The Epidemiological Significance and Temporal Stability of Mycobacterial Interspersed Repetitive Units-Variable Number of Tandem Repeats-Based Method Applied to Mycobacterium tuberculosis in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. MIRU-VNTR Loci Selection and PCR Amplification
2.3. IS6110-RFLP Genotyping
2.4. Evaluation of Temporal Stability
2.5. Data Collection and Measurement
2.6. Evaluation of Genotyping Methods and Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Genetic Diversity of Each MIRU-VNTR Locus
3.3. Establishment of MIRU-VNTR Combinations
3.4. Evaluation of Different Genotyping Strategies.
3.5. Temporal Stability of MIRU-VNTR Loci and Combinations
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cao, K.; Yang, K.; Wang, C.; Guo, J.; Tao, L.; Liu, Q.; Mahara, G.; Zhang, Y.; Guo, X. Spatial-Temporal Epidemiology of Tuberculosis in Mainland China: An Analysis Based on Bayesian Theory. Int. J. Environ. Res. Public Health 2016, 13, 469. [Google Scholar] [CrossRef] [PubMed]
- Marais, B.J.; Sintchenko, V. Epidemic spread of multidrug-resistant tuberculosis in China. Lancet Infect. Dis. 2016, 17, 238–239. [Google Scholar] [CrossRef]
- World Health Organization. Global Tuberculosis Report 2017. Latent Tuberculosis Infection. Available online: http://www.who.int/tb/publications/global_report/en/ (accessed on 1 November 2017).
- Allix-Beguec, C.; Fauville-Dufaux, M.; Supply, P. Three-year population-based evaluation of standardized mycobacterial interspersed repetitive-unit-variable-number tandem-repeat typing of Mycobacterium tuberculosis. J. Clin. Microbiol. 2008, 46, 1398–1406. [Google Scholar] [CrossRef] [PubMed]
- Thong-On, A.; Smittipat, N.; Juthayothin, T.; Yanai, H.; Yamada, N.; Yorsangsukkamol, J.; Chaiprasert, A.; Rienthong, D.; Billamas, P.; Palittapongarnpim, P. Variable-number tandem repeats typing of Mycobacterium tuberculosis isolates with low copy numbers of IS6110 in Thailand. Tuberculosis 2010, 90, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Warren, R.M.; Victor, T.C.; Streicher, E.M.; Richardson, M.; van der Spuy, G.D.; Johnson, R.; Chihota, V.N.; Locht, C.; Supply, P.; van Helden, P.D. Clonal expansion of a globally disseminated lineage of Mycobacterium tuberculosis with low IS6110 copy numbers. J. Clin. Microbiol. 2004, 42, 5774–5782. [Google Scholar] [CrossRef] [PubMed]
- Alonso, H.; Samper, S.; Martín, C.; Otal, I. Mapping IS 6110 in high-copy number Mycobacterium tuberculosis strains shows specific insertion points in the Beijing genotype. BMC Genom. 2013, 14, 422. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Zhao, Y.; Zhu, G.; Li, S.; Sun, H.; Feng, Q.; Luo, M.; Wu, F.; Li, X.; Hill, V.; et al. Suitability of IS6110-RFLP and MIRU-VNTR for differentiating spoligotyped drug-resistant Mycobacterium tuberculosis clinical isolates from Sichuan in China. BioMed Res. Int. 2014, 2014, 763204. [Google Scholar] [CrossRef] [PubMed]
- Joseph, B.V.; Soman, S.; Radhakrishnan, I.; Hill, V.; Dhanasooraj, D.; Kumar, R.A.; Rastogi, N.; Mundayoor, S. Molecular epidemiology of Mycobacterium tuberculosis isolates from Kerala, India using IS6110-RFLP, spoligotyping and MIRU-VNTRs. Infect. Genet. Evol. 2013, 16, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Supply, P.; Allix, C.; Lesjean, S.; Cardoso-Oelemann, M.; Rusch-Gerdes, S.; Willery, E.; Savine, E.; de Haas, P.; van Deutekom, H.; Roring, S.; et al. Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J. Clin. Microbiol. 2006, 44, 4498–4510. [Google Scholar] [CrossRef] [PubMed]
- Oelemann, M.C.; Diel, R.; Vatin, V.; Haas, W.; Rusch-Gerdes, S.; Locht, C.; Niemann, S.; Supply, P. Assessment of an optimized mycobacterial interspersed repetitive- unit-variable-number tandem-repeat typing system combined with spoligotyping for population-based molecular epidemiology studies of tuberculosis. J. Clin. Microbiol. 2007, 45, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Van Belkum, A.; Tassios, P.T.; Dijkshoorn, L.; Haeggman, S.; Cookson, B.; Fry, N.K.; Fussing, V.; Green, J.; Feil, E.; Gerner-Smidt, P.; et al. Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin. Microbiol. Infect. 2007, 13, 1–46. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, T.; Yoshida, S.; Suzuki, K.; Tomita, M.; Fujiyama, R.; Tanaka, N.; Kawakami, Y.; Ito, M. Hypervariable loci that enhance the discriminatory ability of newly proposed 15-loci and 24-loci variable-number tandem repeat typing method on Mycobacterium tuberculosis strains predominated by the Beijing family. Fems Microbiol. Lett. 2007, 270, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Mokrousov, I.; Narvskaya, O.; Vyazovaya, A.; Millet, J.; Otten, T.; Vishnevsky, B.; Rastogi, N. Mycobacterium tuberculosis Beijing genotype in Russia: In search of informative variable-number tandem-repeat loci. J. Clin. Microbiol. 2008, 46, 3576–3584. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Yang, C.; Pang, Y.; Zhao, Y.; Mei, J.; Gao, Q. Development of a Hierarchical Variable-Number Tandem Repeat Typing Scheme for Mycobacterium tuberculosis in China. PLoS ONE 2014, 9, e89726. [Google Scholar] [CrossRef] [PubMed]
- Somerville, W.; Thibert, L.; Schwartzman, K.; Behr, M.A. Extraction of Mycobacterium tuberculosis DNA: A question of containment. J. Clin. Microbiol. 2005, 43, 2996–2997. [Google Scholar] [CrossRef] [PubMed]
- Van Embden, J.D.; Cave, M.D.; Crawford, J.T.; Dale, J.W.; Eisenach, K.D.; Gicquel, B.; Hermans, P.; Martin, C.; McAdam, R.; Shinnick, T.M.; et al. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: Recommendations for a standardized methodology. J. Clin. Microbiol. 1993, 31, 406–409. [Google Scholar] [PubMed]
- Maes, M.; Kremer, K.; van Soolingen, D.; Takiff, H.; de Waard, J.H. 24-locus MIRU-VNTR genotyping is a useful tool to study the molecular epidemiology of tuberculosis among Warao Amerindians in Venezuela. Tuberculosis 2008, 88, 490–494. [Google Scholar] [CrossRef] [PubMed]
- Struelens, M.J. Consensus guidelines for appropriate use and evaluation of microbial epidemiologic typing systems. Clin. Microbiol. Infect. 1996, 2, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, J.; Hoffner, S.; Berggren, I.; Bruchfeld, J.; Ghebremichael, S.; Pennhag, A.; Groenheit, R. Comparison between RFLP and MIRU-VNTR genotyping of Mycobacterium tuberculosis strains isolated in Stockholm 2009 to 2011. PLoS ONE 2014, 9, e95159. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.H.; Xiang, W.L.; Zhang, G.; Luo, T.; Xie, N.; Yang, Z.R.; Sun, Q. Mycobacterial interspersed repetitive unit typing in Mycobacterium tuberculosis isolates from Sichuan province in China. Indian J. Med. Res. 2011, 134, 362–368. [Google Scholar] [PubMed]
- Liu, Y.; Wang, S.; Lu, H.; Chen, W.; Wang, W. Genetic diversity of the Mycobacterium tuberculosis Beijing family based on multiple genotyping profiles. Epidemiol. Infect. 2016, 144, 1728–1735. [Google Scholar] [CrossRef] [PubMed]
- Yun, K.W.; Song, E.J.; Choi, G.E.; Hwang, I.K.; Lee, E.Y.; Chang, C.L. Strain typing of Mycobacterium tuberculosis isolates from Korea by mycobacterial interspersed repetitive units-variable number of tandem repeats. Korean J. Lab. Med. 2009, 29, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Allix-Béguec, C.; Wahl, C.; Hanekom, M.; Nikolayevskyy, V.; Drobniewski, F.; Maeda, S.; Campos-Herrero, I.; Mokrousov, I.; Niemann, S.; Kontsevaya, I. Proposal of a Consensus Set of Hypervariable Mycobacterial Interspersed Repetitive-Unit–Variable-Number Tandem-Repeat Loci for Subtyping of Mycobacterium tuberculosis Beijing Isolates. J. Clin. Microbiol. 2014, 52, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Lu, B.; Liu, Q.; Dong, H.; Shao, Y.; Jiang, Y.; Song, H.; Chen, C.; Li, G.; Xu, W.; et al. Genotypes of Mycobacterium tuberculosis isolates in rural China: Using MIRU-VNTR and spoligotyping methods. Scand. J. Infect. Dis. 2014, 46, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Cao, R.; Tian, M.; Zhang, X.; Zhang, X.; Li, Y.; Xu, Y.; Fan, W.; Huang, B.; Li, C. Evaluation of Spoligotyping and MIRU-VNTR for Mycobacterium bovis in Xinjiang, China. Res. Vet. Sci. 2012, 92, 236–239. [Google Scholar] [CrossRef] [PubMed]
- Niemann, S.; Rusch-Gerdes, S.; Richter, E.; Thielen, H.; Heykes-Uden, H.; Diel, R. Stability of IS6110 restriction fragment length polymorphism patterns of Mycobacterium tuberculosis strains in actual chains of transmission. J. Clin. Microbiol. 2000, 38, 2563–2567. [Google Scholar] [PubMed]
- Savine, E.; Warren, R.M.; van der Spuy, G.D.; Beyers, N.; van Helden, P.D.; Locht, C.; Supply, P. Stability of variable-number tandem repeats of mycobacterial interspersed repetitive units from 12 loci in serial isolates of Mycobacterium tuberculosis. J. Clin. Microbiol. 2002, 40, 4561–4566. [Google Scholar] [CrossRef] [PubMed]
- Mazars, E.; Lesjean, S.; Banuls, A.L.; Gilbert, M.; Vincent, V.; Gicquel, B.; Tibayrenc, M.; Locht, C.; Supply, P. High-resolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology. Proc. Natl. Acad. Sci. USA 2001, 98, 1901–1906. [Google Scholar] [CrossRef] [PubMed]
- Roetzer, A.; Diel, R.; Kohl, T.A.; Rückert, C.; Nübel, U.; Blom, J.; Wirth, T.; Jaenicke, S.; Schuback, S.; Rüsch-Gerdes, S.; et al. Whole Genome Sequencing versus Traditional Genotyping for Investigation of a Mycobacterium tuberculosis Outbreak: A Longitudinal Molecular Epidemiological Study. PLoS Med. 2013, 10, e1001387. [Google Scholar] [CrossRef] [PubMed]
- Hatherell, H.A.; Colijn, C.; Stagg, H.R.; Jackson, C.; Winter, J.R.; Abubakar, I. Interpreting whole genome sequencing for investigating tuberculosis transmission: A systematic review. BMC Med. 2016, 14, 21. [Google Scholar] [CrossRef] [PubMed]
Variate | Number of Patients (%) | |||
---|---|---|---|---|
East n = 385 | North n = 211 | South n = 169 | West n = 217 | |
Age (mean ± SD) | 48 ± 19.0 | 45 ± 18.3 | 47 ± 19.3 | 48 ± 19.8 |
Male (Sex) | 262 (68.1) | 135 (64.0) | 128 (75.7) | 154 (71.0) |
Cavity on CXR | 109 (28.3) | 50 (23.7) | 38 (22.5) | 55 (25.3) |
Sputum smear positive | 233 (60.5) | 118 (55.9) | 107 (63.3) | 137 (63.1) |
MIRU-VNTR Loci Combination | Cumulative Hunter-Gaston Discriminatory Index (HGDI) | ||
---|---|---|---|
Total | Strain Family | ||
Beijing | Non-Beijing | ||
24-locus MIRU VNTR | 0.9887 | 0.9828 | 0.9922 |
+3820 | 0.9909 | 0.9897 | 0.9931 |
+3820 + 3232 | 0.9922 | 0.9915 | 0.9943 |
+3820 + 3232 + 2163a | 0.9937 | 0.9922 | 0.9959 |
+3820 + 3232 + 2163a + 4120 | 0.9954 | 0.9938 | 0.9961 |
Method | No. of Pattern | No. of Unique Pattern | No. of Clustered Pattern (Isolates) | Clustering Proportion (%) | HGDI |
---|---|---|---|---|---|
24-locus MIRU VNTR | 700 | 577 | 123 (405) | 41.2 | 0.9854 |
+3820 | 766 | 668 | 98 (314) | 32.0 | 0.9935 |
+3820 + 3232 | 786 | 697 | 89 (285) | 29.0 | 0.9947 |
+3820 + 3232 + 2163a | 795 | 716 | 79 (266) | 27.1 | 0.9952 |
+3820 + 3232 + 2163a + 4120 | 813 | 731 | 82 (251) | 25.6 | 0.9960 |
IS6110-RFLP | 811 | 726 | 85 (256) | 26.1 | 0.9958 |
Method | Epidemiology Link (%) | p-Value a | Time of Clustering Time Span (%) | p-Value a | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Confirmed | Potential | Not Confirmed | <6 Months | 6–12 Months | 12–24 Months | 24–36 Months | ≥36 Months | |||
24-locus MIRU VNTR | 53 (13.1) | 89 (22.0) | 263 (64.9) | <0.001 | 43 (10.6) | 40 (9.9) | 92 (22.7) | 148 (36.5) | 82 (20.2) | <0.001 |
+3820 | 69 (22.0) | 110 (35.0) | 135 (43.0) | 43 (13.7) | 49 (15.6) | 84 (26.8) | 100 (31.8) | 38 (12.1) | ||
+3820 + 3232 | 69 (24.2) | 108 (37.9) | 108 (37.9) | 41 (14.4) | 48 (16.8) | 74 (26.0) | 89 (31.2) | 33 (11.6) | ||
+3820 + 3232 + 2163a | 67 (25.2) | 106 (39.8) | 93 (35.0) | 39 (14.7) | 47 (17.7) | 67 (25.2) | 81 (30.5) | 32 (12.0) | ||
+3820 + 3232 + 2163a + 4120 | 70 (27.9) | 106 (42.2) | 75 (29.9) | 39 (15.5) | 43 (17.1) | 68 (27.1) | 72 (28.7) | 29 (11.6) | ||
IS6110-RFLP | 67 (26.2) | 105 (41.0) | 84 (32.8) | 4 7 (18.4) | 45 (17.6) | 40 (15.6) | 89 (34.8) | 35 (13.7) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Hu, Y.; Mansjö, M.; Zhao, Q.; Jiang, W.; Ghebremichael, S.; Hoffner, S.; Xu, B. The Epidemiological Significance and Temporal Stability of Mycobacterial Interspersed Repetitive Units-Variable Number of Tandem Repeats-Based Method Applied to Mycobacterium tuberculosis in China. Int. J. Environ. Res. Public Health 2018, 15, 782. https://doi.org/10.3390/ijerph15040782
Li Y, Hu Y, Mansjö M, Zhao Q, Jiang W, Ghebremichael S, Hoffner S, Xu B. The Epidemiological Significance and Temporal Stability of Mycobacterial Interspersed Repetitive Units-Variable Number of Tandem Repeats-Based Method Applied to Mycobacterium tuberculosis in China. International Journal of Environmental Research and Public Health. 2018; 15(4):782. https://doi.org/10.3390/ijerph15040782
Chicago/Turabian StyleLi, Yang, Yi Hu, Mikael Mansjö, Qi Zhao, Weili Jiang, Solomon Ghebremichael, Sven Hoffner, and Biao Xu. 2018. "The Epidemiological Significance and Temporal Stability of Mycobacterial Interspersed Repetitive Units-Variable Number of Tandem Repeats-Based Method Applied to Mycobacterium tuberculosis in China" International Journal of Environmental Research and Public Health 15, no. 4: 782. https://doi.org/10.3390/ijerph15040782
APA StyleLi, Y., Hu, Y., Mansjö, M., Zhao, Q., Jiang, W., Ghebremichael, S., Hoffner, S., & Xu, B. (2018). The Epidemiological Significance and Temporal Stability of Mycobacterial Interspersed Repetitive Units-Variable Number of Tandem Repeats-Based Method Applied to Mycobacterium tuberculosis in China. International Journal of Environmental Research and Public Health, 15(4), 782. https://doi.org/10.3390/ijerph15040782