Socio-Economic Inequalities in Tobacco Consumption of the Older Adults in China: A Decomposition Method
Abstract
:1. Background
2. Materials and Methods
2.1. Data Source
2.2. Ethics Approval and Consent to Participate
2.3. Tobacco Consumption Measurement
- Question 1: Have you ever chewed tobacco, smoked a pipe, smoked self-rolled cigarettes, or smoked cigarettes/cigars?
- Question 2: Do you still have the habit or have you completely quit?
- Question 3: How many cigarettes do/did you consume approximately per day?
2.4. Independent Variables
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. The Bill China Cannot Afford: Health, Economic and Social Costs of China’s Tobacco Epidemic; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Ng, M.; Freeman, M.K.; Fleming, T.D.; Robinson, M.; Dwyer-Lindgren, L.; Thomson, B.; Murray, C.J. Smoking prevalence and cigarette consumption in 187 countries, 1980–2012. JAMA 2014, 311, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Beaglehole, R.; Bonita, R.; Horton, R.; Adams, C.; Alleyne, G.; Asaria, P.; Baugh, V.; Bekedam, H.; Billo, N.; Casswell, S.; et al. Priority actions for the non-communicable disease crisis. Lancet 2011, 377, 1438–1447. [Google Scholar] [CrossRef]
- Mackenbach, J.P.; Stirbu, I.; Roskam, A.J.; Schaap, M.M.; Menvielle, G.; Leinsalu, M.; Kunst, A.E. Socio-economic inequalities in health in 22 European countries. N. Engl. J. Med. 2008, 358, 2468–2481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pampel, F.C.; Denney, J.T. Cross-national sources of health inequality: Education and tobacco use in the World Health Survey. Demography 2011, 48, 653–674. [Google Scholar] [CrossRef] [PubMed]
- Harper, S.; Mckinnon, B. Global socio-economic inequalities in tobacco use: Internationally comparable estimates from the World Health Surveys. Cancer Cause Control 2012, 23, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Cai, M.; Gao, J.; Tang, S.; Xu, L.; Critchley, J.A. Trends in smoking and quitting in China from 1993 to 2003: National Health Service Survey data. Bull. World Health Organ. 2010, 88, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Hsia, J.; Yang, G. Prevalence of smoking in China in 2010. N. Engl. J. Med. 2011, 364, 2469–2470. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Shin, Y.S.; Beaglehole, R. Tobacco control in China: Small steps towards a giant leap. Lancet 2012, 379, 779–780. [Google Scholar] [PubMed]
- Yang, G.; Wang, Y.; Wu, Y.; Yang, J.; Wan, X. The road to effective tobacco control in China. Lancet 2015, 385, 1019–1028. [Google Scholar] [CrossRef]
- Wagstaff, A. The demand for health: Theory and applications. J. Epidemiol. Community Health 1986, 40, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Balia, S.; Jones, A.M. Mortality, lifestyle and socio-economic status. J. Health Econ. 2008, 27, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khang, Y.H.; Cho, H.J. Socio-economic inequality in cigarette smoking: Trends by gender, age, and socio-economic position in South Korea, 1989–2003. Prev. Med. 2006, 42, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Corsi, D.J.; Boyle, M.H.; Lear, S.A.; Chow, C.K.; Teo, K.K.; Subramanian, S.V. Trends in smoking in Canada from 1950 to 2011: Progression of the tobacco epidemic according to socio-economic status and geography. Cancer Cause Control 2014, 25, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Siegel, M. Measuring age-specific variations in income-related inequalities in smoking behavior in Germany. Health Psychol. Behav. Med. 2014, 2, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Prinja, S.; Kumar, R. Reducing health inequities in a generation: A dream or reality? Bull. World Health Organ. 2009, 87, 84. [Google Scholar] [CrossRef] [PubMed]
- Palipudi, K.M.; Gupta, P.C.; Sinha, D.N.; Andes, L.J.; Asma, S.; McAfee, T.; GATS Collaborative Group. Social determinants of health and tobacco use in thirteen low and middle income countries: Evidence from Global Adult Tobacco Survey. PLoS ONE 2012, 7, e33466. [Google Scholar] [CrossRef] [PubMed]
- Norberg, M.; Lundqvist, G.; Nilsson, M.; Gilljam, H.; Weinehall, L. Changing patterns of tobacco use in a middle-aged population—The role of snus, gender, age, and education. Glob. Health Action 2011, 4, 352–354. [Google Scholar] [CrossRef] [PubMed]
- Jha, P.; Peto, R.; Zatonski, W.; Boreham, J.; Jarvis, M.J.; Lopez, A.D. Social inequalities in male mortality, and in male mortality from smoking: Indirect estimation from national death rates in England and Wales, Poland, and North America. Lancet 2006, 368, 367–370. [Google Scholar] [CrossRef]
- Schaap, M.M.; Kunst, A.E. Monitoring of socio-economic inequalities in smoking: Learning from the experiences of recent scientific studies. Public Health 2009, 123, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Hill, S.; Amos, A.; Clifford, D.; Platt, S. Impact of tobacco control interventions on socio-economic inequalities in smoking: Review of the evidence. Tob. Control 2014, 23, e89–e97. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Hu, Y.; Smith, J.P.; Strauss, J.; Yang, G. Cohort Profile: The China Health and Retirement Longitudinal Study (CHARLS). Int. J. Epidemiol. 2014, 43, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Granovetter, M. Economic Action and Social Structure: A Theory of Embeddedness; Readings in Economic Sociology; Blackwell Publishers Ltd.: Hoboken, NJ, USA, 2016; pp. 481–510. [Google Scholar]
- Bian, Y. Bringing strong ties back in: Indirect ties, network bridges, and job searches in China. Am. Sociol. Rev. 1997, 62, 366–385. [Google Scholar] [CrossRef]
- Carroll, J.J. Social and political embeddedness of approaches to health and illness: Author’s response. Tob. Control Public Health East. Eur. 2013, 3, 59–60. [Google Scholar]
- Pampel, F. National Income, Inequality and Global Patterns of Cigarette Use. Soc. Forces 2007, 86, 445–466. [Google Scholar] [CrossRef] [PubMed]
- Cutler, D.M.; Lleras-Muney, A. Understanding differences in health behaviors by education. J. Health Econ. 2010, 29, 1–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Einav, L.; Finkelstein, A.; Ryan, S.P.; Schrimpf, P.; Cullen, M.R. Selection on Moral Hazard in Health Insurance. Am. Econ. Rev. 2013, 103, 178–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; White, J.S.; Hu, T.W.; Fong, G.T.; Yuan, J. The heterogeneous effects of cigarette prices on brand choice in China: Implications for tobacco control policy. Tob. Control 2015, 24, 109–127. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.L. Undiagnosed and Uncontrolled Chronic Conditions in China: Could Social Health Insurance Consolidation Make a Change? Med. Care Res. Rev. 2017. [Google Scholar] [CrossRef] [PubMed]
- Meyer, B.D.; Sullivan, J.X. Measuring the Well-Being of the Poor Using Income and Consumption; No. w9760; National Bureau of Economic Research: Cambridge, MA, USA, 2003; Available online: http://www.nber.org/papers/w9760 (accessed on 10 July 2018).
- Zhou, Z.; Gao, J.; Fox, A.; Rao, K.; Ke, X.; Ling, X.; Zhang, Y. Measuring the equity of inpatient utilization in Chinese rural areas. BMC Health Serv. Res. 2011, 11, 201. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z. Socioeconomic predictors of smoking and smoking frequency in urban China: Evidence of smoking as a social function. Health Promot. Int. 2004, 19, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Kakwani, N.; Wagstaff, A.; Doorslaer, E.V. Socio-economic inequalities in health: Measurement, computation, and statistical inference. J. Econom. 1997, 77, 87–103. [Google Scholar] [CrossRef]
- O’Donnell, O.; Doorslaer, E.V.; Wagstaff, A.; Lindelow, M. Analyzing Health Equity Using Household Survey Data: A Guide to Techniques and Their Implementation; The World Bank: Washington, DC, USA, 2008. [Google Scholar]
- Yiengprugsawan, V.; Lim, L.L.; Carmichael, G.A.; Dear, K.B.; Sleigh, A.C. Decomposing socioeconomic inequality for binary health outcomes: An improved estimation that does not vary by choice of reference group. BMC Res. Notes 2010, 3, 57. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Zhou, Z.; Si, Y.; Wei, X.; Xu, Y.; Fan, X.; Chen, G. Comparing the effects of China’s three basic health insurance schemes on the equity of health-related quality of life: Using the method of coarsened exact matching. Health Qual. Life Outcomes 2018, 16, 41. [Google Scholar] [CrossRef] [PubMed]
- Si, Y.; Zhou, Z.; Su, M.; Ma, M.; Xu, Y.; Heitner, J. Catastrophic healthcare expenditure and its inequality for households with hypertension: Evidence from the rural areas of Shaanxi Province in China. Int. J. Equity Health 2017, 16, 27. [Google Scholar] [CrossRef] [PubMed]
- Wagstaff, A. The bounds of the concentration index when the variable of interest is binary, with an application to immunization inequality. Health Econ. 2005, 14, 429–432. [Google Scholar] [CrossRef] [PubMed]
- Tabuchi, T.; Kondo, N. Educational inequalities in smoking among Japanese adults aged 25–94 years: Nationally representative sex-and age-specific statistics. J. Epidemiol. 2017, 27, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Bian, Y.; Logan, J.R. Market Transition and the Persistence of Power: The Changing Stratification System in Urban China. Am. Sociol. Rev. 1996, 61, 739–758. [Google Scholar] [CrossRef]
- Soyoung, K.; Mustillo, S.A. Market Transition, Social Stratification, and Health Disparities in China: Longitudinal Analysis 1991 to 2006. Sociol. Focus 2017, 1–17. [Google Scholar] [CrossRef]
- Hu, T.W.; Mao, Z.; Shi, J. Recent tobacco tax rate adjustment and its potential impact on tobacco control in China. Tob. Control 2010, 19, 80–82. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.W.; Mao, Z.; Ong, M.; Tong, E.; Tao, M.; Jiang, H.; Hammond, K.; Smith, K.R.; de Beyer, J.; Yurekli, A. China at the Crossroads: The Economics of Tobacco and Health. Tob. Control 2006, 15, i37–i41. [Google Scholar] [CrossRef] [PubMed]
- Guindon, G.E.; Tobin, S.; Yach, D. Trends and affordability of cigarette prices: Ample room for tax increases and related health gains. Tob. Control 2002, 11, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.W.; Mao, Z. Effects of Cigarette Tax on Cigarette Consumption and the Chinese Economy. Tob. Control 2002, 11, 105–108. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Report on the Global Tobacco Epidemic, 2011: Warning about the Dangers of Tobacco? World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Hosseinpoor, A.R.; Parker, L.A.; d’Espaignet, E.T.; Chatterji, S. Socio-economic inequality in smoking in low-income and middle-income countries: Results from the World Health Survey. PLoS ONE 2012, 7, e42843. [Google Scholar] [CrossRef] [PubMed]
- Bauer, T.; Göhlmann, S.; Sinning, M. Gender differences in smoking behavior. Health Econ. 2007, 16, 895–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Yang, J.; Gao, J.; Zhou, Z.; Zhang, T.; Ren, J.; Chen, G. Decomposing socioeconomic inequalities in depressive symptoms among the elderly in China. BMC Public Health 2016, 16, 1214. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, X.; Chen, M. Catastrophic health expenditures and its inequality in elderly households with chronic disease patients in China. Int. J. Equity Health 2015, 14, 8. [Google Scholar] [CrossRef] [PubMed]
Variables | Variables Description | Mean/% | ||
---|---|---|---|---|
Men | Women | All | ||
Tobacco use prevalence (TP) | Tobacco use or not | 29.7 | 3.5 | 16.0 |
Tobacco use quantities (TQ) | Number of cigarettes per day among smokers | 14.9 | 10.7 | 14.4 |
Chronic | ||||
No † | Don’t have chronic diseases = 1, no = 0 | 37.2 | 33.8 | 35.5 |
Yes | Having chronic diseases = 1, no = 0 | 62.8 | 66.2 | 64.5 |
Age group | ||||
45–54 † | 45 ≤ Age ≤ 54 | 30.7 | 35.2 | 33.0 |
55–64 | 55 ≤ Age ≤ 64 | 38.0 | 37.0 | 37.5 |
65–74 | 65 ≤ Age ≤ 74 | 22.0 | 19.8 | 20.7 |
75 and above | 75 ≤ Age | 9.3 | 8.3 | 8.8 |
Party | ||||
No † | Communist = 0, no = 1 | 82.3 | 95.7 | 89.3 |
Yes | Communist = 1, no = 0 | 17.7 | 4.3 | 10.7 |
Urban | ||||
Urban | Urban = 1, else = 0 | 39.3 | 40.4 | 39.9 |
Rural † | Rural = 1, else = 0 | 60.7 | 59.6 | 60.1 |
Educational attainment | ||||
Illiteracy † | No formal education(illiterate) = 1, else = 0 | 11.9 | 37.7 | 25.3 |
Primary school | Primary school = 1, else = 0 | 44.1 | 36.7 | 40.2 |
Middle school | Middle school = 1, else = 0 | 26.8 | 16.4 | 21.4 |
High school and above | High school and above = 1, else = 0 | 17.2 | 9.2 | 13.0 |
Household size | Amount of household members | 4.4 | 4.4 | 4.4 |
Ethnicity | ||||
Minor ethnicity † | Minor nationality = 1, else = 0 | 6.9 | 8.3 | 7.7 |
Han ethnicity | Han nationality = 1, else = 0 | 93.1 | 91.7 | 92.3 |
Marriage | ||||
Married † | Married = 1, Divorce or else = 0 | 91.6 | 85.2 | 88.3 |
Divorce or else | Divorce or else = 1, married = 0 | 8.4 | 14.8 | 11.7 |
Basic insurance | ||||
UEBMI † | Having UEBMI = 1, no = 0 | 16.1 | 10.9 | 13.4 |
URBMI | Having URBMI = 1, no = 0 | 6.8 | 8.7 | 7.8 |
NRCMS | Having NRCMS = 1, no = 0 | 77.1 | 80.4 | 78.8 |
Area | ||||
Northwest † | Living in northwest of China = 1, else = 0 | 7.1 | 7.2 | 7.2 |
Southwest | Living in southwest of China = 1, else = 0 | 17.5 | 17.4 | 17.4 |
South middle | Living in south middle of China = 1, else = 0 | 23.9 | 24.1 | 24.0 |
North | Living in north of China = 1, else = 0 | 13.5 | 13.2 | 13.4 |
East | Living in east of China = 1, else = 0 | 7.6 | 7.7 | 7.6 |
Northeast | Living in northeast of China = 1, else = 0 | 30.4 | 30.4 | 30.4 |
Economic Quantiles | Tobacco Use Prevalence (TP) | Tobacco Use Quantities (TQ) | ||||
---|---|---|---|---|---|---|
Men | Women | All | Men | Women | All | |
Poorest | 26.0 | 4.1 | 14.0 | 12.6 | 8.4 | 11.9 |
Poorer | 29.0 | 3.0 | 15.5 | 14.2 | 12.3 | 14.0 |
Middle | 30.9 | 4.0 | 17.0 | 14.8 | 11.1 | 14.4 |
Richer | 28.8 | 3.0 | 15.6 | 15.8 | 10.1 | 15.2 |
Richest | 32.7 | 3.4 | 17.7 | 16.5 | 11.8 | 16.0 |
p-value | <0.001 | 0.179 | <0.001 | <0.001 | 0.081 | <0.001 |
Groups | Tobacco Use Prevalence (TP) | Tobacco Use Quantities (TQ) | ||||
---|---|---|---|---|---|---|
CI | 95% Confidence Interval | CI | 95% Confidence Interval | |||
Lower Limit | Higher Limit | Lower Limit | Higher Limit | |||
Men | 0.041 | 0.022 | 0.060 | 0.051 | 0.033 | 0.069 |
Women | −0.039 | −0.102 | 0.023 | 0.056 | 0.003 | 0.110 |
All | 0.044 | 0.024 | 0.064 | 0.055 | 0.038 | 0.072 |
Independent Variables | Men | Women | All | ||||||
---|---|---|---|---|---|---|---|---|---|
dy/dx | Cont. | % | dy/dx | Cont. | % | dy/dx | Cont. | % | |
Economic quantiles (Poorest †) | |||||||||
Poorer | 0.0175 | −0.0039 | −9.27 | −0.0064 | 0.0119 | −29.79 | 0.0026 | −0.0010 | −2.40 |
Middle | 0.0293 * | −0.0070 | −16.83 | 0.0051 | −0.0102 | 25.65 | 0.0150 * | −0.0067 | −15.27 |
Richer | 0.0168 | −0.0016 | −3.71 | −0.0062 | 0.0048 | −12.08 | 0.0040 | −0.0007 | −1.58 |
Richest | 0.0568 *** | 0.0431 | 103.20 | 0.0078 | 0.0494 | −124.02 | 0.0325 *** | 0.0456 | 104.53 |
Chronic | −0.0112 | 0.0000 | 0.00 | 0.0037 | 0.0000 | 0.00 | −0.0024 | 0.0000 | 0.00 |
Education (Illiteracy †) | |||||||||
Primary school | −0.0160 | 0.0021 | 4.98 | −0.0125 ** | 0.0136 | −34.16 | −0.0190 ** | 0.0046 | 10.49 |
Middle school | −0.0413 ** | 0.0017 | 3.96 | −0.0141 ** | 0.0047 | −11.86 | −0.0297 *** | 0.0022 | 5.05 |
High school and above | −0.0663 *** | −0.0144 | −34.45 | −0.0259 *** | −0.0471 | 118.36 | −0.0495 *** | −0.0199 | −45.57 |
Age (45–54 †) | |||||||||
55–64 | −0.1086 *** | −0.0053 | −12.72 | 0.0055 | 0.0023 | −5.66 | −0.0470 *** | −0.0043 | −9.76 |
65–74 | −0.1427 *** | 0.0108 | 25.87 | 0.0080 | −0.0051 | 12.71 | −0.0641 *** | 0.0090 | 20.56 |
75 and above | −0.2025 *** | 0.0110 | 26.22 | −0.0010 | 0.0004 | −1.11 | −0.1022 *** | 0.0102 | 23.44 |
Housize | 0.0084 ** | −0.0049 | −11.82 | 0.0005 | −0.0025 | 6.23 | 0.0042 ** | −0.0045 | −10.41 |
Male | 0.2684 *** | −0.0267 | −61.08 | ||||||
Party | −0.0115 | −0.0009 | −2.18 | −0.0068 | −0.0045 | 11.35 | −0.0187 * | −0.0028 | −6.31 |
Area (Northwest †) | |||||||||
Southwest | 0.0001 | 0.0000 | 0.00 | −0.0051 | 0.0009 | −2.16 | −0.0026 | 0.0001 | 0.22 |
South middle | −0.0616 *** | 0.0054 | 12.91 | 0.0006 | −0.0005 | 1.19 | −0.0282 ** | 0.0046 | 10.48 |
North | −0.0980 *** | −0.0046 | −11.06 | 0.0511 *** | 0.0202 | −50.72 | −0.0174 | −0.0015 | −3.48 |
East | −0.0521 * | −0.0002 | −0.37 | 0.0432 *** | 0.0011 | −2.70 | −0.0002 | 0.0000 | 0.00 |
Northeast | −0.0899 *** | −0.0076 | −18.30 | 0.0088 | 0.0063 | −15.81 | −0.0380 *** | −0.0060 | −13.70 |
Insurance (UEBMI †) | |||||||||
URBMI | −0.0200 | 0.0000 | 0.00 | 0.0170 * | 0.0000 | 0.00 | 0.0083 | 0.0000 | 0.00 |
NRCMS | 0.0281 | 0.0000 | 0.00 | 0.0295 *** | 0.0000 | 0.00 | 0.0333 | 0.0000 | 0.00 |
Urban | −0.0066 | −0.0008 | −1.87 | 0.0138 *** | 0.0137 | −34.46 | 0.0067 | 0.0015 | 3.34 |
Marriage | 0.0372 * | −0.0019 | −4.58 | 0.0143 ** | −0.0062 | 15.45 | 0.0381 *** | −0.0036 | −8.33 |
Ethnicity | 0.0696 *** | −0.0023 | −5.58 | 0.0086 | −0.0024 | 6.08 | 0.0355 *** | −0.0022 | −5.04 |
Total contribution | 0.0185 | 44.4 | 0.0508 | −127.48 | −0.0021 | −4.82 | |||
Contribution of | 0.0232 | 55.6 | −0.0906 | 227.48 | 0.0457 | 104.82 |
Independent Variables | Men | Women | All | ||||||
---|---|---|---|---|---|---|---|---|---|
dy/dx | Cont. | % | dy/dx | Cont. | % | dy/dx | Cont. | % | |
Economic quantiles (Poorest †) | |||||||||
Poorer | 1.9330 ** | −0.0098 | −19.13 | 3.3471 * | −0.0237 | −42.20 | 2.1137 *** | −0.0111 | −20.24 |
Middle | 2.6193 *** | −0.0007 | −1.28 | 3.4425 | −0.0012 | −2.14 | 2.7401 *** | −0.0007 | −1.29 |
Richer | 3.5085 *** | 0.0172 | 33.50 | 1.1368 ** | 0.0078 | 13.83 | 3.3155 *** | 0.0168 | 30.63 |
Richest | 4.8506 *** | 0.0501 | 97.69 | 4.3576 ** | 0.0627 | 111.78 | 4.8122 *** | 0.0513 | 93.77 |
Chronic | 0.3361 | 0.0002 | 0.35 | −0.6612 | −0.0005 | −0.88 | 0.2733 | 0.0002 | 0.28 |
Education (Illiteracy †) | |||||||||
Primary school | 2.0859 ** | −0.0023 | −4.50 | 2.0613 | −0.0032 | −5.67 | 1.8581 ** | −0.0021 | −3.88 |
Middle school | 0.7611 | 0.0012 | 2.28 | −0.3816 | −0.0008 | −1.46 | 0.4499 | 0.0007 | 1.30 |
High school and above | −0.2938 | −0.0008 | −1.48 | 2.3132 | 0.0083 | 14.85 | −0.5354 | −0.0014 | −2.61 |
Age (45–54 †) | |||||||||
55–64 | 0.4546 | 0.0000 | 0.06 | 2.0961 | 0.0002 | 0.35 | 0.6106 | 0.0000 | 0.08 |
65–74 | −1.2290 | 0.0015 | 3.01 | −0.5932 | 0.0010 | 1.85 | −1.2775 * | 0.0017 | 3.02 |
75 and above | −4.8545 *** | 0.0063 | 12.21 | −1.8228 | 0.0033 | 5.84 | −4.5358 *** | 0.0060 | 11.04 |
Housize | 0.1175 | −0.0008 | −1.54 | 0.7644 ** | −0.0072 | −12.79 | 0.1849 | −0.0013 | −2.35 |
Male | 4.5376 *** | 0.0023 | 4.17 | ||||||
Party | 1.2449 * | 0.0017 | 3.35 | −3.0785 | −0.0059 | −10.55 | 1.1095 | 0.0016 | 2.89 |
Area (Northwest †) | |||||||||
Southwest | −0.8954 | 0.0002 | 0.45 | −0.7127 | 0.0003 | 0.45 | –0.9002 | 0.0002 | 0.43 |
South middle | −0.4308 | 0.0002 | 0.31 | 0.5983 | −0.0003 | −0.55 | −0.3973 | 0.0002 | 0.28 |
North | 1.3851 | 0.0008 | 1.63 | 5.2067 * | 0.0044 | 7.81 | 1.4707 | 0.0009 | 1.68 |
East | −0.7965 | −0.0004 | −0.78 | 6.0109 ** | 0.0042 | 7.54 | 0.0456 | 0.0000 | 0.04 |
Northeast | 2.3621 ** | −0.0006 | −1.22 | 5.8943 ** | −0.0022 | −3.88 | 2.5736 *** | −0.0007 | −1.29 |
Insurance (UEBMI †) | |||||||||
URBMI | 1.7689 | 0.0011 | 2.13 | −2.7413 | −0.0024 | −4.21 | 1.1634 | 0.0007 | 1.36 |
NRCMS | 0.7765 | −0.0030 | −5.93 | 1.5085 | −0.0082 | −14.68 | 0.7239 | −0.0029 | −5.35 |
Urban | −0.5256 | −0.0020 | −3.99 | −1.3910 | −0.0075 | −13.45 | −0.6062 | −0.0024 | −4.45 |
Marriage | 2.0798 ** | −0.0030 | −5.78 | 4.3339 *** | −0.0086 | −15.35 | 2.4717 *** | −0.0036 | −6.65 |
Ethnicity | 2.2198 ** | −0.0008 | −1.48 | 0.9094 | −0.0004 | −0.77 | 2.1428 ** | −0.0008 | −1.38 |
Total contribution | 0.0563 | 109.84 | 0.0200 | 35.72 | 0.0555 | 101.46 | |||
Contribution of | −0.0050 | −9.84 | 0.0360 | 64.28 | −0.0008 | −1.46 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, Y.; Zhou, Z.; Su, M.; Wang, X.; Li, D.; Wang, D.; He, S.; Hong, Z.; Chen, X. Socio-Economic Inequalities in Tobacco Consumption of the Older Adults in China: A Decomposition Method. Int. J. Environ. Res. Public Health 2018, 15, 1466. https://doi.org/10.3390/ijerph15071466
Si Y, Zhou Z, Su M, Wang X, Li D, Wang D, He S, Hong Z, Chen X. Socio-Economic Inequalities in Tobacco Consumption of the Older Adults in China: A Decomposition Method. International Journal of Environmental Research and Public Health. 2018; 15(7):1466. https://doi.org/10.3390/ijerph15071466
Chicago/Turabian StyleSi, Yafei, Zhongliang Zhou, Min Su, Xiao Wang, Dan Li, Dan Wang, Shuyi He, Zihan Hong, and Xi Chen. 2018. "Socio-Economic Inequalities in Tobacco Consumption of the Older Adults in China: A Decomposition Method" International Journal of Environmental Research and Public Health 15, no. 7: 1466. https://doi.org/10.3390/ijerph15071466
APA StyleSi, Y., Zhou, Z., Su, M., Wang, X., Li, D., Wang, D., He, S., Hong, Z., & Chen, X. (2018). Socio-Economic Inequalities in Tobacco Consumption of the Older Adults in China: A Decomposition Method. International Journal of Environmental Research and Public Health, 15(7), 1466. https://doi.org/10.3390/ijerph15071466