Analysis of Historical Sources of Heavy Metals in Lake Taihu Based on the Positive Matrix Factorization Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Analysis of Sediment
2.3. Data Analysis
3. Results and Discussion
3.1. Sediment Properties
3.2. 210Pb Geochronology
3.3. Heavy Metal Characteristics
3.4. Source Identification by PMF
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Khan, M.U.; Malik, R.N.; Muhammad, S. Human health risk from heavy metal via food crops consumption with wastewater irrigation practices in Pakistan. Chemosphere 2013, 93, 2230–2238. [Google Scholar] [CrossRef] [PubMed]
- Akinyele, I.O.; Shokunbi, O.S. Comparative analysis of dry ashing and wet digestion methods for the determination of trace and heavy metals in food samples. Food Chem. 2015, 173, 682–684. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Carranza, M.; Sepúlveda-Lozada, A.; Dias-Ferreira, C.; Geissen, V. Distribution and bioconcentration of heavy metals in a tropical aquatic food web: A case study of a tropical estuarine lagoon in SE Mexico. Environ. Pollut. 2015, 210, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Shahbaz, M.; Hashmi, M.Z.; Malik, R.N.; Yasmin, A. Relationship between heavy metals concentrations in egret species, their environment and food chain differences from two headworks of Pakistan. Chemosphere 2013, 93, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Xie, B.; Song, Y.; Yang, H.; Wang, Y. Historical Trends of Polycyclic Aromatic Hydrocarbons in the Reservoir Sediment of the Dianchi Watershed, Southwest China. Bull. Environ. Contam. Toxicol. 2017, 99, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Komárek, M.; Ettler, V.; Chrastný, V.; Mihaljevic, M. Lead isotopes in environmental sciences: A review. Environ. Int. 2008, 34, 562–577. [Google Scholar] [CrossRef] [PubMed]
- Guan, Q.; Wang, F.; Xu, C.; Pan, N.; Lin, J.; Zhao, R.; Yang, Y.; Luo, H. Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, northwest China. Chemosphere 2017, 193, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Men, C.; Liu, R.; Xu, F.; Wang, Q.; Guo, L.; Shen, Z. Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China. Sci. Total Environ. 2018, 612, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Fernández, S.; Cotos-Yáñez, T.; Roca-Pardiñas, J.; Ordóñez, C. Geographically weighted principal components analysis to assess diffuse pollution sources of soil heavy metal: Application to rough mountain areas in Northwest Spain. Geoderma 2016, 311, 120–129. [Google Scholar] [CrossRef]
- Ha, H.; Olson, J.R.; Bian, L.; Rogerson, P.A. Analysis of Heavy Metal Sources in Soil Using Kriging Interpolation on Principal Components. Environ. Sci. Technol. 2014, 48, 4999–5007. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Cheng, Y.; Liu, Y.; Gao, J. Environmental significange of heavy metals in the core sediments of the Yalu River estuary. Acta Sci. Circumstantiae 2017, 37, 2296–2306. [Google Scholar]
- Kim, E.; Larson, T.V.; Hopke, P.K.; Slaughter, C.; Sheppard, L.E.; Claiborn, C. Source identification of PM2.5 in an arid Northwest U.S. City by positive matrix factorization. Atmos. Res. 2003, 66, 291–305. [Google Scholar] [CrossRef]
- Wang, C.; Wu, S.; Zhou, S.; Wang, H.; Li, B.; Chen, H.; Yu, Y.; Shi, Y. Polycyclic aromatic hydrocarbons in soils from urban to rural areas in Nanjing: Concentration, source, spatial distribution, and potential human health risk. Sci. Total Environ. 2015, 527, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhang, Y.; Luo, J.; Wang, T.; Lian, H.; Ding, Z. Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environ. Pollut. 2011, 159, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Qinghua, L.I.; Wan, S.; Jun, H.E.; Anchun, L.I. Human impact on the intertidal environment in Beibu Gulf over the last 200 years. Mar. Geol. Quat. Geol. 2014, 34, 57–64. [Google Scholar]
- Soto-Jiménez, M.F.; Páez-Osuna, F. Distribution and Normalization of Heavy Metal Concentrations in Mangrove and Lagoonal Sediments from Mazatlán Harbor (SE Gulf of California). Estuar. Coast. Shelf Sci. 2001, 53, 259–274. [Google Scholar] [CrossRef]
- Balachandran, K.K.; Raj, C.M.L.; Nair, M.; Joseph, T.; Sheeba, P.; Venugopal, P. Heavy metal accumulation in a flow restricted, tropical estuary. Estuar. Coast. Shelf Sci. 2005, 65, 361–370. [Google Scholar] [CrossRef]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Yixing Municipal People’s Government. Yixing Yearbook; China Local Records Publishing: Yixing, China, 1989–2017. (In Chinese)
- Polissar, A.V.; Hopke, P.K.; Paatero, P.; Malm, W.C.; Sisler, J.F. Atmospheric aerosol over Alaska: 2. Elemental composition and sources. J. Geophys. Res. Atmos. 1998, 103, 19045–19057. [Google Scholar] [CrossRef] [Green Version]
- Shepard, F.P. Nomenclature Based on Sand-silt-clay Ratios. J. Sediment. Res. 1954, 24, 151–158. [Google Scholar]
- He, Q.; Walling, D.E. An investigation of the spatial variability of the grain size composition of floodplain sediments. Hydrol. Process. 2015, 12, 1079–1094. [Google Scholar] [CrossRef]
- Pan, B.; Pang, H.; Zhang, D.; Guan, Q.; Wang, L.; Li, F.; Guan, W.; Cai, A.; Sun, X. Sediment grain-size characteristics and its source implication in the Ningxia–Inner Mongolia sections on the upper reaches of the Yellow River. Geomorphology 2015, 246, 255–262. [Google Scholar] [CrossRef]
- Oldfield, F.; Appleby, P.G.; Battarbee, R.W. Alternative 210Pb dating: Results from the New Guinea Highlands and Lough Erne. Nature 1978, 271, 339–342. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, S.; Zhu, Q.; Li, B.; Wang, J.; Wang, C.; Chen, L.; Wu, S. One-century sedimentary record of heavy metal pollution in western Taihu Lake, China. Environ. Pollut. 2018, 240, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Wan, Z.; Zhang, C.; Wan, L. Effect of grain size of sediment on the adsorption of heavy metals. J. Hydraul. Eng. 1994, 10. [Google Scholar]
- Han, X.; Lu, X.; Zhang, Q.; Wuyuntana; Hai, Q.; Pan, H. Grain-size distribution and contamination characteristics of heavy metal in street dust of Baotou, China. Environ. Earth Sci. 2016, 75, 468. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Wu, J.; Liu, W. Two-century sedimentary record of heavy metal pollution from Lake Sayram: A deep mountain lake in central Tianshan, China. Quat. Int. 2014, 321, 125–131. [Google Scholar] [CrossRef]
- Dong, H.Z.; Kong, X.Q.; Li, W.J.; Tang, W.; Zhang, D.M. Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. Field Crops Res. 2010, 119, 106–113. [Google Scholar] [CrossRef]
- Niu, J.; Zhang, W.; Ru, S.; Chen, X.; Kai, X.; Zhang, X.; Assaraf, M.; Imas, P.; Magen, H.; Zhang, F. Effects of potassium fertilization on winter wheat under different production practices in the North China Plain. Field Crops Res. 2013, 140, 69–76. [Google Scholar] [CrossRef]
- Quazi, S.; Sarkar, D.; Datta, R. Effect of soil aging on arsenic fractionation and bioaccessibility in inorganic arsenical pesticide contaminated soils. Appl. Geochem. 2010, 25, 1422–1430. [Google Scholar] [CrossRef]
- Han, Y.; Jin, Z.; Cao, J.; Posmentier, E.S.; An, Z. Atmospheric Cu and Pb Deposition and Transport in Lake Sediments in a Remote Mountain Area, Northern China. Water Air Soil Pollut. 2007, 179, 167–181. [Google Scholar] [CrossRef]
- Lin, C.; Ma, R.; Xiong, J. Can the watershed non-point phosphorus pollution be interpreted by critical soil properties—A new insight of different soil P states. Sci. Total Environ. 2018, 628, 870–881. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Wu, Z.; Ma, R.; Su, Z. Detection of sensitive soil properties related to non-point phosphorus pollution by integrated models of SEDD and PLOAD. Ecol. Indic. 2016, 60, 483–494. [Google Scholar] [CrossRef]
- Ma, X.; Zuo, H.; Tian, M.; Zhang, L.; Meng, J.; Zhou, X.; Min, N.; Chang, X.; Liu, Y. Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques. Chemosphere 2016, 144, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Su, Y.; Liu, Z.; Sun, K.; Kong, L.; Yu, J.; Jin, M. Sedimentary lipid biomarker record of human-induced environmental change during the past century in Lake Changdang, Lake Taihu basin, Eastern China. Sci. Total Environ. 2018, 613, 907–918. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, Y.; Zhang, R.; Wang, W.; Xu, D.; Jing, G.; Li, P.; Yu, K. Historical levels of heavy metals reconstructed from sedimentary record in the Hejiang River, located in a typical mining region of Southern China. Sci. Total Environ. 2015, 532, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Huo, S.; Yu, Z.; Wei, G.; Xi, B.; He, Z.; Zeng, X. Historical records of polycyclic aromatic hydrocarbon deposition in a shallow eutrophic lake: Impacts of sources and sedimentological conditions. Acta Sci. Circumstantiae 2016, 41, 261–269. [Google Scholar] [CrossRef] [PubMed]
- National Bureau of Statistics of the People’s Republic of China. The 2016 Jiangsu Statistical Yearbook; China Statistics Press: Beijing, China, 1975–2016. (In Chinese)
- Guo, J.Y.; Wu, F.C.; Liao, H.Q.; Zhao, X.L.; Li, W.; Wang, J.; Wang, L.F.; Giesy, J.P. Sedimentary record of polycyclic aromatic hydrocarbons and DDTs in Dianchi Lake, an urban lake in Southwest China. Environ. Sci. Pollut. Res. Int. 2013, 20, 5471–5480. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.Y.; Wang, J.Z.; Wei, G.L.; Guan, Y.F.; Wong, C.S.; Zeng, E.Y. Sediment records of polycyclic aromatic hydrocarbons (PAHs) in the continental shelf of China: Implications for evolving anthropogenic impacts. Environ. Sci. Technol. 2012, 46, 6497–6504. [Google Scholar] [CrossRef] [PubMed]
- Fang, C. The urbanization and urban development in China after the reform and opening-up. Econ. Geogr. 2009, 29, 19–25. [Google Scholar]
- Wan, D.; Song, L.; Yang, J.; Jin, Z.; Zhan, C.; Mao, X.; Liu, D.; Shao, Y. Increasing heavy metals in the background atmosphere of central North China since the 1980s: Evidence from a 200-year lake sediment record. Atmos. Environ. 2016, 138, 183–190. [Google Scholar] [CrossRef]
Upper Part (After 1978 ± 0.7838) | Lower Part (Before 1978 ± 0.7838) | |||||||
---|---|---|---|---|---|---|---|---|
Minimum | Maximum | Mean | CV | Minimum | Maximum | Mean | CV | |
Cr (mg kg−1) | 51.3 | 84.0 | 70.6 | 14.9 | 43.1 | 67.8 | 51.9 | 10.8 |
Cu (mg kg−1) | 13.5 | 27.8 | 19.7 | 24.2 | 17.6 | 36.2 | 23.9 | 18.1 |
Fe (mg kg−1) | 22,284.0 | 27,289.9 | 24,972.3 | 5.3 | 22,747.9 | 28,965.8 | 25,869.8 | 6.3 |
Mg (mg kg−1) | 5286.6 | 7783.3 | 6407.2 | 11.0 | 5996.2 | 9648.3 | 8216.9 | 11.2 |
Mn (mg kg−1) | 504.2 | 1231.0 | 810.7 | 27.1 | 487.6 | 1044.2 | 811.9 | 20.4 |
Ni (mg kg−1) | 30.6 | 92.9 | 42.5 | 39.4 | 34.4 | 47.1 | 41.1 | 8.8 |
K (mg kg−1) | 15,576.8 | 18,928.6 | 17,341.9 | 5.9 | 15,240.7 | 21,698.1 | 18,935.6 | 9.7 |
Sr (mg kg−1) | 131.4 | 268.5 | 198.6 | 19.5 | 67.8 | 255.9 | 123.8 | 38.6 |
Ti (mg kg−1) | 3984.0 | 5963.2 | 4492.8 | 9.8 | 3894.2 | 5128.1 | 4374.5 | 7.0 |
Zn (mg kg−1) | 89.2 | 153.8 | 114.7 | 17.7 | 94.4 | 129.2 | 110.9 | 9.0 |
Cd (mg kg−1) | 0.125 | 0.836 | 0.465 | 61.8 | 0.082 | 0.244 | 0.136 | 28.5 |
Pb (mg kg−1) | 17.4 | 29.4 | 23.6 | 17.2 | 18.1 | 23.7 | 20.8 | 7.6 |
Al (mg kg−1) | 22.0 | 34.9 | 27.0 | 11.8 | 21.5 | 43.6 | 35.0 | 15.4 |
As (mg kg−1) | 16.3 | 33.6 | 21.5 | 18.1 | 14.9 | 43.5 | 25.5 | 27.8 |
Cr | Cu | Fe | Mg | Mn | Ni | K | Sr | Ti | Zn | Cd | Pb | Al | As | Sand | Silt | Clay | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr | 1 | ||||||||||||||||
Cu | −0.057 | 1 | |||||||||||||||
Fe | −0.166 | 0.286 | 1 | ||||||||||||||
Mg | −0.487 ** | 0.691 ** | 0.594 ** | 1 | |||||||||||||
Mn | 0.264 | 0.669 ** | 0.282 | 0.490 ** | 1 | ||||||||||||
Ni | 0.343 * | 0.477 ** | 0.180 | 0.224 | 0.435 ** | 1 | |||||||||||
K | −0.208 | 0.629 ** | 0.599 ** | 0.863 ** | 0.570 ** | 0.277 | 1 | ||||||||||
Sr | 0.557 ** | −0.213 | 0.087 | −0.227 | 0.387 ** | 0.194 | 0.073 | 1 | |||||||||
Ti | 0.188 | −0.254 | −0.013 | −0.257 | −0.452 ** | 0.006 | −0.153 | −0.163 | 1 | ||||||||
Zn | 0.437 ** | 0.709 ** | 0.355 * | 0.364 * | 0.814 ** | 0.600 ** | 0.475 ** | 0.357 * | −0.163 | 1 | |||||||
Cd | 0.801 ** | 0.140 | −0.116 | −0.373 * | 0.457 ** | 0.472 ** | −0.191 | 0.562 ** | −0.083 | 0.659 ** | 1 | ||||||
Pb | 0.652 ** | 0.343 * | 0.083 | −0.092 | 0.570 ** | 0.487 ** | 0.077 | 0.335 * | −0.092 | 0.772 ** | 0.861 ** | 1 | |||||
Al | −0.526 ** | 0.349 * | −0.127 | 0.451 ** | 0.060 | −0.030 | 0.254 | −0.597 ** | −0.104 | −0.176 | −0.504 ** | −0.278 | 1 | ||||
As | −0.247 | 0.191 | 0.477 ** | 0.293 | −0.011 | 0.070 | 0.216 | −0.127 | −0.039 | 0.179 | −0.065 | 0.023 | −0.043 | 1 | |||
Sand | 0.599 ** | −0.507 ** | −0.340 * | −0.766 ** | −0.030 | −0.058 | −0.556 ** | 0.652 ** | 0.049 | 0.043 | 0.646 ** | 0.361 * | −0.639 ** | −0.246 | 1 | ||
Silt | 0.260 | −0.468 ** | −0.186 | −0.410 ** | −0.181 | −0.081 | −0.267 | 0.433 ** | 0.344 * | −0.122 | 0.181 | −0.011 | −0.311 * | −0.142 | 0.370 * | 1 | |
Clay | −0.573 ** | 0.588 ** | 0.328 * | 0.780 ** | 0.106 | 0.062 | 0.562 ** | −0.677 ** | −0.168 | 0.013 | −0.588 ** | −0.282 | 0.626 ** | 0.234 | −0.943 ** | −0.648 ** | 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Mei, L.; Zhou, S.; Jia, Z.; Wang, J.; Li, B.; Wang, C.; Wu, S. Analysis of Historical Sources of Heavy Metals in Lake Taihu Based on the Positive Matrix Factorization Model. Int. J. Environ. Res. Public Health 2018, 15, 1540. https://doi.org/10.3390/ijerph15071540
Li Y, Mei L, Zhou S, Jia Z, Wang J, Li B, Wang C, Wu S. Analysis of Historical Sources of Heavy Metals in Lake Taihu Based on the Positive Matrix Factorization Model. International Journal of Environmental Research and Public Health. 2018; 15(7):1540. https://doi.org/10.3390/ijerph15071540
Chicago/Turabian StyleLi, Yan, Liping Mei, Shenglu Zhou, Zhenyi Jia, Junxiao Wang, Baojie Li, Chunhui Wang, and Shaohua Wu. 2018. "Analysis of Historical Sources of Heavy Metals in Lake Taihu Based on the Positive Matrix Factorization Model" International Journal of Environmental Research and Public Health 15, no. 7: 1540. https://doi.org/10.3390/ijerph15071540
APA StyleLi, Y., Mei, L., Zhou, S., Jia, Z., Wang, J., Li, B., Wang, C., & Wu, S. (2018). Analysis of Historical Sources of Heavy Metals in Lake Taihu Based on the Positive Matrix Factorization Model. International Journal of Environmental Research and Public Health, 15(7), 1540. https://doi.org/10.3390/ijerph15071540