Breast Cancer and Its Relationship with the Microbiota
Abstract
:1. Introduction
2. Gut Microbiota
3. Is There a Link between Gut Microbiota and Breast Cancer?
4. Mammary Microbiota and Breast Cancer
5. Functional Pathways
5.1. Regulation of Chronic Inflammation and Immunity
5.2. Genomic Stability and DNA Damage
5.3. Metabolic Function
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Darbre, P.D.; Fernandez, M.F. Environmental oestrogens and breast cancer: Long-term low-dose effects of mixtures of various chemical combinations. J. Epidemiol. Community Health. 2013, 67, 203–205. [Google Scholar] [CrossRef] [PubMed]
- GLOBOCAN. Cancer Fact Sheets: Breast Cancer. 2012. Available online: http://globocan.iarc.fr/old/FactSheets/cancers/breast-new.asp (accessed on 22 May 2018).
- Ghoncheh, M.; Pournamdar, Z.; Salehiniya, H. Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac. J. Cancer Prev. 2016, 17, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef] [PubMed]
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [PubMed]
- Barnes, B.B.; Steindorf, K.; Hein, R.; Flesch-Janys, D.; Chang-Claude, J. Population attributable risk of invasive postmenopausal breast cancer and breast cancer subtypes for modifiable and non-modifiable risk factors. Cancer Epidemiol. 2011, 35, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Lacey, J.V., Jr.; Kreimer, A.R.; Buys, S.S.; Marcus, P.M.; Chang, S.C.; Leitzmann, M.F.; Hoover, R.N.; Prorok, P.C.; Berg, C.D.; Hartge, P.; et al. Breast cancer epidemiology according to recognized breast cancer risk factors in the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial Cohort. BMC Cancer 2009, 9, 84. [Google Scholar] [CrossRef] [PubMed]
- Key, T.J.; Appleby, P.N.; Reeves, G.K.; Roddam, A.; Dorgan, J.F.; Longcope, C.; Stanczyk, F.Z.; Stephenson, H.E., Jr.; Falk, R.T.; Miller, R.; et al. Endogenous Hormones Breast Cancer Collaborative Group. Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women. J. Natl. Cancer Inst. 2003, 95, 1218–1226. [Google Scholar] [PubMed]
- Sampson, J.N.; Falk, R.T.; Schairer, C.; Moore, S.C.; Fuhrman, B.J.; Dallal, C.M.; Bauer, D.C.; Dorgan, J.F.; Shu, X.O.; Zheng, W.; et al. Association of estrogen metabolism with breast cancer risk in different cohorts of postmenopausal women. Cancer Res. 2017, 77, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Anderson, W.F.; Rosenberg, P.S.; Prat, A.; Perou, C.M.; Sherman, M.E. How many etiological subtypes of breast cancer: Two, three, four, or more? J. Natl. Cancer Inst. 2014, 106. [Google Scholar] [CrossRef] [PubMed]
- Gierach, G.L.; Burke, A.; Anderson, W.F. Epidemiology of triple negative breast cancers. Breast Dis. 2010, 32, 5–24. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.B.; Hankinson, S.E. Endogenous estrogens and the risk of breast, endometrial, and ovarian cancers. Steroids 2015, 99, 8–10. [Google Scholar] [CrossRef] [PubMed]
- Fuhrman, B.J.; Feigelson, H.S.; Flores, R.; Gail, M.H.; Xu, X.; Ravel, J.; Goedert, J.J. Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women. J. Clin. Endocrinol. Metab. 2014, 99, 4632–4640. [Google Scholar] [CrossRef] [PubMed]
- Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costello, K.; Lauber, C.L.; Hamady, M.; Fierer, N.; Gordon, J.I.; Knight, R. Bacterial community variation in human body habitats across space and time. Science 2009, 326, 1694–1697. [Google Scholar] [CrossRef] [PubMed]
- Schlaeppi, K.; Bulgarelli, D. The plant microbiome at work. Mol. Plant Microbe Interact. 2015, 28, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Eren, A.M.; Maignien, L.; Sul, W.J.; Murphy, L.G.; Grim, S.L.; Morrison, H.G.; Sogin, M.L. Oligotyping: Differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol. Evol. 2013, 4, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Tikhonov, M.; Leach, R.W.; Wingreen, N.S. Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution. ISME J. 2015, 9, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Eren, A.M.; Morrison, H.G.; Lescault, P.J.; Reveillaud, J.; Vineis, J.H.; Sogin, M.L. Minimum entropy decomposition: Unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. ISME J. 2015, 9, 968–979. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv 2016, 081257. [Google Scholar] [CrossRef]
- Amir, A.; McDonald, D.; Navas-Molina, J.A.; Kopylova, E.; Morton, J.T.; Zech Xu, Z.; Kightley, E.P.; Thompson, L.R.; Hyde, E.R.; Gonzalez, A.; et al. Deblur rapidly resolves single-nucleotide community sequence patterns. MSystems 2017, 2, e00191-16. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Holmes, S.P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017, 11, 2639–2643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selber-Hnatiw, S.; Rukundo, B.; Ahmadi, M.; Akoubi, H.; Al-Bizri, H.; Aliu, A.F.; Ambeaghen, T.U.; Avetisyan, L.; Bahar, I.; Baird, A.; et al. Human Gut Microbiota: Toward an Ecology of Disease. Front. Microbiol. 2017, 8, 1265. [Google Scholar] [CrossRef] [PubMed]
- Rea, D.; Coppola, G.; Palma, G.; Barbieri, A.; Luciano, A.; Del Prete, P.; Rossetti, S.; Berretta, M.; Facchini, G.; Perdonà, S.; et al. Microbiota effects on cancer: From risks to therapies. Oncotarget 2018, 9, 17915–17927. [Google Scholar] [CrossRef] [PubMed]
- Caputi, V.; Giron, M.C. Microbiome-gut-brain axis and toll-like receptors in Parkinson’s disease. Int. J. Mol. Sci. 2018, 19, 1689. [Google Scholar] [CrossRef] [PubMed]
- Schwabe, R.; Jobin, C. The microbiome and cancer. Nat. Rev. Cancer 2013, 13, 800–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lofgren, J.L.; Whary, M.T.; Ge, Z.; Muthupalani, S.; Taylor, N.S.; Mobley, M.; Potter, A.; Varro, A.; Eibach, D.; Suerbaum, S.; et al. Lack of commensal flora in Helicobacter pylori-infected INS-GAS mice reduces gastritis and delays intraepithelial neoplasia. Gastroenterology 2011, 140, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Couturier-Maillard, A.; Secher, T.; Rehman, A.; Normand, S.; De Arcangelis, A.; Haesler, R.; Huot, L.; Grandjean, T.; Bressenot, A.; Delanoye-Crespin, A.; et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J. Clin. Investig. 2013, 123, 700–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dapito, D.H.; Mencin, A.; Gwak, G.Y.; Pradere, J.P.; Jang, M.K.; Mederacke, I.; Caviglia, J.M.; Khiabanian, H.; Adeyemi, A.; Bataller, R.; et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 2012, 21, 504–516. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Yang, M.; Liu, J.; Gao, R.; Hu, J.; Li, J.; Zhang, L.; Shi, Y.; Guo, H.; Cheng, J.; et al. Discovery and validation of potential bacterial biomarkers for lung cancer. Am. J. Cancer Res. 2015, 5, 3111–3122. [Google Scholar] [PubMed]
- Yu, Y.; Champer, J.; Beynet, D.; Kim, J.; Friedman, A.J. The role of the cutaneous microbiome in skin cancer: Lessons learned from the gut. J. Drugs Dermatol. 2015, 14, 461–465. [Google Scholar] [PubMed]
- De Martel, C.; Ferlay, J.; Franceschi, S.; Vignat, J.; Bray, F.; Forman, D.; Plummer, M. Global burden of cancers attributable to infections in 2008: A review and synthetic analysis. Lancet Oncol. 2012, 13, 607–615. [Google Scholar] [CrossRef]
- Keku, T.O.; Dulal, S.; Deveaux, A.; Jovov, B.; Han, X. The gastrointestinal microbiota and colorectal cancer. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 308, G351–G363. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Hamady, M.; Yatsunenko, T.; Cantarel, B.L.; Duncan, A.; Ley, R.E.; Sogin, M.L.; Jones, W.J.; Roe, B.A.; Affourtit, J.P.; et al. A core gut microbiome in obese and lean twins. Nature 2009, 457, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Adlercreutz, H. Western diet and Western diseases: Some hormonal and biochemical mechanisms and associations. Scand. J. Clin. Lab. Investig. Suppl. 1990, 201, 3–23. [Google Scholar] [CrossRef]
- Ye, W.; Held, M.; Lagergren, J.; Engstrand, L.; Blot, W.J.; McLaughlin, J.K.; Nyrén, O. Helicobacter pylori infection and gastric atrophy: Risk of adenocarcinoma and squamous-cell carcinoma of the esophagus and adenocarcinoma of the gastric cardia. J. Natl. Cancer Inst. 2004, 96, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Robinson, K. Helicobacter pylori-mediated protection against extra-gastric immune and inflammatory disorders: The evidence and controversies. Diseases 2015, 3, 34–55. [Google Scholar] [CrossRef] [PubMed]
- Grivennikov, S.I. Inflammation and colorectal cancer: Colitis-associated neoplasia. Semin. Immunopathol. 2013, 35, 229–244. [Google Scholar] [CrossRef] [PubMed]
- Sheflin, A.M.; Whitney, A.K.; Weir, T.L. Cancer-promoting effects of microbial dysbiosis. Curr. Oncol. Rep. 2014, 16, 406. [Google Scholar] [CrossRef] [PubMed]
- Kostic, A.D.; Gevers, D.; Pedamallu, C.S.; Michaud, M.; Duke, F.; Earl, A.M.; Ojesina, A.I.; Jung, J.; Bass, A.J.; Tabernero, J.; et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012, 22, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Mazmanian, S.K.; Round, J.L.; Kasper, D.L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 2008, 453, 620–625. [Google Scholar] [CrossRef] [PubMed]
- Yoshimoto, S.; Loo, T.M.; Atarashi, K.; Kanda, H.; Sato, S.; Oyadomari, S.; Iwakura, Y.; Oshima, K.; Morita, H.; Hattori, M.; et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013, 499, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Xuan, C.; Shamonki, J.M.; Chung, A.; Dinome, M.L.; Chung, M.; Sieling, P.A.; Lee, D.J. Microbial dysbiosis is associated with human breast cancer. PLoS ONE 2014, 9, e83744. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Altemus, J.; Niazi, F.; Green, H.; Calhoun, B.C.; Sturgis, C.; Grobmyer, S.R.; Eng, C. Breast tissue, oral and urinary microbiomes in breast cancer. Oncotarget 2017, 8, 88122–88138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwa, M.; Plottel, C.S.; Blaser, M.J.; Adams, S. The intestinal microbiome and estrogen receptor-positive female breast cancer. Natl. Cancer Inst. 2016, 108. [Google Scholar] [CrossRef]
- Adlercreutz, H.; Martin, F. Biliary excretion and intestinal metabolism of progesterone and estrogens in man. J. Steroid Biochem. 1980, 13, 231–244. [Google Scholar] [CrossRef]
- Luu, T.H.; Michel, C.; Bard, J.M.; Dravet, F.; Nazih, H.; Bobin-Dubigeon, C. Intestinal Proportion of Blautia spp. is associated with clinical stage and histoprognostic grade in patients with early-stage breast cancer. Nutr. Cancer 2017, 69, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Plottel, C.S.; Blaser, M.J. Microbiome and malignancy. Cell Host Microbe 2011, 10, 324–335. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Tan, Q.; Fu, Q.; Zhou, Y.; Hu, Y.; Tang, S.; Zhou, Y.; Zhang, J.; Qiu, J.; Lv, Q. Gastrointestinal microbiome and breast cancer: Correlations, mechanisms and potential clinical implications. Breast Cancer 2017, 24, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Dabek, M.; McCrae, S.I.; Stevens, V.J.; Duncan, S.H.; Louis, P. Distribution of beta-glucosidase and beta-glucuronidase activity and of beta-glucuronidase gene gus in human colonic bacteria. FEMS Microbiol. Ecol. 2008, 66, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Goedert, J.J.; Jones, G.; Hua, X.; Xu, X.; Yu, G.; Flores, R.; Falk, R.T.; Gail, M.H.; Shi, J.; Ravel, J.; et al. Investigation of the association between the fecal microbiota and breast cancer in postmenopausal women: A population-based case-control pilot study. J. Natl. Cancer Inst. 2015, 107. [Google Scholar] [CrossRef] [PubMed]
- Goedert, J.J.; Hua, X.; Bielecka, A.; Okayasu, I.; Milne, G.L.; Jones, G.S.; Fujiwara, M.; Sinha, R.; Wan, Y.; Xu, X.; et al. Postmenopausal breast cancer and oestrogen associations with the IgA-coated and IgA-noncoated faecal microbiota. Br. J. Cancer 2018, 18, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Jost, T.; Lacroix, C.; Braegger, C.P.; Rochat, F.; Chassard, C. Vertical mother-neonate transfer of maternal gut bacteria via breastfeeding. Environ. Microbiol. 2014, 16, 2891–2904. [Google Scholar] [CrossRef] [PubMed]
- Bäckhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Koh, G.Y.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 2004, 101, 15718–15723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reeves, G.K.; Pirie, K.; Beral, V.; Green, J.; Spencer, E.; Bull, D. Million Women Study Collaboration. Cancer incidence and mortality in relation to body mass index in the Million Women Study: Cohort study. BMJ 2007, 335, 1134. [Google Scholar] [CrossRef] [PubMed]
- Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Reddy, D.N. Role of the normal gut microbiota. World J. Gastroenterol. 2015, 21, 8787–8803. [Google Scholar] [CrossRef] [PubMed]
- Walters, W.A.; Xu, Z.; Knight, R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 2014, 588, 4223–4233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: Human gut microbes associated with obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef] [PubMed]
- Duncan, S.H.; Lobley, G.E.; Holtrop, G.; Ince, J.; Johnstone, A.M.; Louis, P.; Flint, H.J. Human colonic microbiota associated with diet, obesity and weight loss. Int. J. Obes. 2008, 32, 1720–1724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; DiBaise, J.K.; Zuccolo, A.; Kudrna, D.; Braidotti, M.; Yu, Y.; Parameswaran, P.; Crowell, M.D.; Wing, R.; Rittmann, B.E.; et al. Human gut microbiota in obesity and after gastric bypass. Proc. Natl. Acad. Sci. USA 2009, 106, 2365–2370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bard, J.-M.; Luu, H.T.; Dravet, F.; Michel, C.; Moyon, T.; Pagniez, A.; Nazih, H.; Bobin-Dubigeon, C. Relationship between intestinal microbiota and clinical characteristics of patients with early stage breast cancer. FASEB J. 2015, 29, 914.2. [Google Scholar]
- Urbaniak, C.; Cummins, J.; Brackstone, M.; Macklaim, J.M.; Gloor, G.B.; Baban, C.K.; Scott, L.; O’Hanlon, D.M.; Burton, J.P.; Francis, K.P.; et al. Microbiota of human breast tissue. Appl. Environ. Microbiol. 2014, 80, 3007–3014. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Wei, Z.; Tan, F.; Peck, K.N.; Shih, N.; Feldman, M.; Rebbeck, T.R.; Alwine, J.C.; Robertson, E.S. Distinct microbiological signatures associated with triple negative breast cancer. Sci. Rep. 2015, 5, 15162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, A.A.; Bashir, M.; Rivas, M.N.; Duvall, K.; Sieling, P.A.; Pieber, T.R.; Vaishampayan, P.A.; Love, S.M.; Lee, D.J. Characterization of the microbiome of nipple aspirate fluid of breast cancer survivors. Sci. Rep. 2016, 6, 28061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hieken, T.J.; Chen, J.; Hoskin, T.L.; Walther-Antonio, M.; Johnson, S.; Ramaker, S.; Xiao, J.; Radisky, D.C.; Knutson, K.L.; Kalari, K.R.; et al. The Microbiome of aseptically collected human breast tissue in benign and malignant disease. Sci. Rep. 2016, 6, 30751. [Google Scholar] [CrossRef] [PubMed]
- Urbaniak, C.; Gloor, G.B.; Brackstone, M.; Scott, L.; Tangney, M.; Reid, G. The Microbiota of breast tissue and its association with breast cancer. Appl. Environ. Microbiol. 2016, 82, 5039–5048. [Google Scholar] [CrossRef] [PubMed]
- Yazdi, H.R.; Movafagh, A.; Fallah, F.; Alizadeh Shargh, S.; Mansouri, N.; Heidary Pour, A.; Hashemi, M. Evaluation of Methylobacterium radiotolerance and Sphyngomonas yanoikoaie in sentinel lymph nodes of breast cancer cases. Asian Pac. J. Cancer Prev. 2016, 17, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.J.; Ingle, J.N.; Tang, X.; Chia, N.; Jeraldo, P.R.; Walther-Antonio, M.R.; Kandimalla, K.K.; Johnson, S.; Yao, J.Z.; Harrington, S.C.; et al. A comprehensive analysis of breast cancer microbiota and host gene expression. PLoS ONE 2017, 12, e0188873. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Tian, T.; Wei, Z.; Shih, N.; Feldman, M.D.; Peck, K.N.; DeMichele, A.M.; Alwine, J.C.; Robertson, E.S. Distinct microbial signatures associated with different breast cancer types. Front. Microbiol. 2018, 9, 951. [Google Scholar] [CrossRef] [PubMed]
- Donnet-Hughes, A.; Perez, P.F.; Doré, J.; Leclerc, M.; Levenez, F.; Benyacoub, J.; Serrant, P.; Segura-Roggero, I.; Schiffrin, E.J. Potential role of the intestinal microbiota of the mother in neonatal immune education. Proc. Nutr. Soc. 2010, 69, 407–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koller, V.J.; Marian, B.; Stidl, R.; Nersesyan, A.; Winter, H.; Simić, T.; Sontag, G.; Knasmüller, S. Impact of lactic acid bacteria on oxidative DNA damage in human derived colon cells. Food Chem. Toxicol. 2008, 46, 1221–1229. [Google Scholar] [CrossRef] [PubMed]
- Marchesi, J.R.; Dutilh, B.E.; Hall, N.; Peters, W.H.; Roelofs, R.; Boleij, A.; Tjalsma, H. Towards the human colorectal cancer microbiome. PLoS ONE 2011, 6, e20447. [Google Scholar] [CrossRef] [PubMed]
- Pawlik, T.M.; Fritsche, H.; Coombes, K.R.; Xiao, L.; Krishnamurthy, S.; Hunt, K.K.; Pusztai, L.; Chen, J.N.; Clarke, C.H.; Arun, B.; et al. Significant differences in nipple aspirate fluid protein expression between healthy women and those with breast cancer demonstrated by time-of-flight mass spectrometry. Breast Cancer Res. Treat. 2005, 89, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Crusz, S.M.; Balkwill, F.R. Inflammation and cancer: Advances and new agents. Nat. Rev. Clin. Oncol. 2015, 12, 584–596. [Google Scholar] [CrossRef] [PubMed]
- Vogtmann, E.; Goedert, J.J. Epidemiologic studies of the human microbiome and cancer. Br. J. Cancer 2016, 114, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Subbaramaiah, K.; Morris, P.G.; Zhou, X.K.; Morrow, M.; Du, B.; Giri, D.; Kopelovich, L.; Hudis, C.A.; Dannenberg, A.J. Increased levels of COX-2 and prostaglandin E2 contribute to elevated aromatase expression in inflamed breast tissue of obese women. Cancer Discov. 2012, 2, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Bowers, L.W.; Brenner, A.J.; Hursting, S.D.; Tekmal, R.R.; deGraffenried, L.A. Obesity-associated systemic interleukin-6 promotes pre-adipocyte aromatase expression via increased breast cancer cell prostaglandin E2 production. Breast Cancer Res. Treat. 2015, 149, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Gierach, G.L.; Lacey, J.V., Jr.; Schatzkin, A.; Leitzmann, M.F.; Richesson, D.; Hollenbeck, A.R.; Brinton, L.A. Nonsteroidal anti-inflammatory drugs and breast cancer risk in the National Institutes of Health-AARP Diet and Health Study. Breast Cancer Res. 2008, 10, R38. [Google Scholar] [CrossRef] [PubMed]
- Bardia, A.; Olson, J.E.; Vachon, C.M.; Lazovich, D.; Vierkant, R.A.; Wang, A.H.; Limburg, P.J.; Anderson, K.E.; Cerhan, J.R. Effect of aspirin and other NSAIDs on postmenopausal breast cancer incidence by hormone receptor status: Results from a prospective cohort study. Breast Cancer Res. Treat. 2011, 126, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.T.; Galvao, T.F.; Zimmerman, I.R.; Pereira, M.G.; Lopes, L.C. Non-aspirin non-steroidal anti-inflammatory drugs for the primary chemoprevention of non-gastrointestinal cancer: Summary of evidence. Curr. Pharm. Des. 2012, 18, 4047–4070. [Google Scholar] [CrossRef] [PubMed]
- Bowers, L.W.; Maximo, I.X.; Brenner, A.J.; Beeram, M.; Hursting, S.D.; Price, R.S.; Tekmal, R.R.; Jolly, C.A.; deGraffenried, L.A. NSAID use reduces breast cancer recurrence in overweight and obese women: Role of prostaglandin-aromatase interactions. Cancer Res. 2014, 74, 4446–4457. [Google Scholar] [CrossRef] [PubMed]
- De Pedro, M.; Baeza, S.; Escudero, M.T.; Dierssen-Sotos, T.; Gómez-Acebo, I.; Pollán, M.; Llorca, J. Effect of COX-2 inhibitors and other non-steroidal inflammatory drugs on breast cancer risk: A meta-analysis. Breast Cancer Res. Treat. 2015, 149, 525–536. [Google Scholar] [CrossRef] [PubMed]
- Yiannakopoulou, E.Ch. Aspirin and NSAIDs for breast cancer chemoprevention. Eur. J. Cancer Prev. 2015, 24, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Chen, L.; Zhang, X.; Yu, D.; Tang, J.; Zhao, J. Aspirin use and risk of breast cancer: Systematic review and meta-analysis of observational studies. Cancer Epidemiol. Biomarkers Prev. 2015, 24, 1645–1655. [Google Scholar] [CrossRef] [PubMed]
- Peterson, D.A.; McNulty, N.P.; Guruge, J.L.; Gordon, J.I. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2007, 2, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Pabst, O. New concepts in the generation and functions of IgA. Nat. Rev. Immunol. 2012, 12, 821–832. [Google Scholar] [CrossRef] [PubMed]
- Ashida, H.; Ogawa, M.; Kim, M.; Mimuro, H.; Sasakawa, C. Bacteria and host interactions in the gut epithelial barrier. Nat. Chem. Biol. 2011, 8, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Carrega, P.; Bonaccorsi, I.; Di Carlo, E.; Morandi, B.; Paul, P.; Rizzello, V.; Cipollone, G.; Navarra, G.; Mingari, M.C.; Moretta, L.; et al. CD56(bright)perforin(low) noncytotoxic human NK cells are abundant in both healthy and neoplastic solid tissues and recirculate to secondary lymphoid organs via afferent lymph. J. Immunol. 2014, 192, 3805–3815. [Google Scholar] [CrossRef] [PubMed]
- Kosaka, A.; Yan, H.; Ohashi, S.; Gotoh, Y.; Sato, A.; Tsutsui, H.; Kaisho, T.; Toda, T.; Tsuji, N.M. Lactococcus lactis subsp. cremoris FC triggers IFN-γ production from NK and T cells via IL-12 and IL-18. Int. Immunopharmacol. 2012, 14, 729–733. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Cavuoto, P.; Fenech, M.F. A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension. Cancer Treat. Rev. 2012, 38, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, R.M. Development of recombinant methioninase to target the general cancer-specific metabolic defect of methionine dependence: A 40-year odyssey. Expert Opin. Biol. Ther. 2015, 15, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Yaghjyan, L.; Colditz, G.A. Estrogens in the breast tissue: A systematic review. Cancer Causes Control 2011, 22, 29–40. [Google Scholar] [CrossRef] [PubMed]
- To, S.Q.; Knower, K.C.; Cheung, V.; Simpson, E.R.; Clyne, C.D. Transcriptional control of local estrogen formation by aromatase in the breast. J. Steroid Biochem. Mol. Biol. 2015, 145, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Flores, R.; Shi, J.; Gail, M.H.; Gajer, P.; Ravel, J.; Goedert, J.J. Association of fecal microbial diversity and taxonomy with selected enzymatic functions. PLoS ONE 2012, 7, e39745. [Google Scholar] [CrossRef] [PubMed]
- DeLuca, J.A.; Allred, K.F.; Menon, R.; Riordan, R.; Weeks, B.R.; Jayaraman, A.; Allred, C.D. Bisphenol-A alters microbiota metabolites derived from aromatic amino acids and worsens disease activity during colitis. Exp. Biol. Med. 2018, 243, 864–875. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, H.; Bording-Jorgensen, M.; Dijk, S.; Wine, E. The complex interplay between chronic inflammation, the microbiome, and cancer: Understanding disease progression and what we can do to prevent it. Cancers 2018, 10, 83. [Google Scholar] [CrossRef] [PubMed]
Study | Sampling Materials and Site | Microbiota Detection and OTU Picking Method * | Sample Size | Main Findings |
---|---|---|---|---|
Fuhrman et al., 2014 [13] | Urine and feces of healthy postmenopausal women | Pyrosequencing V1-V2 16S rRNA amplicons, QIIME: Ribosomal Data Project Bayesian classifier, specific method not disclosed | 60 healthy postmenopausal women | The composition and diversity of the gut microbiota were associated with patterns of estrogen metabolism. Relative abundances of the order Clostridiales and the genus Bacteroides were directly and inversely related with the ratio estrogen metabolites to estrogen parents, respectively. Associations were independent of age, body mass index, and other study design factors. |
Xuan et al., 2014 [44] | Breast tumor tissue and paired normal adjacent tissue from the same women | Pyrosequencing gDNA amplified 16S V4 rDNA, QIIME: Greengenes database, specific method not disclosed | 20 patients with ER+ BC | Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Verrucomicrobia accounted for 96.6% of the microbiota composition. The amount of bacteria was not significantly different in normal tissue from breast cancer women compared with healthy individuals. However, Methylobacterium radiotolerans was the most significantly enriched and the most prevalent (100% of samples) in tumor tissues, and Sphingomonas yanoikuyae (95% of samples) in paired normal tissues. The relative abundances of these two bacterial species were inversely correlated in paired normal tissue but not in tumor tissue, indicating that dysbiosis was associated with cancer. |
Urbaniak et al., 2014 [63] | Breast tumor tissue from lumpectomies, mastectomies and breast reductions | Ion Torrent V6 16S rRNA sequencing, UCLUST: Taxonomic assignments for each OTU were made by the Ribosomal Database Project SeqMatch tool. The 16S rRNA sequences obtained in this study have been deposited in the Short Read Archive at NCBI. | 81 Canadian and Irish women [43 Canadian (11 benign, 27 BC, 5 healthy) and 38 Irish (33 BC, 5 healthy)] | Proteobacteria and Firmicutes were the most abundant phyla in the whole study population. The most abundant taxa in Canadian samples were Bacillus (11.4%) and Acinetobacter (10.0%); and unclassified Enterobacteriaceae (30.8%) in Irish samples. Authors only found higher abundance of Escherichia coli in cases compared with healthy controls. |
Bard et al., 2015 [62] | Feces from women with breast cancer | PCR targeting 16S rRNA gene sequences, not specified | 32 women with BC [invasive ductal (81%), stage 0 (46.9%), grade II (62.5%), ER/PgR + (80%), HER2 + (15%)] | Absolute numbers of Bifidobacterium and Blautia, and proportion of F Prausnitzii and Blautia were significantly different according to clinical stages. Women with grade III had increased absolute numbers of Blautia sp. compared to women with grade I. Significant differences were also found in the absolute numbers of total bacteria and some bacterial groups (F prausnitzii, Firmicutes, Blautia and Egerthella), according to BMI. |
Goedert et al., 2015 [52] | Urine and feces of cases and control women | Illumina sequencing and taxonomy V3-V4 16S rRNA genes, QIIME: OTUs were assigned to taxa by matching to the Ribosomal Data Project naïve Bayesian classifier, specific method not disclosed | 48 BC postmenopausal women [ER+ (n = 42), PR+ (n = 37) and HER2+ (n = 5)] and 48 paired control women | Compared with control women, case patients had an altered fecal microbiota composition (β-diversity) and a lower α-diversity, which was estrogen-independent. Relative abundance of several taxa differed between cases and control: case patients had higher levels of Clostridiaceae, Faecalibacterium, and Ruminococcaceae; and lower levels of Dorea and Lachnospiraceae. Cases presented higher urinary estrogen levels. Total urinary estrogens significantly correlated with α-diversity in controls but not in cases patients. |
Banerjee et al., 2015 [64] | Breast tissue from TNBC cases, and from matched and non-matched controls. Controls samples obtained from the adjacent non-cancerous breast tissue of the same patient, and from healthy individuals (non-matched) | PathoChip array | TNBC (n = 100) and matched controls (n = 17) and non-matched controls (n = 20), from the Abramson Cancer Center Tumor Tissue and Biosample. | TNBC samples presented a specific microbial signature of viruses, bacteria, fungi and parasites which was underrepresented in normal tissue. This signature was significantly associated with the cancer samples. In the viral signatures Herpesviridae, Retroviridae, Parapoxviridae, Polyomaviridae, Papillomaviridae families were detected. In the bacterial signatures the highest prevalence was Arcanobacterium |
Chan et al., 2016 [65] | Nipple aspirate fluid (NAF) and aerolar breast skin | 16S-V4 rRNA gene amplicon sequencing, Mothur: sequences were aligned to SILVA v119, specific method not disclosed | Women with breast ductal cancer (25 cases), and healthy women (23 controls) | The NAF microbial community composition was different in women with BC. These microbes showed β-glucuronidase activity. The most abundant bacteria in NAF samples were those belonging to Firmicutes, Proteobacteria, and Bacteroidetes phyla. In NAF from BC, there was relatively higher incidence of Alistipes, and an unclassified genus from the Sphingomonadaceae family in NAF from healthy women. The areolar skin microbota in BC and HC were not significantly distinguishable. |
Hieken et al., 2016 [66] | Breast tissue and breast skin from patients undergoing non-mastectomy breast surgery for cancer or benign disease | 16S V3-V5 rDNA hypervariable taq sequencing, IM-TORNADO: Taxonomy was assigned against a Greengenes reference database, specific method not disclosed | Patients with benign breast disease (n = 13) and invasive breast cancer (n = 15); all ER/PR+, HER-2+ (29%) | Breast tissue had its own microbiome, different from the overlying breast skin. Moreover, breast microbiome in women with cancer was notably different from the breast microbiome of women with benign disease. The microbiome from breast tissue was differentially abundant of phyla Firmicutes, Actinobacteria, Bacteroidetes, and Proteobacteria. BC correlated with enrichment in taxa of lower abundance of Fusobacterium, Atopobium, Gluconacetobacter, Hydrogenophaga and Lactobacillus genera. |
Urbaniak et al., 2016 [67] | Breast tissue from women with breast cancer (lumpectomies or mastectomies) or healthy women (breast reductions or enhancements) | 16S V6 rRNA amplicon sequencing, QIIME: OTU were made by extracting the best hits from the SILVA database. The 16S rRNA sequences obtained in this study have been deposited in the Short Read Archive at NCBI. | 58 women with benign (n = 13) or BC (n = 45), and 23 controls (n = 23) | Bacterial profiles were statistically different in normal adjacent tissue from BC women compared with control tissue. The comparison showed significantly higher relative abundance of Prevotella, Lactococcus, Streptococcus, Corynebacterium, and Micrococcus in healthy patients, and Bacillus, Staphylococcus, Enterobacteriaceae (unclassified), Comamondaceae (unclassified) and Bacteroidetes (unclassified) in BC. |
Yazdi et al., 2016 [68] | Sentinel lymph nodes and normal adjacent breast tissue | RT-PCR and pyrosequencing | 123 sentinel lymph nodes and 123 normal adjacent breast tissue specimens | There were significant differences between lymph cancer nodes and normal samples according to the presence of Methylobacterium Radiotolerance. |
Luu et al., 2017 [48] | Feces from women with early-stage breast cancer | Real-time qPCR | 31 women with BC [ER/PgR+ (90%), HER2+ (15%)] | In the fecal samples, Firmicutes and Bacteroidetes phyla were the most abundant bacteria. The total number (richness) of Bacteroidetes, Clostridium coccoides cluster, C. leptum cluster, F. prausnitzii, and Blautia spp. were significantly higher in clinical stage groups II/III than in clinical stages 0/I. Blautia spp. was associated with a more severe histoprognostic grades. Moreover, total bacteria and three groups: Firmicutes, Faecalibacterium prausnitzii and Blautia spp. showed lower number in overweight and obese women. |
Wang et al., 2017 [45] | Urine, and right and left breast tissue from each control patient, and tumor and ipsilateral adjacent normal breast tissue for cases | Illumina 16S V3-V4 rRNA amplification, UCLUST: OTUs were assigned using Greengenes, specific method not disclosed | 50 BC patients and 20 healthy controls | Neither significant difference in overall diversity (Shannon diversity) nor in microbiota content (number of observed OTUs) was detected in breast tissue from cancer or control women. However, significantly decreased relative richness of Methylobacterium was found in women with BC. Differences in the urinary microbiota of women with BC were detected, with increased abundance of Corynebacterium, Staphylococcus, Actinomyces, and Propionibacteriaceae gram-positive bacteria, and decreased abundance of genus Lactobacillus. |
Thompson et al., 2017 [69] | Breast tumor tissues and normal adjacent tissues from The Cancer Genome Atlas | 16S-V3-V5 rRNA amplified, metagenomeSeq package, specific method not disclosed | 668 tumor tissues (HER2+, ER+ and TNC BC) and 72 normal adjacent tissues | The most abundant phyla in breast tissues were Proteobacteria, Actinobacteria, and Firmicutes. In tumor samples, the most predominant phylum was Proteobacteria, and Actinobacteria in normal tissue. Mycobacterium fortuitum and Mycobacterium phlei were two of the prevalent species observed differentially abundant in the tumor samples. Escherichia coli was also more prevalent in the breast tissues. |
Goedert et al., 2018 [53] | Urine and feces from postmenopausal BC cases and control women | 16S V4 rRNA gene amplicon sequencing, DADA2 package and SILVA. The 16S rRNA gene sequence data and case–control status have been deposited and are available in the Sequence Read Archive under BioProject ID PRJNA383849 | 48 BC postmenopausal women [ER+ (n = 42), PR+ (n = 37) and HER2+ (n = 5)] and 48 paired control women | Cases had reduced richness (number of species) and α-diversity, significantly more marked in the IgA-positive gut microbiota. Cases showed higher levels of Clostridiaceae, Faecalibacterium, and Ruminococcaceae; and lower levels of Dorea and Lachnospiraceae. Cases versus controls showed significant and different estrogen-independent associations with the IgA+ and IgA− gut microbiota. Total urinary estrogens correlated with α-diversity only in controls. |
Banerjee et al., 2018 [70] | BC tissues (cases), breast control tissues from healthy individuals (reduction surgeries) | PathoChips array | BC [ER+ (n = 50), HER2+ (n = 34), triple positive (n = 24), TNBC (n = 40)], and normal breast tissue (n = 20) | Unique viral, bacterial, fungal and parasitic signatures were found for each of the BC types. The triple negative and positive samples showed distinct microbial signature patterns than the ER and HER2 positive breast cancer samples. The most prevalent bacterial signatures were for Proteobacteria followed by Firmicutes. The Mobiluncus family was detected in all four types. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández, M.F.; Reina-Pérez, I.; Astorga, J.M.; Rodríguez-Carrillo, A.; Plaza-Díaz, J.; Fontana, L. Breast Cancer and Its Relationship with the Microbiota. Int. J. Environ. Res. Public Health 2018, 15, 1747. https://doi.org/10.3390/ijerph15081747
Fernández MF, Reina-Pérez I, Astorga JM, Rodríguez-Carrillo A, Plaza-Díaz J, Fontana L. Breast Cancer and Its Relationship with the Microbiota. International Journal of Environmental Research and Public Health. 2018; 15(8):1747. https://doi.org/10.3390/ijerph15081747
Chicago/Turabian StyleFernández, Mariana F., Iris Reina-Pérez, Juan Manuel Astorga, Andrea Rodríguez-Carrillo, Julio Plaza-Díaz, and Luis Fontana. 2018. "Breast Cancer and Its Relationship with the Microbiota" International Journal of Environmental Research and Public Health 15, no. 8: 1747. https://doi.org/10.3390/ijerph15081747
APA StyleFernández, M. F., Reina-Pérez, I., Astorga, J. M., Rodríguez-Carrillo, A., Plaza-Díaz, J., & Fontana, L. (2018). Breast Cancer and Its Relationship with the Microbiota. International Journal of Environmental Research and Public Health, 15(8), 1747. https://doi.org/10.3390/ijerph15081747