Improvement of Eco-Efficiency in China: A Comparison of Mandatory and Hybrid Environmental Policy Instruments
Abstract
:1. Introduction
2. Literature Review
2.1. Eco-Efficiency
2.2. Environmental Policy Instruments
3. Hypotheses and Methodology
3.1. Hypotheses
3.2. Methodology
4. Data and Method
4.1. Data Sources
4.2. Variables
4.2.1. Eco-Efficiency
4.2.2. Environmental Policy Instruments
4.2.3. Control Variables
4.2.4. Moderator Variable
4.3. Calculation Method
4.4. Descriptive Statistics
5. Results
5.1. Overview of Provincial Regional Eco-Efficiency in China
5.1.1. Mean Scale Results of Eco-Efficiency for the Provincial Regions in China
5.1.2. Radar Chart of Environmental Eco-Efficiency in China
5.2. Panel Regression Model
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wu, J.; Zuidema, C.; Gugerell, K.; Roo, G.D. Mind the gap! Barriers and implementation deficiencies of energy policies at the local scale in urban China. Energy Policy 2017, 106, 201–211. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liang, Y.; Yu, E.; Rao, R.; Xie, J. Review of electric vehicle policies in China: Content summary and effect analysis. Renew. Sustain. Energy Rev. 2017, 70, 698–714. [Google Scholar] [CrossRef]
- Chang, S.Y.; Zhao, L.L.; Timilsina, G.R.; Zhang, X.L.; Martinot, E.; Zhang, X. Biofuels development in China: Technology options and policies needed to meet the 2020 target. Energy Policy 2012, 51, 64–79. [Google Scholar] [CrossRef]
- Cai, Y.; Aoyama, Y. Fragmented authorities, institutional misalignments, and challenges to renewable energy transition: A case study of wind power curtailment in China. Energy Res. Soc. Sci. 2018. [Google Scholar] [CrossRef]
- Xia, X.; Zhang, A.; Liang, S.; Qi, Q.; Jiang, L.; Ye, Y. The Association between Air Pollution and Population Health Risk for Respiratory Infection: A Case Study of Shenzhen, China. Int. J. Environ. Res. Public Health 2017, 14, 950. [Google Scholar] [CrossRef] [PubMed]
- Lü, J.; Liang, L.; Feng, Y.; Li, R.; Liu, Y. Air Pollution Exposure and Physical Activity in China: Current Knowledge, Public Health Implications, and Future Research Needs. Int. J. Environ. Res. Public Health 2015, 12, 14887–14897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Foliente, G.; Song, X.; Xue, J.; Fang, D. Implications and future direction of greenhouse gas emission mitigation policies in the building sector of China. Renew. Sustain. Energy Rev. 2014, 31, 520–530. [Google Scholar] [CrossRef]
- Lin, Y.; Zou, J.; Yang, W.; Li, C.Q. A Review of Recent Advances in Research on PM2.5 in China. Int. J. Environ. Res. Public Health 2018, 15, 438. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, X. Energy and climate policy in China’s twelfth five-year plan: A paradigm shift. Energy Policy 2012, 41, 519–528. [Google Scholar] [CrossRef]
- Duan, M.; Tian, Z.; Zhao, Y.; Li, M. Interactions and coordination between carbon emissions trading and other direct carbon mitigation policies in China. Energy Res. Soc. Sci. 2017, 33, 59–69. [Google Scholar] [CrossRef]
- Kuosmanen, T.; Kortelainen, M. Measuring Eco-efficiency of Production with Data Envelopment Analysis. J. Ind. Ecol. 2005, 9, 59–72. [Google Scholar] [CrossRef]
- Kortelainen, M. Dynamic environmental performance analysis: A Malmquist index approach. Ecol. Econ. 2008, 64, 701–715. [Google Scholar] [CrossRef]
- Doonan, J.; Lanoie, P.; Laplante, B. Determinants of environmental performance in the Canadian pulp and paper industry: An assessment from inside the industry. Ecol. Econ. 2005, 55, 73–84. [Google Scholar] [CrossRef]
- Kuosmanen, T.; Kuosmanen, N. How not to measure sustainable value (and how one might). Ecol. Econ. 2009, 69, 235–243. [Google Scholar] [CrossRef]
- Wang, H.; Wheeler, D. Financial incentives and endogenous enforcement in China’s pollution levy system. J. Environ. Econ. Manag. 2005, 49, 174–196. [Google Scholar] [CrossRef]
- Kuosmanen, T.; Bijsterbosch, N.; Dellink, R. Environmental cost–benefit analysis of alternative timing strategies in greenhouse gas abatement: A data envelopment analysis approach. Ecol. Econ. 2009, 68, 1633–1642. [Google Scholar] [CrossRef]
- Schmidheiny, S. Eco-Efficiency and Sustainable Development; Risk Management Society Publishing: New York, NY, USA, 1972. [Google Scholar]
- Camarero, M.; Castillo, J.; Picazo-Tadeo, A.J.; Tamarit, C. Eco-Efficiency and Convergence in OECD Countries. Environ. Resour. Econ. 2013, 55, 87–106. [Google Scholar] [CrossRef] [Green Version]
- Meadows, D.H.; Meadows, D.L.; Randers, J.; Behrens, W.W., III. The Limits of Growth; Potomac Associates Universe Book: New York, NY, USA, 1972. [Google Scholar]
- Han, Z.; Wang, H.; Du, Q.; Zeng, Y. Natural Hazards Preparedness in Taiwan: A Comparison between Households with and without Disabled Members. Health Secur. 2017, 15, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Brattebø, H. Toward a Methods Framework for Eco-efficiency Analysis? J. Ind. Ecol. 2010, 9, 9–11. [Google Scholar] [CrossRef]
- Melanen, M.; Seppälä, J.; Myllymaa, T.; Mickwitz, P.; Rosenström, U.; Koskela, S.; Tenhunen, J.; Mäenpää, I.; Hering, F.; Estlander, A. Measuring Regional Eco-Efficiency—Case Kymenlaakso. Key Results of the ECOREG Project; Finnish Environment Institute: Helsinki, Finland, 2004. [Google Scholar]
- Lv, B.; Yang, J. Review of methodology and application of eco-efficiency. Acta Ecol. 2006, 26, 3898–3906. [Google Scholar]
- Chen, L.; Jia, G. Environmental efficiency analysis of China’s regional industry: A data envelopment analysis (DEA) based approach. J. Clean. Prod. 2017, 142, 846–853. [Google Scholar] [CrossRef]
- Zhu, Q.; Wu, J.; Li, X.; Xiong, B. China’s regional natural resource allocation and utilization: ADEA-based approach in a big data environment. J. Clean. Prod. 2017, 142, 809–818. [Google Scholar] [CrossRef]
- Dahl, R.A.; Lindblom, C.E. Politics, Economics, and Welfare. Am. Cathol. Sociol. Rev. 1954, 14, 187. [Google Scholar]
- Persson, A. Characterizing the policy instrument mixes for municipal waste in Sweden and England. Environ. Policy Gov. 2010, 16, 213–231. [Google Scholar] [CrossRef]
- Feiock, R.C.; Tavares, A.F.; Lubell, M. Policy Instrument Choices for Growth Management and Land Use Regulation. Policy Stud. J. 2008, 36, 461–480. [Google Scholar] [CrossRef]
- Kemp, R.P.M. Environmental Policy and Technical Change: A Comparison of the Technological Impact of Policy Instruments; Universitaire Pers Maastricht: Masstricht, The Netherlands, 1995. [Google Scholar]
- Bank, W. Five Years after Rio: Innovations in Environmental Policy; China Environmental Science Press: Beijing, China, 1998. [Google Scholar]
- Iraldo, F.; Testa, F.; Melis, M.; Frey, M. A Literature Review on the Links between Environmental Regulation and Competitiveness. Environ. Policy Gov. 2011, 21, 210–222. [Google Scholar] [CrossRef]
- Howlett, M.; Ramesh, M. Studying Public Policy: Policy Cycles and Policy Subsystems; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Montgomery, W.D. Markets in Licenses and Efficient Pollution Control Programs. J. Econ. Theory 1972, 5, 395–418. [Google Scholar] [CrossRef]
- Magat, W.A.; Viscusi, W.K. Effectiveness of the EPA’s Regulatory Enforcement: The Case of Industrial Effluent Standards. J. Law Econ. 1990, 33, 331–360. [Google Scholar] [CrossRef]
- Laplante, B.; Rilstone, P. Environmental Inspections and Emissions of the Pulp and Paper Industry in Quebec. J. Environ. Econ. Manag. 1996, 31, 19–36. [Google Scholar] [CrossRef]
- Stavins, R.N. Correlated Uncertainty and Policy Instrument Choice. J. Environ. Econ. Manag. 1996, 30, 218–232. [Google Scholar] [CrossRef]
- Arimura, T.H.; Hibiki, A.; Katayama, H. Is a voluntary approach an effective environmental policy instrument?: A case for environmental management systems. J. Environ. Econ. Manag. 2008, 55, 281–295. [Google Scholar] [CrossRef]
- Zeng, B.; Zheng, J.F.; Qiu, Z.P. A Study on the Effect of Environmental Policy Instruments on Environmental Quality—Based on the Provincial Panel Data from 2001 to 2012. Shanghai J. Econ. 2016, 5, 39–46. [Google Scholar]
- Xu, L.; Su, J. From government to market and from producer to consumer: Transition of policy mix towards clean mobility in China ☆. Energy Policy 2016, 96, 328–340. [Google Scholar] [CrossRef]
- Zhang, L.; Mol, A.P.; He, G. Transparency and information disclosure in China’s environmental governance. Curr. Opin. Environ. Sustain. 2016, 18, 17–24. [Google Scholar] [CrossRef]
- Wei, J.; Zhao, D.; Jia, R.; Marinova, D. Environmental damage costs from airborne pollution in the major cities in China. Int. J. Environ. Sustain. Dev. 2014, 64, 404–413. [Google Scholar] [CrossRef]
- Wei, J.; Guo, X.; Marinova, D.; Fan, J. Industrial SO2 pollution and agricultural losses in China: Evidence from heavy air polluters. J. Clean. Prod. 2014, 64, 404–413. [Google Scholar] [CrossRef]
- Surhone, L.M.; Timpledon, M.T.; Marseken, S.F.; School, Y.L. Yale Center for Environmental Law and Policy; Betascript Publishing: Mishawaka, IN, USA, 2010. [Google Scholar]
- Abdullah, L.; Wan, K.W.I. A New Ranking of Environmental Performance Index Using Weighted Correlation Coefficient in Intuitionistic Fuzzy Sets: A Case of ASEAN Countries. Mod. Appl. Sci. 2013, 7. [Google Scholar] [CrossRef]
- Xu, T.; Gao, P.; Yu, Q.; Fang, D. An Improved Eco-Efficiency Analysis Framework Based on Slacks-Based Measure Method. Sustainability 2017, 9, 952. [Google Scholar] [CrossRef]
- Yang, Q.; Wan, X.; Ma, H. Assessing Green Development Efficiency of Municipalities and Provinces in China Integrating Models of Super-Efficiency DEA and Malmquist Index. Sustainability 2015, 7, 4492–4510. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.; Park, Y.J. Eco-Efficiency Evaluation Considering Environmental Stringency. Sustainability 2017, 9, 661. [Google Scholar] [CrossRef]
- Deng, Q.; Liu, X.; Liao, H. Identifying Critical Factors in the Eco-Efficiency of Remanufacturing Based on the Fuzzy DEMATEL Method. Sustainability 2015, 7, 15527–15547. [Google Scholar] [CrossRef] [Green Version]
- Fuxi, W.; Mao, A.; Li, H.; Jia, M. Quality Measurement and Regional Difference of Urbanization in Shandong Province Based on the Entropy Method. Sci. Geogr. Sin. 2016, 33, 1323–1329. [Google Scholar]
- Zou, Z.H.; Yun, Y.; Sun, J.N. Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. J. Environ. Sci. 2006, 18, 1020–1023. [Google Scholar] [CrossRef]
- Liu, D.; Li, L. Application Study of Comprehensive Forecasting Model Based on Entropy Weighting Method on Trend of PM2.5 Concentration in Guangzhou, China. Int. J. Environ. Res. Public Health 2015, 12, 7085–7099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, L.; Shao, Z.; Zhang, H.; Xu, C.; Wu, D. A Comprehensive Evaluation of Urban Sustainable Development in China Based on the TOPSIS-Entropy Method. Sustainability 2016, 8, 746. [Google Scholar] [CrossRef]
- Wang, Q.; Yuan, X.; Zhang, J.; Gao, Y.; Hong, J.; Zuo, J.; Liu, W. Assessment of the Sustainable Development Capacity with the Entropy Weight Coefficient Method. Sustainability 2015, 7, 13542–13563. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Si, D.; Zhang, X. Regional Sustainable Development Analysis Based on Information Entropyâ-Sichuan Province as an Example. Int. J. Environ. Res. Public Health 2017, 14, 1219. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.H.; Chen, X.P.; Heck, P.; Hong, M. An entropy-perspective study on the sustainable development potential of tourism destination ecosystem in Dunhuang, China. Sustainability 2014, 6, 8980–9006. [Google Scholar] [CrossRef]
- Huang, Q.; Huang, J.; Yang, X.; Ren, L.; Tang, C.; Zhao, L. Evaluating the Scale Effect of Soil Erosion Using Landscape Pattern Metrics and Information Entropy: A Case Study in the Danjiangkou Reservoir Area, China. Sustainability 2017, 9, 1243. [Google Scholar] [CrossRef]
- Liang, X.; Si, D.; Xu, J. Quantitative Evaluation of the Sustainable Development Capacity of Hydropower in China Based on Information Entropy. Sustainability 2018, 10, 529. [Google Scholar] [CrossRef]
- Ren, S.; Li, X.; Yuan, B.; Li, D.; Chen, X. The effects of three types of environmental regulation on eco-efficiency: A cross-region analysis in China. J. Clean. Prod. 2018, 173, 245–255. [Google Scholar] [CrossRef]
- Daugbjerg, C.; Sønderskov, K.M. Environmental Policy Performance Revisited: Designing Effective Policies for Green Markets. Polit. Stud. 2012, 60, 399–418. [Google Scholar] [CrossRef]
- Jin, Y.; Andersson, H.; Zhang, S. Air Pollution Control Policies in China: A Retrospective and Prospects. Int. J. Environ. Res. Public Health 2016, 13, 1219. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Chen, Q.; Chen, H.; Management, S.O.; University, N. Analysis of the Impact of Different Environmental Policy Instruments on Technology Innovation:Evidence from China’s 30 Provinces’ Panel Data from 2004–2011. Manag. Rev. 2016, 1, 53–61. [Google Scholar]
- Kathuria, V. Informal regulation of pollution in a developing country: Evidence from India. Ecol. Econ. 2007, 63, 403–417. [Google Scholar] [CrossRef]
- Dias Simões, F. Consumer Behavior and Sustainable Development in China: The Role of Behavioral Sciences in Environmental Policymaking. Sustainability 2016, 8, 897. [Google Scholar] [CrossRef]
- Victor, D.; Agamuthu, P. Policy trends of strategic environmental assessment in Asia. Environ. Sci. Policy 2014, 41, 63–76. [Google Scholar] [CrossRef]
- Momsen, K.; Stoerk, T. From intention to action: Can nudges help consumers to choose renewable energy? Energy Policy 2014, 74, 376–382. [Google Scholar] [CrossRef]
- Runhaar, H. Tools for integrating environmental objectives into policy and practice: What works where? Environ. Impact Assess. Rev. 2016, 59, 1–9. [Google Scholar] [CrossRef]
- Zhan, X.; Tang, S.Y. Political opportunities, resource constraints and policy advocacy of environmental NGOs in China. Public Admin. 2013, 91, 381–399. [Google Scholar] [CrossRef]
- Doern, G.B.; Phidd, R.W. Canadian Public Policy: Ideas, Structure, Process; Methuen Publishing: London, UK, 1983. [Google Scholar]
- Norberg-Bohm, V. Stimulating “Green” Technological Innovation: An Analysis of Alternative Policy Mechanisms. Policy Sci. 1999, 32, 13–38. [Google Scholar] [CrossRef]
- Xie, R.H.; Yuan, Y.J.; Huang, J.J. Different Types of Environmental Regulations and Heterogeneous Influence on “Green” Productivity: Evidence from China. Ecol. Econ. 2017, 132, 104–112. [Google Scholar] [CrossRef]
Level Two Index | Level Three Index | Level Four Index | Unit | Weight | Index Direction | |
---|---|---|---|---|---|---|
Eco-efficiency | Environmental Quality | Air | Annual Average Concentration of Sulphur Dioxide | μg/m3 | 0.0143 | − |
Annual Average Concentration of Nitrogen Dioxide | μg/m3 | 0.0344 | − | |||
Annual Average Concentration of Fine Particles (PM10) | μg/m3 | 0.0015 | − | |||
Days When Air Quality is at or Better than Grade Two | Day | 0.0100 | + | |||
Water | Chemical Oxygen Demand (COD) Emission Intensity | kg/GDP (10,000) | 0.0065 | − | ||
Industrial Wastewater Emission Intensity | ton/GDP (10,000) | 0.0129 | − | |||
Solid Waste | General Industrial Solid Waste Emission Intensity | ton/GDP (10,000) | 0.0012 | − | ||
Eco-Protection | Biodiversity | Forest Cover Rate | % | 0.0870 | + | |
The proportion of Nature Reserves in the Area of Jurisdiction | % | 0.1278 | + | |||
Town Greening | Greening Cover Rate of Urban Built-up Area | % | 0.0152 | + | ||
Proportion of Total Area of Wetlands in National Land Area (%) | % | 0.2141 | + | |||
Environmental Governance | Pollution Control | Rate of Industrial Waste Gas Treatment Facilities | set/MCM | 0.1044 | + | |
Comprehensive Utilization of General Industrial Solid Waste | % | 0.0097 | + | |||
Rate of Industrial Sewage Treatment Facilities | set/10-kilotons | 0.0721 | + | |||
Environmental Regulation | Environmental Pollution Investment Intensity | % | 0.2858 | + | ||
Number of Environmental Incidents | number | 0.0029 | − |
Mandatory Environmental Policy Instruments (MEPI) | Hybrid Environmental Policy Instruments (HEPI) | Voluntary Environmental Policy Instruments (VEPI) |
---|---|---|
‘Three-simultaneity’ institution | Sewage fee collection institution | Environmental mission |
Emission discharge license institution | Emission trading institution | Environmental information disclosure institution |
Pollutant emission concentration control | Environmental subsidy institution | ENGO |
Deadline governance institution | Energy saving subsidy institution | Environmental impact assessment public hearing |
Environmental administration inspection | Public opinion supervision | |
Total pollutant emission control | Green nudges |
Category | Variable | Calculation Method | Unit |
---|---|---|---|
Dependent variable | EE | Entropy Weight Method | — |
Independent variable | Use intensity of MEPI | Total investment in environmental protection components for projects meeting ‘three-simultaneity’ requirement/Local GDP | — |
Use intensity of HEPI | Receipt of fee on waste discharge/Local revenue | — | |
Use intensity of VEPI | Number of social education activities/Local population | — | |
Moderator variable | PCDI | Per capita disposable income | Yuan |
Control variable | Ind | Output value of secondary industry/Local GDP | % |
Investment intensity of R&D | R&D expenditure/Local GDP | — | |
GDP | Gross local product | Yuan | |
Pop | Local population | — |
Variable | Mean | SD | Min | Max | N |
---|---|---|---|---|---|
lnGDP | 9.08 | 1.08 | 5.52 | 11.12 | 310 |
ind | 47.30 | 8.05 | 21.31 | 59.05 | 310 |
pop | 0.43 | 0.27 | 0.03 | 0.03 | 310 |
R&D | 1.30 | 1.04 | 1.04 | 5.98 | 310 |
MEPI | 0.38 | 0.26 | 0.03 | 1.92 | 310 |
HEPI | 0.61 | 0.51 | 0.01 | 4.63 | 310 |
VEPI | 0.14 | 0.19 | 0.00 | 2.25 | 310 |
PCDI | 3.25 | 2.04 | 0.51 | 10.52 | 310 |
EE | 34.61 | 9.58 | 21.02 | 100 | 310 |
Variable | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 |
---|---|---|---|---|---|---|---|---|
lnGDP | 0.3025 | 1.1598 | 0.0974 | 2.0788 | 1.4991 | 2.3388 | 0.7419 | −1.4362 |
ind | 0.0286 | −0.0141 | −0.0753 | −0.0112 | −0.5213 | −0.7555 * | −0.3358 | −0.0183 |
pop | 0.0042 | 0.0062 | 0.0011 | 0.0032 | −0.0222 | −0.0267 | −0.0241 | −0.0322 * |
R&D | 1.7289 | 1.3190 | 2.0595 | 2.0643 | 15.1598 | 18.0387 * | 16.9950 | 18.1697 ** |
MEPI | 2.1944 *** | 2.0498 *** | −1.2971 *** | −3.0509 *** | ||||
HEPI | 0.7329 *** | 2.4440 *** | −0.5007 * | −4.2828 *** | ||||
VEPI | 1.5943 | |||||||
MEPI * HEPI | −0.2307 *** | |||||||
HEPI * PCDI | 0.0005 *** | |||||||
MEPI * PCDI | −0.0038 *** | |||||||
PCDI | 0.9213 *** | 1.2078 *** | 1.1397 ** | 1.1566 *** | ||||
Constant | 27.03 | 22.27 | 34.39 | 10.97 | 34.21 | 35.00 | 29.01 | 27.45 |
N | 310 | 310 | 310 | 310 | 310 | 310 | 310 | 310 |
R2 | 0.26 | 0.11 | 0.03 | 0.42 | 0.19 | 0.24 | 0.12 | 0.36 |
F Value | 19.32 *** | 7.10 *** | 1.53 | 27.77 *** | 2.48 ** | 2.75 ** | 1.42 | 4.96 *** |
Hausman test | 14.48 ** | 17.07 *** | 18.16 *** | 16.08 ** | 16.74 ** | 40.82 *** | 21.74 *** | 18.20 *** |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Z.; Zhang, M.; Mao, Q.; Yu, B.; Ma, B. Improvement of Eco-Efficiency in China: A Comparison of Mandatory and Hybrid Environmental Policy Instruments. Int. J. Environ. Res. Public Health 2018, 15, 1473. https://doi.org/10.3390/ijerph15071473
Liang Z, Zhang M, Mao Q, Yu B, Ma B. Improvement of Eco-Efficiency in China: A Comparison of Mandatory and Hybrid Environmental Policy Instruments. International Journal of Environmental Research and Public Health. 2018; 15(7):1473. https://doi.org/10.3390/ijerph15071473
Chicago/Turabian StyleLiang, Zifeng, Manli Zhang, Qingduo Mao, Bingxin Yu, and Ben Ma. 2018. "Improvement of Eco-Efficiency in China: A Comparison of Mandatory and Hybrid Environmental Policy Instruments" International Journal of Environmental Research and Public Health 15, no. 7: 1473. https://doi.org/10.3390/ijerph15071473
APA StyleLiang, Z., Zhang, M., Mao, Q., Yu, B., & Ma, B. (2018). Improvement of Eco-Efficiency in China: A Comparison of Mandatory and Hybrid Environmental Policy Instruments. International Journal of Environmental Research and Public Health, 15(7), 1473. https://doi.org/10.3390/ijerph15071473