Effects of Different Spectral Shapes and Amplitude Modulation of Broadband Noise on Annoyance Reactions in a Controlled Listening Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Listening Test Design
- Subset I contained the ratings of the reference sound of Table 1 at a LAeq of 37, 40 and 43 dBA. It reveals the annoyance reactions to LAeq changes.
2.2. Acoustical Stimuli
2.3. Annoyance Ratings and Questionnaire
2.4. Laboratory Setup
2.5. Listening Test Procedure
2.6. Participants
2.7. Statistical Analysis
3. Results
3.1. Descriptive Statistics (Raw Data)
3.2. Effects of Acoustical Characteristics on Annoyance
3.3. Explorative Data Re-Analysis
- LC-A ≡ sound level difference LCeq–LAeq (cf. Section 2.2): indicator for the low-frequency content of the stimuli and substitute for the variable spectral shape.
- σfluc ≡ standard deviation of the A-weighted, FAST time-weighted level-time histories of the high-pass filtered stimuli: indicator for the level variation due to periodic and random AM and substitute for the two variables. A high-pass filtered signal (here, with a cutoff frequency of 500 Hz, i.e., f > 500 Hz) was used to minimize the influence of spectral shape on level variation (Figure 3) and to obtain approximate independence of the two variables LC-A and σfluc.
4. Discussion
4.1. Acoustical Characteristics and Annoyance
4.2. Sensory Perception and Annoyance
4.3 Annoyance Responses in Laboratory vs. Field Studies
4.4. Practical Implications for WT Noise
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
Linear Mixed-Effects Model | ||||
---|---|---|---|---|
Variable 1 | Symbol 1 | Coefficient | 95% CI | p |
Intercept | µ | 6.4028 | [5.8998; 6.9057] | <0.001 |
Spectral shape | Speci=LF | 1.4736 | [0.9491; 1.9981] | <0.001 |
Speci=WT | 0 2 | |||
Speci=pink | −0.4307 | [−0.7848; −0.0766] | 0.02 | |
Random AM | rAMj=no | −0.7238 | [−0.9345; −0.5131] | <0.001 |
rAMj=with | 0 2 | |||
Periodic AM | β | 0.1330 | [0.0563; 0.2098] | <0.001 |
Random × Periodic AM | βrAM,j=no | 0.2424 | [0.1335; 0.3513] | <0.001 |
βrAM,j=with | 0 2 | |||
Sequence | γ | 0.0178 | [0.0055; 0.0301] | <0.005 |
Random effect variance(spectral shape) | u2i=LF,k | 3.1156 | [2.0670; 4.6961] | <0.001 |
u2i=WT,k | 2.6436 | [1.7469; 4.0006] | <0.001 | |
u2i=pink,k | 3.6389 | [2.4219; 5.4674] | <0.001 | |
Residual variance | ε2ijk | 1.0664 | [0.9654; 1.1780] | <0.001 |
Linear Mixed-Effects Model | ||||
---|---|---|---|---|
Variable 1 | Symbol 1 | Coefficient | 95% CI | p |
Intercept | µ | 4.9498 | [4.3186; 5.5811] | <0.001 |
LC-A | δ | 0.0702 | [0.0455; 0.0949] | <0.001 |
σfluc | η | 0.4436 | [0.3553; 0.5319] | <0.001 |
Sequence | γ | 0.0215 | [0.0081; 0.0349] | <0.002 |
Random effect variance (intercept and slope) | u20k | 4.4574 | [2.9644; 6.7023] | <0.001 |
u21k | 0.0073 | [0.0048; 0.0111] | <0.001 | |
Residual variance | ε2ijk | 1.3669 | [1.2415; 1.5050] | <0.001 |
References
- FOEN. Noise Pollution in Switzerland. Results of the SonBase National Noise Monitoring Programme. State of the Environment No. 0907; Federal Office for the Environment (FOEN): Bern, Switzerland, 2009; 61p, Available online: http://www.bafu.admin.ch/publikationen/ (accessed on 14 May 2018).
- WHO. Burden of Disease from Environmental Noise. Quantification of Healthy Life Years Lost in Europe; World Health Organization (WHO), Regional Office for Europe: Copenhagen, Denmark, 2011; 106p. Available online: http://www.euro.who.int/en/publications (accessed on 14 May 2018).
- Guski, R.; Schreckenberg, D.; Schuemer, R. WHO environmental noise guidelines for the European region: A systematic review on environmental noise and annoyance. Int. J. Environ. Res. Public Health 2017, 14, 1539. [Google Scholar] [CrossRef] [PubMed]
- Babisch, W. The noise/stress concept, risk assessment and research needs. Noise Health 2002, 4, 1–11. [Google Scholar] [PubMed]
- Janssen, S.A.; Vos, H.; Eisses, A.R.; Pedersen, E. A comparison between exposure-response relationships for wind turbine annoyance and annoyance due to other noise sources. J. Acoust. Soc. Am. 2011, 130, 3746–3753. [Google Scholar] [CrossRef] [PubMed]
- Miedema, H.M.E.; Oudshoorn, C.G.M. Annoyance from transportation noise: Relationships with exposure metrics DNL and DENL and their confidence intervals. Environ. Health Perspect. 2001, 109, 409–416. [Google Scholar] [CrossRef] [PubMed]
- European Union. Directive 2002/49/EC of the European Parliament and of the Council of 25 June 2002 Relating to the Assessment and Management of Environmental Noise; European Union: Bruxelles, Belgium, 2002; 14p, Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32002L0049 (accessed on 14 May 2018).
- Berglund, B.; Hassmén, P.; Job, R.F.S. Sources and effects of low-frequency noise. J. Acoust. Soc. Am. 1996, 99, 2985–3002. [Google Scholar] [CrossRef] [PubMed]
- Pawlaczyk-Łuszczyńska, M.; Dudarewicz, A.; Waszkowska, M.; Śliwińska-Kowalska, M. Assessment of annoyance from low frequency and broadband noises. Int. J. Occup. Med. Environ. Health 2003, 16, 337–343. [Google Scholar] [PubMed]
- Ishiyama, T.; Hashimoto, T. The impact of sound quality on annoyance caused by road traffic noise: An influence of frequency spectra on annoyance. JSAE Rev. 2000, 21, 225–230. [Google Scholar] [CrossRef]
- Nilsson, M.E. A-weighted sound pressure level as an indicator of short-term loudness or annoyance of road-traffic sound. J. Sound Vib. 2007, 302, 197–207. [Google Scholar] [CrossRef]
- Torija, A.J.; Flindell, I.H. The subjective effect of low frequency content in road traffic noise. J. Acoust. Soc. Am. 2015, 137, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Veitch, J.A.; Bradley, J.S.; Legault, L.M.; Norcross, S.G.; Svec, J.M. Masking Speech in Open-Plan Offices with Simulated Ventilation Noise: Noise Level and Spectral Composition Effects on Acoustic Satisfaction. Report No. IRC-IR-846; National Research Council Canada: Ottawa, ON, Canada, 2002; 56p, Available online: https://nparc.nrc-cnrc.gc.ca/eng/home/ (accessed on 14 May 2018).
- Oerlemans, S. Effect of wind shear on amplitude modulation of wind turbine noise. Int. J. Aeroacoust. 2015, 14, 715–728. [Google Scholar] [CrossRef]
- Lee, S.; Kim, K.; Choi, W.; Lee, S. Annoyance caused by amplitude modulation of wind turbine noise. Noise Control Eng. J. 2011, 59, 38–46. [Google Scholar] [CrossRef]
- Bockstael, A.; Dekoninck, L.; Can, A.; Oldoni, D.; De Coensel, B.; Botteldooren, D. Reduction of wind turbine noise annoyance: An operational approach. Acta Acust. Acust. 2012, 98, 392–401. [Google Scholar] [CrossRef]
- Oerlemans, S.; Fisher, M.; Maeder, T.; Kögler, K. Reduction of wind turbine noise using optimized airfoils and trailing-edge serrations. AIAA J. 2009, 47, 1470–1481. [Google Scholar] [CrossRef]
- Gilbert, K.E.; Raspet, R.; Di, X. Calculation of turbulence effects in an upward-refracting atmosphere. J. Acoust. Soc. Am. 1990, 87, 2428–2437. [Google Scholar] [CrossRef]
- Schäffer, B.; Pieren, R.; Schlittmeier, S.J.; Brink, M.; Heutschi, K. Annoyance to wind turbine Noise—Influence of different acoustical characteristics. Paper No. 458. In Proceedings of the Inter-Noise 2017, 46th International Congress and Exposition on Noise Control Engineering, Hong Kong, China, 27–30 August 2017; Institute of Noise Control Engineering: Indianapolis, IN, USA, 2017; pp. 2447–2454. [Google Scholar]
- McCunney, R.J.; Mundt, K.A.; Colby, W.D.; Dobie, R.; Kaliski, K.; Blais, M. Wind turbines and health: A critical review of the scientific literature. J. Occup. Environ. Med. 2014, 56, e108–e130. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.H.; Klokker, M. Health effects related to wind turbine noise exposure: A systematic review. PLoS ONE 2014, 9, e114183. [Google Scholar] [CrossRef] [PubMed]
- Van Kamp, I.; van den Berg, F. Health effects related to wind turbine sound, including low-frequency sound and infrasound. Acoust. Aust. 2017, 28. [Google Scholar] [CrossRef]
- Manyoky, M.; Wissen Hayek, U.; Heutschi, K.; Pieren, R.; Grêt-Regamey, A. Developing a GIS-based visual-acoustic 3D simulation for wind farm assessment. ISPRS Int. J. Geo-Inf. 2014, 3, 29–48. [Google Scholar] [CrossRef]
- Heutschi, K.; Pieren, R.; Müller, M.; Manyoky, M.; Wissen Hayek, U.; Eggenschwiler, K. Auralization of wind turbine noise: Propagation filtering and vegetation noise synthesis. Acta Acust. Acust. 2014, 100, 13–24. [Google Scholar] [CrossRef]
- Pieren, R.; Heutschi, K.; Müller, M.; Manyoky, M.; Eggenschwiler, K. Auralization of wind turbine noise: Emission synthesis. Acta Acust. Acust. 2014, 100, 25–33. [Google Scholar] [CrossRef]
- Schäffer, B.; Schlittmeier, S.J.; Pieren, R.; Heutschi, K.; Brink, M.; Graf, R.; Hellbrück, J. Short-term annoyance reactions to stationary and time-varying wind turbine and road traffic noise: A laboratory study. J. Acoust. Soc. Am. 2016, 139, 2949–2963. [Google Scholar] [CrossRef] [PubMed]
- Bolin, K.; Bluhm, G.; Nilsson, M.E. Listening test comparing A-weighted and C-weighted sound pressure level as indicator of wind turbine noise annoyance. Acta Acust. Acust. 2014, 100, 842–847. [Google Scholar] [CrossRef]
- Fastl, H.; Zwicker, E. Psychoacoustics: Facts and Models, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2007; p. 462. ISBN 3-540-23159-5. [Google Scholar]
- Møller, H.; Pedersen, C.S. Low-frequency noise from large wind turbines. J. Acoust. Soc. Am. 2011, 129, 3727–3744. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, H.; Yano, H.; Fukushima, A.; Sueoka, S. Nationwide field measurements of wind turbine noise in Japan. Noise Control Eng. J. 2014, 62, 90–101. [Google Scholar] [CrossRef]
- Michaud, D.S.; Feder, K.; Keith, S.E.; Voicescu, S.A.; Marro, L.; Than, J.; Guay, M.; Denning, A.; McGuire, D.; Bower, T.; et al. Exposure to wind turbine noise: Perceptual responses and reported health effects. J. Acoust. Soc. Am. 2016, 139, 1443–1454. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, E.; van den Berg, F.; Bakker, R.; Bouma, J. Response to noise from modern wind farms in The Netherlands. J. Acoust. Soc. Am. 2009, 126, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Fields, J.M.; De Jong, R.G.; Gjestland, T.; Flindell, I.H.; Job, R.F.S.; Kurra, S.; Lercher, P.; Vallet, M.; Yano, T.; Guski, R.; et al. Standardized general-purpose noise reaction questions for community noise surveys: Research and a recommendation. J. Sound Vib. 2001, 242, 641–679. [Google Scholar] [CrossRef]
- Griefahn, B.; Marks, A.; Gjestland, T.; Preis, A. Annoyance and noise sensitivity in urban areas. In Proceedings of the 19th International Congress on Acoustics (ICA), Madrid, Spain, 2–7 September 2007; Sociedad Española de Acústica: Madrid, Spain, 2007. [Google Scholar]
- Schütte, M.; Marks, A.; Wenning, E.; Griefahn, B. The development of the noise sensitivity questionnaire. Noise Health 2007, 9, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Hallgren, K.A. Computing inter-rater reliability for observational data: An overview and tutorial. Tutor. Quant. Methods Psychol. 2012, 8, 23–34. [Google Scholar] [CrossRef] [PubMed]
- McGraw, K.O.; Wong, S.P. Forming inferences about some intraclass correlation coefficients. Psychol. Methods 1996, 1, 30–46. [Google Scholar] [CrossRef]
- Pinheiro, J.C.; Bates, D.M. Mixed-Effects Models in S and S-Plus, 1st ed.; Springer: New York, NY, USA, 2000; p. 528. ISBN 0-387-98957-9. [Google Scholar]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Nakagawa, S.; Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Johnson, P.C.D. Extension of Nakagawa & Schielzeth’s R2GLMM to random slopes models. Methods Ecol. Evol. 2014, 5, 944–946. [Google Scholar] [CrossRef] [PubMed]
- Cicchetti, D.V. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol. Assess. 1994, 6, 284–290. [Google Scholar] [CrossRef]
- Oliva, D.; Hongisto, V.; Haapakangas, A. Annoyance of low-level tonal sounds—Factors affecting the penalty. Build. Environ. 2017, 123, 404–414. [Google Scholar] [CrossRef]
- Schomer, P.D.; Wagner, L.R. Human and community response to military sounds—Part 2: Results from field-laboratory tests of sounds of small arms, 25-mm cannons, helicoperts, and blasts. Noise Control Eng. J. 1995, 43, 1–14. [Google Scholar] [CrossRef]
- Jeon, J.Y.; Lee, P.J.; You, J.; Kang, J. Perceptual assessment of quality of urban soundscapes with combined noise sources and water sounds. J. Acoust. Soc. Am. 2010, 127, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Francis, J.M.; Wang, L.M. How tonality and loudness of noise relate to annoyance and task performance. Noise Control Eng. J. 2017, 65, 71–82. [Google Scholar] [CrossRef]
- Skagerstrand, A.; Köbler, S.; Stenfelt, S. Loudness and annoyance of disturbing sounds—Perception by normal hearing subjects. Int. J. Audiol. 2017, 56, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Guski, R.; Bosshardt, H.-G. Gibt es eine “unbeeinflußte” Lästigkeit? Z. Lärmbekämpf. 1992, 39, 67–74. [Google Scholar]
- ISO. ISO 532-1. Acoustics—Methods for Calculating Loudness—Part 1: Zwicker Method; International Standard; International Organisation for Standardization (ISO): Geneva, Switzerland, 2017. [Google Scholar]
- Berglund, B.; Preis, A.; Rankin, K. Relationship between loundess and annoyance for ten community sounds. Environ. Int. 1990, 16, 523–531. [Google Scholar] [CrossRef]
- Fastl, H. Fluctuation strength and temporal masking patterns of amplitude-modulated broadband noise. Hear. Res. 1982, 8, 59–69. [Google Scholar] [CrossRef]
- Brink, M. A review of explained variance in exposure-annoyance relationships in noise annoyance survey. Paper ID 6_4. In Proceedings of the 11th Congress of the International Commission on the Biological Effects of Noise (ICBEN), Noise as a Public Health Problem, Nara, Japan, 1–5 June 2014. [Google Scholar]
- Schäffer, B.; Plüss, S.; Thomann, G. Estimating the model-specific uncertainty of aircraft noise calculations. Appl. Acoust. 2014, 84, 58–72. [Google Scholar] [CrossRef]
- Keith, S.E.; Feder, K.; Voicescu, S.A.; Soukhovtsev, V.; Denning, A.; Tsang, J.; Broner, N.; Leroux, T.; Richarz, W.; van den Berg, F. Wind turbine sound pressure level calculations at dwellings. J. Acoust. Soc. Am. 2016, 139, 1436–1442. [Google Scholar] [CrossRef] [PubMed]
- Minichilli, F.; Gorini, F.; Ascari, E.; Bianchi, F.; Coi, A.; Fredianelli, L.; Licitra, G.; Manzoli, F.; Mezzasalma, L.; Cori, L. Annoyance judgment and measurements of environmental noise: A focus on Italian secondary schools. Int. J. Environ. Res. Public Health 2018, 15, 208. [Google Scholar] [CrossRef] [PubMed]
- Bolin, K.; Kedhammar, A.; Nilsson, M.E. The influence of background sounds on loudness and annoyance of wind turbine noise. Acta Acust. Acust. 2012, 98, 741–748. [Google Scholar] [CrossRef]
- Bolin, K.; Nilsson, M.E.; Khan, S. The potential of natural sounds to mask wind turbine noise. Acta Acust. Acust. 2010, 96, 131–137. [Google Scholar] [CrossRef]
- Michaud, D.S.; Keith, S.E.; Feder, K.; Voicescu, S.A.; Marro, L.; Than, J.; Guay, M.; Bower, T.; Denning, A.; Lavigne, E.; et al. Personal and situational variables associated with wind turbine noise annoyance. J. Acoust. Soc. Am. 2016, 139, 1455–1466. [Google Scholar] [CrossRef] [PubMed]
- Hongisto, V.; Oliva, D.; Keränen, J. Indoor noise annoyance due to 3–5 megawatt wind turbines—An exposure-response relationship. J. Acoust. Soc. Am. 2017, 142, 2185–2196. [Google Scholar] [CrossRef] [PubMed]
- Makarewicz, R.; Gołębiewski, R. Influence of blade pitch on amplitude modulation of wind turbine noise. Noise Control Eng. J. 2015, 63, 195–201. [Google Scholar] [CrossRef]
- Larsson, C.; Öhlund, O. Amplitude modulation of sound from wind turbines under various meteorological conditions. J. Acoust. Soc. Am. 2014, 135, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Fredianelli, L.; Gallo, P.; Licitra, G.; Carpita, S. Analytical assessment of wind turbine noise impact at receiver by means of residual noise determination without the wind farm shutdown. Noise Control Eng. J. 2017, 65, 417–433. [Google Scholar] [CrossRef]
- Eggenschwiler, K.; Heutschi, K.; Schäffer, B.; Pieren, R.; Bögli, H.; Bärlocher, M. Wirkung und Beurteilung des Lärms von Windenergieanlagen—Aktuelle Beiträge aus der Schweiz. Lärmbekämpf. 2016, 11, 159–167. [Google Scholar]
- Koppen, E.; Fowler, K. International legislation for wind turbine noise. In Proceedings of the Euronoise 2015, 10th European Congress and Exposition on Noise Control Engineering, Maastricht, The Netherlands, 1–3 June 2015; European Acoustical Society (EAA): Madrid, Spain; Nederlands Akoestisch Genootschap (NAG): Heerde, The Netherlands; Belgische Akoestische Vereniging (ABAV): Limelette, Belgium, 2015; pp. 321–326. [Google Scholar]
- Licitra, G.; Fredianelli, L. Which limits for wind turbine noise? A comparison with other types of sources using a common metric. In Proceedings of the 5th International Conference on Wind Turbine Noise, Denver, CO, USA, 28–30 August 2013; Institute of Noise Control Engineering: Indianapolis, IN, USA, 2013; pp. 748–760. [Google Scholar]
Depth of Periodic AM | Spectral Shape | |||||||
---|---|---|---|---|---|---|---|---|
LF | WT | Pink | ||||||
Random AM | ||||||||
with | no | with | no | with | no | |||
σpAM = 0.0 dB | 1 | 1 | 3 1 | 1 | 1 | 1 2 | ||
σpAM = 1.5 dB | 1 | 1 | 1 | 1 | 1 | 1 | ||
σpAM = 3.0 dB | 1 | 1 | 1 | 1 | 1 | 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schäffer, B.; Pieren, R.; Schlittmeier, S.J.; Brink, M. Effects of Different Spectral Shapes and Amplitude Modulation of Broadband Noise on Annoyance Reactions in a Controlled Listening Experiment. Int. J. Environ. Res. Public Health 2018, 15, 1029. https://doi.org/10.3390/ijerph15051029
Schäffer B, Pieren R, Schlittmeier SJ, Brink M. Effects of Different Spectral Shapes and Amplitude Modulation of Broadband Noise on Annoyance Reactions in a Controlled Listening Experiment. International Journal of Environmental Research and Public Health. 2018; 15(5):1029. https://doi.org/10.3390/ijerph15051029
Chicago/Turabian StyleSchäffer, Beat, Reto Pieren, Sabine J. Schlittmeier, and Mark Brink. 2018. "Effects of Different Spectral Shapes and Amplitude Modulation of Broadband Noise on Annoyance Reactions in a Controlled Listening Experiment" International Journal of Environmental Research and Public Health 15, no. 5: 1029. https://doi.org/10.3390/ijerph15051029
APA StyleSchäffer, B., Pieren, R., Schlittmeier, S. J., & Brink, M. (2018). Effects of Different Spectral Shapes and Amplitude Modulation of Broadband Noise on Annoyance Reactions in a Controlled Listening Experiment. International Journal of Environmental Research and Public Health, 15(5), 1029. https://doi.org/10.3390/ijerph15051029