). Regional Screening Levels (RSLs). Available online: https://www.epa.gov/risk/regional-screening-levels-rsls (accessed on 6 November 2018).
- JECFA (Joint FAO/WHO Expert Committee on Food Additives). Summary and Conclusions of the 61st Meeting of the Joint FAO/WHO Expert Committee on Food Additives; JECFA: Rome, Italy, 2003. [Google Scholar]
- USEPA (Unite States Environmental Protection Agency). Risk Assessment Guidance for Superfund. Volume I: Human Health Valuation Manual (Part A); Office of Emergency and Remedial Response: Washington, DC, USA, 1989. [Google Scholar]
- MEE (Ministry of Ecological Environment). Environmental Quality of Soils: Pollution Risk and Control Standards of Agricultural Land Soil (GB15618-2018); MEE: Beijing, China, 2018. [Google Scholar]
- Zhu, X.H.; Wu, X.N.; Ru, G.X.; Zhang, F.W.; Fan, Y.M.; Liu, G.Q. Assessment and source analysis of heavy metal pollution in farmland soil around a plumbum plant in Jiyuan. J. Henan Agri. Univ. 2018, 52, 459–463. (In Chinese) [Google Scholar]
- Qu, J.H.; Liang, Q.; Hu, Y.N.; Yu, F.R.; Li, H.H. Spatial variability and pollution evaluation of heavy metals in the soil in a Lead and Zinc industry district in Jiyuan. J. North China Univ. Water Res. Electr. Power 2016, 37, 47–51. [Google Scholar]
- Zang, F.; Wang, S.L.; Nan, Z.R.; Ma, J.M.; Zhang, Q.; Chen, Y.Z.; Li, Y.P. Accumulation, spatio-temporal distribution, and risk assessment of heavy metal in the soil-corn system around a polymetallic mining area from the Loess Plateau, Northwest China. Geoderma 2017, 305, 188–196. [Google Scholar] [CrossRef]
- Liu, H.X.; Han, B.P.; Hao, D.P. Evaluation to heavy metals pollution in agricultural soil in northern suburb of Xuzhou City. Chin. J. Eco-Agric. 2006, 14, 159–161. (In Chinese) [Google Scholar]
- Wang, A.Y.; Wang, M.Y.; Liao, Q.; He, X.Q. Characterization of Cd translocation and accumulation in 19 maize cultivars grown on Cd-contaminated soil: implication of maize cultivar selection for minimal risk to human health and for phytoremediation. Environ. Sci. Pollut. Res. 2016, 23, 5410–5419. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.X.; Liu, J.W.; Wu, M.Z.; Li, Y.; Zhao, Y.; Li, S.R. Accumulation and translocation of toxic heavy metals in winter wheat (Triticum aestivum L.) growing in agricultural soil of Zhengzhou, China. Bull. Environ. Contam. Toxicol. 2009, 82, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health. National Standard for Food Security–Concentration Limit of Contaminants in Food (GB2762-2017); Ministry of Health: Beijing, China, 2017.
- Xing, W.Q.; Zhang, H.Y.; Scheckel, K.G.; Li, L.P. Heavy metal and metalloid concentrations in components of 25 wheat (Triticum aestivum) varieties in the vicinity of lead smelters in Henan Province. Environ. Monit. Assess. 2016, 188, 1–10. [Google Scholar] [CrossRef] [PubMed]
- EC (Commission Regulation). No 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Available online: http://www.fao.org/faolex/results/details/en/c/LEX-FAOC068134/ (accessed on 6 November 2018).
- Liu, W.X.; Shen, L.F.; Liu, J.W.; Wang, Y.W.; Li, S.R. Uptake of toxic heavy metals by rice (Oryza sativa L.) cultivated in the agricultural soil near Zhengzhou City, People’s Republic of China. Bull. Environ. Contam. Toxicol. 2007, 79, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.F.; Zhang, T.; Wang, X.; Zhou, F.; Yang, Y.; Huang, G. Predictionmodel for cadmium transfer from soil to carrot (Daucus carota L.) and its application to derive soil thresholds for food safety. J. Agric. Food Chem. 2013, 61, 10273–10282. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.J.; Ding, C.F.; Li, X.G.; Zhang, T.L.; Wang, X.X. Heavy metals in naval orange orchards of Xinfeng County and their transfer from soils to navel oranges. Ecotoxicol. Environ. Safe 2015, 122, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, H.; Sager, M.; Oberforster, M.; Mechtler, K.; Stueger, H.P.; Baumgarten, A. Nutritionally relevant elements in staple foods: Influence of arable site versus choice of variety. Environ. Geochem. Health 2009, 31, 549–560. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Larsson, H.; Kuktaite, R.; Johansson, E. Concentration of some heavy metals in organically grown primitive, old and modern wheat genotypes: Implications for human health. J. Environ. Sci. Health 2012, 47, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Lv, J.L.; He, W.X.; Zhang, H.; Gao, Y.F.; Dai, Y.C. Major factors influencing cadmium uptake from the soil into wheat plants. Ecotoxicol. Environ. Safe 2015, 113, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, S.A.; Seitz, B.; van der Heijden, M.G.A.; Schulin, R.; Tandy, S. Impact of organic and conventional farming systems on wheat grain uptake and soil bioavailability of Zinc and Cadmium. Sci. Total Environ. 2018, 639, 608–616. [Google Scholar] [CrossRef] [PubMed]
- Li, M.J.; Chaney, R.L.; Schneiter, A.A. Effect of soil chloride level on cadmium concentration in sunflower kernels. Plant Soil 1994, 167, 275–280. [Google Scholar] [CrossRef]
- Smolder, E.; McLaughlin, M.J. Effect of Cl and Cd uptake by Swiss chard in nutrient solution. Plant Soil 1996, 179, 57–64. [Google Scholar] [CrossRef]
- Lefevre, I.; Marchal, G.; Meerts, P.; Correal, E.; Lutts, S. Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Envrion. Exp. Bot. 2009, 65, 142–152. [Google Scholar] [CrossRef]
- Sarwar, N.; Malhi, S.S.; Zia, M.H.; Naeem, A.; Bibia, S.; Farida, G. Role of mineral nutrition in minimizing cadmium accumulation by plants. J. Sci. Food Agric. 2010, 90, 925–937. [Google Scholar] [CrossRef] [PubMed]
- Jamali, M.K.; Kazi, T.G.; Arain, M.B.; Afridi, H.I.; Jalbani, N.; Kandhro, G.A.; Shah, A.Q.; Baig, J.A. Heavy metal accumulation in different varieties of wheat (Triticum aestivum L.) grown in soil amended with domestic sewage sludge. J. Hazard. Mater. 2009, 164, 1386–1391. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, F.S.; Li, H.F.; Jiang, R.F. Accumulation of cadmium in the edible parts of six vegetable species grown in Cd-contaminated soils. J. Environ. Manag. 2009, 90, 1117–1122. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.J.; Stroud, J.L.; Eagling, T.; Dunham, S.J.; McGrath, S.P.; Shewry, P.R. Accumulation, distribution, and speciation of arsenic in wheat grain. Environ. Sci. Technol. 2010, 44, 5464–5468. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.N.; Villada, A.; Deacon, C.; Raab, A.; Figuerola, J.; Green, A.J.; Feldmann, J.; Meharg, A.A. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ. Sci. Technol. 2007, 41, 6854–6859. [Google Scholar] [CrossRef] [PubMed]
- Stolt, J.P.; Sneller, F.E.C.; Bryngelsson, T.; Lundborg, T.; Schat, H. Phytochelatin and cadmium accumulation in wheat. Environ. Exp. Bot. 2003, 49, 21–28. [Google Scholar] [CrossRef]
- Liu, W.T.; Zhou, Q.X.; An, J.; Sun, Y.B.; Liu, R. Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars. J. Hazard. Mater. 2010, 173, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.L.; Zhou, S.L.; Sun, B.; Zhao, Q.G. Heavy metals in wheat grain: Assessment of potential health risk for inhabitantas in Kunshan, China. Sci. Total Environ. 2008, 405, 54–61. [Google Scholar] [CrossRef] [PubMed]
Properties | Min | Max | Mean | SD | Standard (GB 15618-2018) |
---|---|---|---|---|---|
pH | 6.83 | 7.94 | 7.56 | 0.31 | — |
CEC [cmol/kg(+)] | 1.04 | 9.68 | 7.62 | 2.69 | — |
Organic matter content (OM) (g/kg) | 15.5 | 18.10 | 16.8 | 1.01 | — |
Total N (%) | 0.123 | 0.157 | 0.139 | 0.012 | — |
Total P (%) | 0.061 | 0.084 | 0.069 | 0.007 | — |
Total K (%) | 1.78 | 2.09 | 1.97 | 0.09 | — |
Alkali hydrolysable N (mg/kg) | 71.3 | 122.0 | 89.05 | 17.52 | — |
Rapidly-available P (mg/kg) | 8.10 | 46.8 | 18.5 | 12.2 | — |
Rapidly-available K (mg/kg) | 66.5 | 126.0 | 91.89 | 20.94 | — |
As (mg/kg) | 14.57 | 22.40 | 18.38 | 1.19 | 30 |
Cd (mg/kg) | 1.69 | 2.35 | 2.06 | 0.33 | 0.3 |
Pb (mg/kg) | 142.63 | 210.23 | 177.37 | 13.20 | 120 |
Cr(mg/kg) | 75.31 | 90.47 | 80.81 | 3.33 | 200 |
Cu(mg/kg) | 22.60 | 30.67 | 25.42 | 1.99 | 100 |
Ni(mg/kg) | 23.79 | 30.87 | 26.23 | 1.80 | 100 |
Zn(mg/kg) | 76.90 | 102.88 | 87.15 | 6.04 | 250 |
Cultivars | Tissue | As (M ± SD) | Cd (M ± SD) | Pb (M ± SD) |
---|---|---|---|---|
Bainong | grain | 0.27 ± 0.015 | 0.15 ± 0.003 | 0.26 ± 0.012 |
stem | 0.22 ± 0.024 | 0.41 ± 0.012 | 1.19 ± 0.011 | |
leaf | 1.44 ± 0.013 | 0.82 ± 0.006 | 7.87 ± 0.038 | |
root | 5.49 ± 0.208 | 2.23 ± 0.043 | 76.10 ± 2.513 | |
Zhoumai207 | grain | 0.23 ± 0.011 | 0.17 ± 0.013 | 0.12 ± 0.016 |
stem | 0.45 ± 0.004 | 0.75 ± 0.022 | 1.94 ± 0.021 | |
leaf | 2.45 ± 0.031 | 1.16 ± 0.038 | 3.95 ± 0.087 | |
root | 10.98 ± 2.177 | 4.49 ± 0.231 | 99.91 ± 2.65 | |
Luomai26 | grain | 0.18 ± 0.013 | 0.10 ± 0.123 | 0.13 ± 0.012 |
stem | 0.54 ± 0.001 | 0.84 ± 0.021 | 2.62 ± 0.032 | |
leaf | 3.31 ± 0.062 | 1.39 ± 0.014 | 4.59 ± 0.028 | |
root | 5.62 ± 0.248 | 2.82 ± 0.078 | 60.13 ± 2.154 | |
Zhengmai7698 | grain | 0.34 ± 0.023 | 0.25 ± 0.004 | 0.35 ± 0.002 |
stem | 0.38 ± 0.014 | 1.11 ± 0.003 | 1.70 ± 0.026 | |
leaf | 2.77 ± 0.062 | 1.52 ± 0.017 | 3.94 ± 0.011 | |
root | 8.37 ± 1.456 | 3.17 ± 0.125 | 69.20 ± 3.548 | |
Xueke718 | grain | 0.24 ± 0.003 | 0.19 ± 0.009 | 0.16 ± 0.015 |
stem | 0.34 ± 0.023 | 0.68 ± 0.015 | 2.75 ± 0.041 | |
leaf | 2.62 ± 0.032 | 1.11 ± 0.035 | 4.83 ± 0.102 | |
root | 8.83 ± 1.032 | 3.57 ± 0.041 | 68.56 ± 6.554 | |
Zhengmai366 | grain | 0.25 ± 0.121 | 0.20 ± 0.006 | 0.40 ± 0.022 |
stem | 0.25 ± 0.162 | 0.75 ± 0.013 | 1.90 ± 0.005 | |
leaf | 2.64 ± 0.245 | 1.23 ± 0.201 | 4.20 ± 0.170 | |
root | 5.79 ± 1.658 | 2.53 ± 0.514 | 79.69 ± 6.545 | |
AY58 | grain | 0.14 ± 0.031 | 0.12 ± 0.024 | 0.12 ± 0.011 |
stem | 0.32 ± 0.005 | 0.97 ± 0.001 | 1.86 ± 0.021 | |
leaf | 3.19 ± 0.215 | 1.81 ± 0.245 | 4.63 ± 0.332 | |
root | 4.96 ± 0.594 | 3.99 ± 1.064 | 41.33 ± 5.215 | |
Zhoumai18 | grain | 0.23 ± 0.102 | 0.17 ± 0.044 | 0.37 ± 0.022 |
stem | 0.27 ± 0.009 | 0.79 ± 0.035 | 1.10 ± 0.004 | |
leaf | 2.46 ± 0.129 | 1.28 ± 0.045 | 4.51 ± 0.020 | |
root | 11.12 ± 2.129 | 3.98 ± 0.278 | 58.55 ± 12.529 | |
Zhengmai379 | grain | 0.22 ± 0.011 | 0.13 ± 0.104 | 0.42 ± 0.042 |
stem | 0.12 ± 0.001 | 0.14 ± 0.004 | 1.41 ± 0.007 | |
leaf | 1.60 ± 0.229 | 0.94 ± 0.039 | 6.65 ± 0.059 | |
root | 5.43 ± 0.208 | 3.72 ± 0.065 | 75.49 ± 0.075 | |
Zongmai583 | grain | 0.23 ± 0.021 | 0.19 ± 0.004 | 0.24 ± 0.002 |
stem | 0.49 ± 0.094 | 0.85 ± 0.062 | 2.31 ± 0.028 | |
leaf | 2.65 ± 0.121 | 1.20 ± 0.211 | 5.35 ± 0.030 | |
root | 10.25 ± 2.541 | 3.03 ± 0.101 | 45.78 ± 6.544 | |
Xinong979 | grain | 0.26 ± 0.120 | 0.12 ± 0.006 | 0.18 ± 0.012 |
stem | 0.38 ± 0.036 | 0.78 ± 0.017 | 2.56 ± 0.084 | |
leaf | 2.72 ± 0.102 | 1.24 ± 0.021 | 5.13 ± 0.161 | |
root | 7.99 ± 0.169 | 3.12 ± 0.452 | 71.85 ± 7.543 | |
Zhengmai0856 | grain | 0.25 ± 0.004 | 0.23 ± 0.002 | 0.36 ± 0.008 |
stem | 0.30 ± 0.001 | 0.81 ± 0.030 | 1.65 ± 0.076 | |
leaf | 2.62 ± 0.042 | 1.14 ± 0.061 | 3.81 ± 0.012 | |
root | 8.82 ± 0.298 | 3.23 ± 0.592 | 73.48 ± 6.128 | |
Zhoumai0856 | grain | 0.19 ± 0.012 | 0.17 ± 0.014 | 0.17 ± 0.042 |
stem | 0.24 ± 0.025 | 0.66 ± 0.085 | 0.68 ± 0.303 | |
leaf | 1.89 ± 0.108 | 0.81 ± 0.085 | 3.84 ± 0.045 | |
root | 5.92 ± 0.218 | 2.82 ± 0.288 | 43.68 ± 6.811 | |
Fengdehou | grain | 0.25 ± 0.016 | 0.19 ± 0.024 | 0.19 ± 0.032 |
stem | 0.45 ± 0.001 | 0.55 ± 0.004 | 2.90 ± 0.011 | |
leaf | 3.00 ± 0.154 | 1.04 ± 0.128 | 4.14 ± 0.146 | |
root | 4.64 ± 0.749 | 2.78 ± 0.303 | 50.05 ± 4.135 | |
Pingan8 | grain | 0.13 ± 0.012 | 0.21 ± 0.025 | 0.14 ± 0.018 |
stem | 0.34 ± 0.057 | 0.58 ± 0.006 | 2.07 ± 0.025 | |
leaf | 2.50 ± 0.031 | 1.18 ± 0.075 | 4.85 ± 0.058 | |
root | 4.73 ± 1.267 | 2.63 ± 0.013 | 51.80 ± 6.231 | |
Fanmai8 | grain | 0.17 ± 0.062 | 0.16 ± 0.016 | 0.15 ± 0.002 |
stem | 0.27 ± 0.036 | 0.45 ± 0.047 | 1.80 ± 0.107 | |
leaf | 2.16 ± 0.208 | 0.85 ± 0.065 | 6.66 ± 0.037 | |
root | 4.72 ± 0.103 | 2.93 ± 0.208 | 48.79 ± 4.208 |
Tissues | Parameters | As | Cd | Pb |
---|---|---|---|---|
grain | Min | 0.13 | 0.10 | 0.12 |
Max | 0.34 | 0.25 | 0.42 | |
Media | 0.28 | 0.19 | 0.22 | |
Mean | 0.27cd | 0.18d | 0.24d | |
SD | 0.17 | 0.43 | 0.11 | |
stem | Min | 0.12 | 0.14 | 0.68 |
Max | 0.54 | 1.11 | 2.90 | |
Media | 0.33 | 0.75 | 1.87 | |
Mean | 0.32c | 0.69c | 1.90c | |
SD | 0.10 | 0.23 | 0.62 | |
leaf | Min | 1.44 | 0.81 | 3.81 |
Max | 3.31 | 1.81 | 7.87 | |
Media | 2.62 | 1.17 | 4.61 | |
Mean | 2.50b | 1.16b | 4.93b | |
SD | 0.52 | 0.26 | 1.18 | |
root | Min | 4.64 | 2.23 | 41.33 |
Max | 11.12 | 4.49 | 99.91 | |
Media | 5.85 | 3.08 | 72.68 | |
Mean | 7.10a | 3.19a | 69.65a | |
SD | 2.34 | 0.61 | 18.98 |
OM | CEC | pH | As | Cd | Pb | |
---|---|---|---|---|---|---|
OM | 1 | −0.343 | −0.612 * | −0.218 | −0.276 | −0.242 |
CEC | 1 | 0.445 | 0.300 | 0.117 | −0.633 | |
pH | 1 | 0.308 | −0.528 * | −0.599 * | ||
As | 1 | 0.279 | 0.503 * | |||
Cd | 1 | 0.294 | ||||
Pb | 1 |
Wheat Cultivars | Children | Adults | ||||||
---|---|---|---|---|---|---|---|---|
THQAs | THQCd | THQPb | TTHQ | THQAs | THQCd | THQPb | TTHQ | |
Bainong58 | 2.286 | 0.390 | 0.187 | 2.862 | 2.187 | 0.373 | 0.179 | 2.738 |
Zhoumai207 | 1.913 | 0.430 | 0.086 | 2.429 | 1.830 | 0.411 | 0.082 | 2.323 |
Luomai26 | 1.540 | 0.258 | 0.096 | 1.895 | 1.473 | 0.247 | 0.092 | 1.813 |
Zhengmai7698 | 2.855 | 0.630 | 0.258 | 3.743 | 2.731 | 0.603 | 0.247 | 3.581 |
Xuke718 | 2.059 | 0.483 | 0.117 | 2.659 | 1.970 | 0.462 | 0.112 | 2.544 |
Zhengmai366 | 2.118 | 0.523 | 0.292 | 2.933 | 2.026 | 0.500 | 0.280 | 2.806 |
AY58 | 1.184 | 0.311 | 0.183 | 1.677 | 1.133 | 0.297 | 0.175 | 1.605 |
Zhoumai18 | 1.967 | 0.436 | 0.270 | 2.672 | 1.882 | 0.417 | 0.258 | 2.557 |
Zhengmai379 | 1.886 | 0.326 | 0.304 | 2.516 | 1.804 | 0.312 | 0.291 | 2.407 |
Zongmai583 | 1.984 | 0.504 | 0.171 | 2.660 | 1.898 | 0.482 | 0.164 | 2.545 |
Xinong979 | 2.187 | 0.299 | 0.131 | 2.617 | 2.092 | 0.286 | 0.125 | 2.504 |
Zhengmai0856 | 2.114 | 0.598 | 0.263 | 2.975 | 2.023 | 0.572 | 0.252 | 2.847 |
Zhoumai0856 | 1.601 | 0.430 | 0.124 | 2.155 | 1.532 | 0.411 | 0.118 | 2.062 |
Fengdehou | 2.138 | 0.490 | 0.139 | 2.767 | 2.046 | 0.468 | 0.133 | 2.647 |
Pingan8 | 1.084 | 0.529 | 0.101 | 1.715 | 1.038 | 0.506 | 0.097 | 1.640 |
Fanmai8 | 1.466 | 0.410 | 0.108 | 1.984 | 1.402 | 0.392 | 0.104 | 1.898 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, G.; Lei, M.; Wang, Y.; Song, B.; Yang, J. Accumulation of As, Cd, and Pb in Sixteen Wheat Cultivars Grown in Contaminated Soils and Associated Health Risk Assessment. Int. J. Environ. Res. Public Health 2018, 15, 2601. https://doi.org/10.3390/ijerph15112601
Guo G, Lei M, Wang Y, Song B, Yang J. Accumulation of As, Cd, and Pb in Sixteen Wheat Cultivars Grown in Contaminated Soils and Associated Health Risk Assessment. International Journal of Environmental Research and Public Health. 2018; 15(11):2601. https://doi.org/10.3390/ijerph15112601
Chicago/Turabian StyleGuo, Guanghui, Mei Lei, Yanwen Wang, Bo Song, and Jun Yang. 2018. "Accumulation of As, Cd, and Pb in Sixteen Wheat Cultivars Grown in Contaminated Soils and Associated Health Risk Assessment" International Journal of Environmental Research and Public Health 15, no. 11: 2601. https://doi.org/10.3390/ijerph15112601
APA StyleGuo, G., Lei, M., Wang, Y., Song, B., & Yang, J. (2018). Accumulation of As, Cd, and Pb in Sixteen Wheat Cultivars Grown in Contaminated Soils and Associated Health Risk Assessment. International Journal of Environmental Research and Public Health, 15(11), 2601. https://doi.org/10.3390/ijerph15112601