Study of the In Vitro Antagonistic Activity of Various Single-Strain and Multi-Strain Probiotics against Escherichia coli
Abstract
:1. Introduction
2. Materials and Methods
2.1. Probiotic Strains, Reference Microorganisms and Clinical Isolates
2.2. Enumeration of Microorganisms
2.3. Agar Spot Test
2.4. Co-Culturing of Probiotic Strains and E. coli Strains in Milk
2.5. DNA Detection of Probiotic Strains and E. coli Isolates
2.6. Statistical Analysis
3. Results
3.1. Agar-Spot Test
3.2. Co-Culturing Method
3.3. Identification of Species and Genera Using Molecular Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Katouli, M. Population structure of gut Escherichia coli and its role in development of extra-intestinal infections. Iran. J. Microbiol. 2010, 2, 59–72. [Google Scholar] [PubMed]
- Conway, T.; Cohen, P.S. Commensal and Pathogenic Escherichia coli Metabolism in the Gut. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef]
- Penders, J.; Gerhold, K.; Stobberingh, E.E.; Thijs, C.; Zimmermann, K.; Lau, S.; Hamelmann, E. Establishment of the intestinal microbiota and its role for atopic dermatitis in early childhood. J. Allergy Clin. Immunol. 2012, 132, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Houghteling, P.D.; Walker, W.A. Why is initial bacterial colonization of the intestine important to infants’ and children’s health? J. Pediatr. Gastroenterol. Nutr. 2015, 60, 294–307. [Google Scholar] [CrossRef] [PubMed]
- Franz, E.; Veenman, C.; van Hoek, A.H.A.; De Husman, R.; Blaak, H. Pathogenic Escherichia coli producing Extended-Spectrum β-Lactamases isolated from surface water and wastewater. Sci. Rep. 2015, 5, 14372. [Google Scholar] [CrossRef] [PubMed]
- Rund, S.A.; Rohde, H.; Sonnenborn, U.; Oelschlaeger, T.A. Antagonistic effects of probiotic Escherichia coli Nissle 1917 on EHEC strains of serotype O104:H4 and O157:H7. Int. J. Med. Microbiol. 2013, 303, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jensen, B.H.; Olsen, K.E.P.; Struve, C.; Krogfelt, K.A.; Petersen, A.M. Epidemiology and Clinical Manifestations of Enteroaggregative Escherichia coli. Clin. Microbiol. Rev. 2014, 27, 614–630. [Google Scholar] [CrossRef] [PubMed]
- Malema, M.; Abia, A.; Tandlich, R.; Zuma, B.; Kahinda, J.-M.M.; Ubomba-Jaswa, E. Antibiotic-Resistant Pathogenic Escherichia coli Isolated from Rooftop Rainwater-Harvesting Tanks in the Eastern Cape, South Africa. Int. J. Environ. Res. Public Health 2018, 15, 892. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization. Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food Guidelines for the Evaluation of Probiotics in Food Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food; FAO: London, UK, 2002. [Google Scholar]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fijan, S. Microorganisms with Claimed Probiotic Properties: An Overview of Recent Literature. Int. J. Environ. Res. Public Health 2014, 11, 4745–4767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Fatheree, N.Y.; Mangalat, N.; Rhoads, J.M. Human-derived probiotic Lactobacillus reuteri strains differentially reduce intestinal inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 299, G1087–G1096. [Google Scholar] [CrossRef] [PubMed]
- Valeur, N.; Engel, P.; Carbajal, N.; Connolly, E.; Ladefoged, K. Colonization and Immunomodulation by Lactobacillus reuteri ATCC 55730 in the Human Gastrointestinal Tract. Appl. Environ. Microbiol. 2004, 70, 1176–1181. [Google Scholar] [CrossRef] [PubMed]
- Talarico, T.L.; Casas, I.A.; Chung, T.C.; Dobrogosz, W.J. Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob. Agents Chemother. 1988, 32, 1854–1858. [Google Scholar] [CrossRef] [PubMed]
- Yuki, N.; Watanabe, K.; Mike, A.; Tagami, Y.; Tanaka, R.; Ohwaki, M.; Morotomi, M. Survival of a probiotic, Lactobacillus casei strain Shirota, in the gastrointestinal tract: Selective isolation from faeces and identification using monoclonal antibodies. Int. J. Food Microbiol. 1999, 48, 51–57. [Google Scholar] [CrossRef]
- Almeida, C.C.; Lorena, S.L.S.; Pavan, C.R.; Akasaka, H.M.I.; Mesquita, M.A. Beneficial Effects of Long-Term Consumption of a Probiotic Combination of Lactobacillus casei Shirota and Bifidobacterium breve Yakult May Persist After Suspension of Therapy in Lactose-Intolerant Patients. Nutr. Clin. Pract. 2012, 27, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, R.; Silva, L.; Souza, T.; Lima, M.; de Oliveira, N.; Vieira, L.; Arantes, R.; Miyoshi, A.; Nicoli, J.; Neumann, E.; et al. Safety and Protective Effectiveness of Two Strains of Lactobacillus with Probiotic Features in an Experimental Model of Salmonellosis. Int. J. Environ. Res. Public Health 2014, 11, 8755–8776. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.W.; Gilliland, S.E. Effect of fermented milk (yogurt) containing Lactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans. J. Am. Coll. Nutr. 1999, 18, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Andreeva, P.M.; Omar, H.A. Effectiveness of current therapy of bacterial vaginosis. Int. J. Adolesc. Med. Health 2002, 14, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Phavichitr, N.; Puwdee, P.; Tantibhaedhyangkul, R. Cost-benefit analysis of the probiotic treatment of children hospitalized for acute diarrhea in Bangkok, Thailand. Southeast Asian J. Trop. Med. Public Health 2013, 44, 1065–1071. [Google Scholar] [PubMed]
- Ambalam, P.; Kondepudi, K.K.; Balusupati, P.; Nilsson, I.; Wadström, T.; Ljungh, Å. Prebiotic preferences of human Lactobacilli strains in co-culture with bifidobacteria and antimicrobial activity against Clostridium difficile. J. Appl. Microbiol. 2015, 119, 1672–1682. [Google Scholar] [CrossRef] [PubMed]
- Alanzi, A.; Honkala, S.; Honkala, E.; Varghese, A.; Tolvanen, M.; Söderling, E. Effect of Lactobacillus rhamnosus and Bifidobacterium lactis on gingival health, dental plaque, periodontopathogens in adolescents: A randomised placebo-controlled clinical trial. Benef. Microbes 2018, 9, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Houghton, L.A.; Morris, J.; Reilly, B.; Guyonnet, D.; Feuillerat, N.G.; Schlumberger, A.; Jakob, S.; Whorwell, P.J. Clinical trial: The effects of a fermented milk product containing Bifidobacterium lactis DN-173 010 on abdominal distension and gastrointestinal transit in irritable bowel syndrome with constipation. Aliment. Pharmacol. Ther. 2009, 29, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Dolin, B.J. Effects of a propietary Bacillus coagulans preparation on symptoms of diarrhea-predominant irritable bowel syndrome. Methods Find. Exp. Clin. Pharmacol. 2009, 31, 655. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, K.; Zoumpopoulou, G.; Foligné, B.; Alexandraki, V.; Kazou, M.; Pot, B.; Tsakalidou, E. Discovering probiotic microorganisms: In vitro, in vivo, genetic and omics approaches. Front. Microbiol. 2015, 6, 1–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millette, M.; Luquet, F.M.; Lacroix, M. In vitro growth control of selected pathogens by Lactobacillus acidophilus- and Lactobacillus casei-fermented milk. Lett. Appl. Microbiol. 2007, 44, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Shokryazdan, P.; Sieo, C.C.; Kalavathy, R.; Liang, J.B.; Alitheen, N.B.; Jahromi, M.F.; Ho, Y.W. Probiotic potential of Lactobacillus strains with antimicrobial activity against some human pathogenic strains. BioMed Res. Int. 2014, 2014, 927268. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, C.N.; Nielsen, V.R.; Hayford, A.E.; Møller, P.L.; Michaelsen, K.F.; Paerregaard, A.; Sandström, B.; Tvede, M.; Jakobsen, M. Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl. Environ. Microbiol. 1999, 65, 4949–4956. [Google Scholar] [PubMed]
- El-Kholy, A.M.; El-Shinawy, S.H.; Meshref, A.M.S.; Korny, A.M. Screening of Antagonistic Activity of Probiotic Bacteria against Some Food-Borne Pathogens. J. Appl. Environ. Microbiol. 2014, 2, 53–60. [Google Scholar]
- Dowarah, R.; Verma, A.K.; Agarwal, N.; Singh, P.; Singh, B.R. Selection and characterization of probiotic lactic acid bacteria and its impact on growth, nutrient digestibility, health and antioxidant status in weaned piglets. PLoS ONE 2018, 13, e0192978. [Google Scholar] [CrossRef] [PubMed]
- Forssten, S.D.; Ouwehand, A.C. Simulating colonic survival of probiotics in single-strain products compared to multi-strain products. Microb. Ecol. Health Dis. 2017, 28, 1378061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fijan, S. Influence of the Growth of Pseudomonas aeruginosa in Milk Fermented by Multispecies Probiotics and Kefir Microbiota. J. Probiotics Health 2015, 4, 1–6. [Google Scholar] [CrossRef]
- Dubernet, S.; Desmasures, N.; Guéguen, M. A PCR-based method for identification of Lactobacilli at the genus level. FEMS Microbiol. Lett. 2002, 214, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Bernhard, A.E.; Field, K.G. Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S ribosomal DNA genetic markers from fecal anaerobes. Appl. Environ. Microbiol. 2000, 66, 1587–1594. [Google Scholar] [CrossRef] [PubMed]
- Sul, S.-Y.; Kim, H.-J.; Kim, T.-W.; Kim, H.-Y. Rapid identification of Lactobacillus and Bifidobacterium in probiotic products using multiplex PCR. J. Microbiol. Biotechnol. 2007, 17, 490–495. [Google Scholar] [PubMed]
- Walter, J.; Tannock, G.W.; Tilsala-Timisjarvi, A.; Rodtong, S.; Loach, D.M.; Munro, K.; Alatossava, T. Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Appl. Environ. Microbiol. 2000, 66, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Fujita, T.; Suzuki, Y.; Benno, Y. Monitoring and survival of Lactobacillus gasseri SBT2055 in the human intestinal tract. Microbiol. Immunol. 2006, 50, 867–870. [Google Scholar] [CrossRef] [PubMed]
- Nagabhushanam, K.; Arumugam, S.; Ali, F. Novel PCR Primers and Methods Thereof for the Identification of Bacillus coagulans. U.S. Patent 15,276,912, 27 September 2016. [Google Scholar]
- Cheng, S.; McCleskey, F.K.; Gress, M.J.; Petroziello, J.M.; Liu, R.; Namdari, H.; Beninga, K.; Salmen, A.; Del Vecchio, V.G. A PCR assay for identification of Enterococcus faecium. J. Clin. Microbiol. 1997, 35, 1248–1250. [Google Scholar] [PubMed]
- McDaniels, A.E.; Rice, E.W.; Reyes, A.L.; Johnson, C.H.; Haugland, R.A.; Stelma, G.N., Jr. Confirmational identification of Escherichia coli, a comparison of genotypic and phenotypic assays for glutamate decarboxylase and β-d-glucuronidase. Appl. Environ. Microbiol. 1996, 62, 3350–3354. [Google Scholar] [PubMed]
- Kullen, M.J.; Sanozky-Dawes, R.B.; Crowell, D.C.; Klaenhammer, T.R. Use of the DNA sequence of variable regions of the 16S rRNA gene for rapid and accurate identification of bacteria in the Lactobacillus acidophilus complex. J. Appl. Microbiol. 2000, 89, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Pedroso, A.; Hurley-Bacon, A.; Zedek, A.; Kwan, T.; Jordan, A.; Avellaneda, G.; Hofacre, C.; Oakley, B.; Collett, S.; Maurer, J.; et al. Can Probiotics Improve the Environmental Microbiome and Resistome of Commercial Poultry Production? Int. J. Environ. Res. Public Health 2013, 10, 4534–4559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratsep, M.; Naaber, P.; Kõljalg, S.; Smidt, I.; Shkut, E.; Sepp, E. Effect of Lactobacillus plantarum Strains on Clinical Isolates of Clostridium difficile in vitro. J. Probiotics Health 2014, 2, 1–5. [Google Scholar] [CrossRef]
- Saxelin, M.; Tynkkynen, S.; Mattila-Sandholm, T.; de Vos, W.M. Probiotic and other functional microbes: From markets to mechanisms. Curr. Opin. Biotechnol. 2005, 16, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Chapman, C.M.C.; Gibson, G.R.; Todd, S.; Rowland, I. Comparative in vitro inhibition of urinary tract pathogens by single- and multi-strain probiotics. Eur. J. Nutr. 2013, 52, 1669–1677. [Google Scholar] [CrossRef] [PubMed]
- Brashears, M.M.; Jaroni, D.; Trimble, J. Isolation, selection, characterization of lactic acid bacteria for a competitive exclusion product to reduce shedding of Escherichia coli O157:H7 in cattle. J. Food Prot. 2003, 66, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Anas, M.; Ahmed, K.; Mebrouk, K. Study of the Antimicrobial and Probiotic Effect of Lactobacillus plantarum Isolated from Raw Goat’s Milk from the Region of Western Algeria. Int. J. Sci. Basic Appl. Res. 2014, 13, 18–27. [Google Scholar]
- Prabhurajeshwar, C.; Chandrakanth, R.K. Probiotic potential of Lactobacilli with antagonistic activity against pathogenic strains: An in vitro validation for the production of inhibitory substances. Biomed. J. 2017, 40, 270–283. [Google Scholar] [CrossRef] [PubMed]
- Masoumikia, R.; Ganbarov, K. Antagonistic activity of probiotic Lactobacilli against human enteropathogenic bacteria in homemade tvorog curd cheese from Azerbaijan. Bioimpacts 2015, 5, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Hutt, P.; Shchepetova, J.; Loivukene, K.; Kullisaar, T.; Mikelsaar, M. Antagonistic activity of probiotic Lactobacilli and bifidobacteria against entero- and uropathogens. J. Appl. Microbiol. 2006, 100, 1324–1332. [Google Scholar] [CrossRef] [PubMed]
- Wassenaar, T.M. Insights from 100 Years of Research with Probiotic E. coli. Eur. J. Microbiol. Immunol. 2016, 6, 147–161. [Google Scholar] [CrossRef] [PubMed]
- Lertcanawanichakul, M.; Sawangnop, S. A Comparison of Two Methods Used for Measuring the Antagonistic Activity of Bacillus Species. Walailak J. Sci. Technol. 2018, 5, 161–171. [Google Scholar]
- Fijan, S.; Grah, N.; Holobar, A. Analysis of the Possible Use of Respirometry to Detect Pathogens in Milk Fermented with Various Probiotics. Int. J. Probiotics 2017, 12. Available online: http://www.nchpjournals.com/journals/manuscript.php?msid=644 (accessed on 28 December 2017).
- Chapman, C.M.C.; Gibson, G.R.; Rowland, I. In vitro evaluation of single- and multi-strain probiotics: Inter-species inhibition between probiotic strains, and inhibition of pathogens. Anaerobe 2012, 18, 405–413. [Google Scholar] [CrossRef] [PubMed]
Probiotic Supplement * | Concentration of Microbes According to Manufacturer ** | Microorganisms According to the Manufacturers | Intended Use |
---|---|---|---|
SSP1 | 108 cfu/5 drops | Lactobacillus reuteri DSM 17938 | Infant colic, restoring natural balance of microbiota in the intestine |
SSP2 | 6.5 × 109 cfu/65 mL | Lactobacillus casei Shirota | Improving gut health, gut function and immune modulation |
SSP3 | 109 cfu/5 drops | Bifidobacterium animalis subsp. lactis BB-12 | Restoring balance of intestine microbiota, treating diarrhoea in infants |
SSP4 | 2 × 109 cfu/capsule | Bacillus coagulans LMG S-24828 | For regulating intestinal microbiota |
SSP5 | 2.5–25 × 109 cfu/capsule | Escherichia coli Nissle 1917 | For chronic constipation and ulcerative colitis in remission stage, treating diarrhoea, colonisation prophylaxis in infants |
MSP1 | 3 × 109 cfu/3 g | Lactobacillus acidophilus W22; Lactobacillus casei W56; Lactobacillus plantarum W62; Lactobacillus rhamnosus W71; Lactobacillus salivarius W57; Enterococcus faecium W54; Lactococcus lactis W58 | Restoring balance of intestine microbiota, especially for overweight people |
MSP2 | 5 × 109 cfu/3 g | Lactobacillus acidophilus NIZO 3678; Lactobacillus acidophilus NIZO 3887; Lactobacillus paracasei NIZO 3672; Lactobacillus plantarum NIZO 3684; Lactobacillus rhamnosus NIZO 3689; Lactobacillus salivarius NIZO 3675; Bifidobacterium bifidum NIZO 3804; Bifidobacterium lactis NIZO 3680; Enterococcus faecium NIZO 3886 | Restoring balance of intestine microbiota during consumption of antibiotics |
MSP3 | 2 × 109 cfu/7.5 mL | Lactobacillus acidophilus La-14; Lactobacillus plantarum Lp-115; Lactobacillus paracasei Lpc-37; Bifidobacterium lactis Bl-04 | Restoring balance of intestine microbiota during consumption of antibiotics and constipation at home and during traveling for children |
MSP4 | 1.2 × 107 cfu/capsule | Lactobacillus acidophilus (species L. gasseri) PTA-5845; Bifidobacterium infantis PTA-5843; Enterococcus faecium PTA-5844 | For treating bloating and diarrhoea and restoring balance of intestine microbiota |
Microorganism | Primer Pairs | Reference | |
---|---|---|---|
Lactobacillus genus | LbLMA1-rev | CTC AAA ACT AAA CAA AGT TTC | [33] |
R-16-1 | CTT GTA CAC ACC GCC CGT C | ||
Bifidobacterium genus | Bif164F | GGG TGG TAA TGC CGG ATG | [34] |
Bif601R | TAA GCC ATG GAC TTT CAC ACC | ||
Lactobacillus rhamnosus | Rham 1 | GTC GAA CGA GTT CTG ATT ATT G | [35] |
RhamR | GAA CCA TGC GGT TCT TGG AT | ||
Lactobacillus acidophilus | LacidoF | CAC TTC GGT GAT GAC GTT GG | |
LacidoR | CGA TGC AGT TCC TCG GTT AAG C | ||
Bifidobacterium bifidum | BifF | ATT TGA GCC ACT GTC TGG TG | |
BifR | CAT CCG GGA ACG TCG GGA AA | ||
Lactobacillus casei | PrI | CAG ACT GAA AGT CTG ACG G | [36] |
CasII | GCG ATG CGA ATT TCT TTT TC | ||
Lactobacillus reuteri | Lfpr | GCC GCC TAA GGT GGG ACA GAT | |
Reu | AAC ACT CAA GGA TTG TCT GA | ||
Lactobacillus gasseri | Lgas-3 | GCG ACC GAG AAG AGA GAG A | [37] |
Lgas-2 | TGC TAT CGC TTC AAG TGC TT | ||
Bacillus coagulans | BC1-F | ACA GGG CTT TCA GAT ACC CG | [38] |
BC1-R | CGG GGA TCC GTC CAT CAA AA | ||
Enterococcus faecium | EM1F | TTG AGG CAG ACC AGA TTG ACG | [39] |
EM1R | TAT GAC AGC GAC TCC GAT TCC | ||
Escherichia coli | gadBF | ACC TGC GTT GCG TAA ATA | [40] |
gadBR | GGG CGG GAG AAG TTG ATG |
Cycling Parameters * | PCR Program for Lactobacillus Genus | PCR Program for Bifidobacterium Genus | Multiplex Program for L. rhamnosus, L. acidophilus, B. bifidum | Duplex Program for L. casei and L. reuteri | PCR Program for B. coagulans | PCR Program for E. faecium | PCR Program for E. coli |
---|---|---|---|---|---|---|---|
Denaturation | 30 s at 94 °C | 30 s at 94 °C | 45 s at 94 °C | 30 s at 94 °C | 30 s at 94 °C | 60 s at 94 °C | 30 s at 94 °C |
Annealing | 30 s at 55 °C | 60 s at 53 °C | 45 s at 63 °C | 30 s at 55 °C | 30 s at 60 °C | 60 s at 54 °C | 30 s at 52 °C |
Extension | 30 s at 72 °C | 2 min at 72 °C | 60 s at 72 °C | 30 s at 72 °C | 60 s at 72 °C | 60 s at 72 °C | 60 s at 72 °C |
Number of cycles | 20 | 35 | 30 | 30 | 30 | 40 | 35 |
E. coli Strain | Mean Inhibition Zone Diameter * (mm ± SD) | ||||||||
---|---|---|---|---|---|---|---|---|---|
SSP1 | SSP2 | SSP3 | SSP4 | SSP5 | MSP1 | MSP2 | MSP3 | MSP4 | |
EAEC1 | 2.50 ± 0.71 | 3.00 ± 0.71 | 9.67 ± 3.51 | 1.50 ± 0.58 | 1.00 ± 0.50 | 12.00 ± 2.00 | 4.00 ± 0.57 | 8.67 ± 1.50 | 5.00 ± 0.82 |
EAEC2 | 1.00 ± 0.50 | 1.50 ± 0.41 | 4.00 ± 0.53 | 1.50 ± 0.71 | 1.00 ± 0.63 | 8.00 ± 0.82 | 5.50 ± 1.93 | 9.00 ± 1.00 | 5.50 ± 0.71 |
EAEC3 | 2.00 ± 0.82 | 2.50 ± 0.41 | 5.00 ± 0.53 | 1.00 ± 0.66 | 1.00 ± 0.44 | 7.00 ± 1.50 | 6.50 ± 2.14 | 5.50 ± 0.71 | 7.50 ± 0.58 |
EPEC1 | 4.50 ± 0.71 | 3.50 ± 0.50 | 5.00 ± 0.50 | 1.00 ± 0.53 | 1.00 ± 0.41 | 10.33 ± 1.15 | 5.50 ± 1.87 | 3.50 ± 0.71 | 5.00 ± 0.50 |
EPEC2 | 3.50 ± 0.71 | 2.67 ± 0.47 | 6.5 ± 0.71 | 2.00 ± 0.30 | 1.00 ± 0.63 | 4.5 ± 0.71 | 3.17 ± 0.48 | 4.0 ± 1.41 | 5.50 ± 0.72 |
ETEC | 2.00 ± 0.57 | 3.00 ± 0.82 | 9.00 ± 2.65 | 1.00 ± 0.20 | 2.00 ± 0.82 | 5.00 ± 1.41 | 3.50 ± 1.04 | 3.5 ± 0.71 | 5.50 ± 0.71 |
ESBL | 5.00 ± 0.50 | 4.00 ± 1.00 | 5.0 ± 1.00 | 1.00 ± 0.35 | 3.00 ± 1.00 | 3.50 ± 0.71 | 5.50 ± 1.80 | 2.00 ± 0.50 | 5.50 ± 1.00 |
Ec K12 | 0.00 ± 0.00 | 1.67 ± 0.47 | 9.00 ± 1.41 | 2.50 ± 0.71 | 1.00 ± 0.63 | 6.00 ± 1.41 | 4.50 ± 1.18 | 2.00 ± 0.50 | 9.5 ± 0.71 |
Mean | 2.05 | 2.73 | 6.64 | 1.44 | 1.38 | 7.04 | 4.77 | 4.77 | 6.12 |
E. coli Strain | Average Log Step Reduction of cfu/mL of E. coli Strains after Three Day Co-Culturing in Milk with Probiotics * | |||||||
---|---|---|---|---|---|---|---|---|
SSP1 | SSP2 | SSP3 | SSP4 | MSP1 | MSP2 | MSP3 | MSP4 | |
EAEC1 | 1.87 | 1.08 | 0.63 | 1.27 | 0.23 | 0.22 | 0.34 | 1.02 |
EPEC1 | 2.23 | 1.40 | 2.20 | 1.39 | 0.79 | 0.09 | 0.33 | 0.05 |
ETEC | 1.73 | 1.78 | 2.13 | 0.55 | 1.03 | 1.24 | 1.00 | 1.25 |
ESBL | 1.00 | 1.64 | 1.53 | 0.39 | 0.24 | 0.62 | 0.40 | 1.35 |
Ec K12 | 1.97 | 1.12 | 0.95 | 0.40 | 1.37 | 1.30 | 0.30 | 0.68 |
mean | 1.76 | 1.40 | 1.49 | 0.73 | 0.73 | 0.69 | 0.47 | 0.87 |
Probiotic Supplement | Microorganisms Claimed | PCR Confirmed | |
---|---|---|---|
Genus | Species | ||
SSP1 | Lactobacillus reuteri DSM 17938 | Lactobacillus | L. reuteri |
SSP2 | Lactobacillus casei Shirota | Lactobacillus | L. casei |
SSP3 | Bifidobacterium animalis subsp. lactis BB-12 | Bifidobacterium | / |
SSP4 | Bacillus coagulans LMG S-24828 | / | B. coagulans |
SSP5 | Escherichia coli Nissle 1917 | / | E. coli |
MSP1 | Lactobacillus acidophilus W57; Lactobacillus acidophilus W22; Lactobacillus casei W56; Lactobacillus rhamnosus W71; Enterococcus faecium W54; and others | Lactobacillus | L. acidophilus L. casei L. rhamnosus E. faecium |
MSP2 | Lactobacillus acidophilus NIZO 3678; Lactobacillus acidophilus NIZO 3887; Lactobacillus rhamnosus NIZO 3689; Bifidobacterium bifidum NIZO 3804; Enterococcus faecium NIZO 3886; and others | Lactobacillus Bifidobacterium | L. acidophilus L. rhamnosus B. bifidum E. faecium |
MSP3 | Lactobacillus acidophilus La-14; Bifidobacterium lactis Bl-04; and others | Lactobacillus Bifidobacterium | L. acidophilus |
MSP4 | Lactobacillus acidophilus (species L. gasseri) PTA-5845; Bifidobacterium infantis PTA-5843; Enterococcus faecium PTA-5844 | Lactobacillus Bifidobacterium | L. gasseri E. faecium |
EAEC1 | enteroaggregative E. coli | / | E. coli |
EAEC2 | enteroaggregative E. coli | / | E. coli |
EAEC3 | enteroaggregative E. coli | / | E. coli |
EPEC1 | enteropathogenic E. coli | / | E. coli |
EPEC2 | enteropathogenic E. coli | / | E. coli |
ETEC | enterotoxigenic E. coli | / | E. coli |
ESBL | E. coli that produces extended-spectrum β-lactamases | / | E. coli |
Ec K12 | E. coli K12 DSM 1562 | / | E. coli |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fijan, S.; Šulc, D.; Steyer, A. Study of the In Vitro Antagonistic Activity of Various Single-Strain and Multi-Strain Probiotics against Escherichia coli. Int. J. Environ. Res. Public Health 2018, 15, 1539. https://doi.org/10.3390/ijerph15071539
Fijan S, Šulc D, Steyer A. Study of the In Vitro Antagonistic Activity of Various Single-Strain and Multi-Strain Probiotics against Escherichia coli. International Journal of Environmental Research and Public Health. 2018; 15(7):1539. https://doi.org/10.3390/ijerph15071539
Chicago/Turabian StyleFijan, Sabina, Dunja Šulc, and Andrej Steyer. 2018. "Study of the In Vitro Antagonistic Activity of Various Single-Strain and Multi-Strain Probiotics against Escherichia coli" International Journal of Environmental Research and Public Health 15, no. 7: 1539. https://doi.org/10.3390/ijerph15071539
APA StyleFijan, S., Šulc, D., & Steyer, A. (2018). Study of the In Vitro Antagonistic Activity of Various Single-Strain and Multi-Strain Probiotics against Escherichia coli. International Journal of Environmental Research and Public Health, 15(7), 1539. https://doi.org/10.3390/ijerph15071539