The Effect of Nordic Walking Training Combined with Vitamin D Supplementation on Postural Control and Muscle Strength in Elderly People—A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Ethics Statement
2.3. Experimental Design
2.4. Exercise Protocol
2.5. Blood Collection and Analysis
2.6. Body Composition Assessment
2.7. Muscle Strength Assessment
2.8. Postural Control Assessment
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lowery, E.M.; Brubaker, A.L.; Kuhlmann, E.; Kovacs, E.J. The aging lung. Clin. Interv. Aging 2013, 8, 1489–1496. [Google Scholar] [PubMed]
- Ramly, M.; Ming, M.F.; Chinna, K.; Suboh, S.; Pendek, R. Effect of Vitamin D supplementation on cardiometabolic risks and health-related quality of life among urban premenopausal women in a tropical country—A randomized controlled trial. PLoS ONE 2014, 9, e110476. [Google Scholar] [CrossRef] [PubMed]
- Strait, J.B.; Lakatta, E.G. Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail. Clin. 2012, 8, 143–164. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Cho, J.; Jin, Y.; Ha, C.; Kim, T.; Kang, H. Body fat and physical activity modulate the association between sarcopenia and osteoporosis in elderly korean women. J. Sports Sci. Med. 2016, 15, 477–482. [Google Scholar] [PubMed]
- Aagaard, P.; Suetta, C.; Caserotti, P.; Magnusson, S.P.; Kjaer, M. Role of the nervous system in sarcopenia and muscle atrophy with aging: Strength training as a countermeasure. Scand. J. Med. Sci. Sports 2010, 20, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, C.J.; Churchward-Venne, T.A.; West, D.W.; Burd, N.A.; Breen, L.; Baker, S.K.; Phillips, S.M. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J. Appl. Physiol. (1985) 2012, 113, 71–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayer, A.A.; Robinson, S.M.; Patel, H.P.; Shavlakadze, T.; Cooper, C.; Grounds, M.D. New horizons in the pathogenesis, diagnosis and management of sarcopenia. Age Ageing 2013, 42, 145–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maki, B.E.; Holliday, P.J.; Fernie, G.R. Aging and postural control. A comparison of spontaneous- and induced-sway balance tests. J. Am. Geriatr. Soc. 1990, 38, 1–9. [Google Scholar] [CrossRef] [PubMed]
- McClenaghan, B.A.; Williams, H.G.; Dickerson, J.; Dowda, M.; Thombs, L.; Eleazer, P. Spectral characteristics of ageing postural control. Gait Posture 1995, 3, 123–131. [Google Scholar] [CrossRef]
- Janssen, I.; Heymsfield, S.B.; Ross, R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J. Am. Geriatr. Soc. 2002, 50, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Behnke, B.J.; Ramsey, M.W.; Stabley, J.N.; Dominguez, J.M., 2nd; Davis, R.T., 3rd; McCullough, D.J.; Muller-Delp, J.M.; Delp, M.D. Effects of aging and exercise training on skeletal muscle blood flow and resistance artery morphology. J. Appl. Physiol. (1985) 2012, 113, 1699–1708. [Google Scholar] [CrossRef] [PubMed]
- Gavin, T.P.; Kraus, R.M.; Carrithers, J.A.; Garry, J.P.; Hickner, R.C. Aging and the skeletal muscle angiogenic response to exercise in women. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2015, 70, 1189–1197. [Google Scholar] [CrossRef] [PubMed]
- Song, M.S.; Yoo, Y.K.; Choi, C.H.; Kim, N.C. Effects of nordic walking on body composition, muscle strength, and lipid profile in elderly women. Asian Nurs. Res. (Korean Soc. Nurs. Sci.) 2013, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ossowski, Z.M.; Skrobot, W.; Aschenbrenner, P.; Cesnaitiene, V.J.; Smaruj, M. Effects of short-term nordic walking training on sarcopenia-related parameters in women with low bone mass: A preliminary study. Clin. Interv. Aging 2016, 11, 1763–1771. [Google Scholar] [CrossRef] [PubMed]
- Gmiat, A.; Mieszkowski, J.; Prusik, K.; Kortas, J.; Kochanowicz, A.; Radulska, A.; Lipinski, M.; Tomczyk, M.; Jaworska, J.; Antosiewicz, J.; et al. Changes in pro-inflammatory markers and leucine concentrations in response to nordic walking training combined with Vitamin D supplementation in elderly women. Biogerontology 2017, 18, 535–548. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, H.A.; Stahelin, H.B.; Urscheler, N.; Ehrsam, R.; Vonthein, R.; Perrig-Chiello, P.; Tyndall, A.; Theiler, R. Muscle strength in the elderly: Its relation to Vitamin D metabolites. Arch. Phys. Med. Rehabil. 1999, 80, 54–58. [Google Scholar] [CrossRef]
- Bischoff-Ferrari, H.A.; Dietrich, T.; Orav, E.J.; Hu, F.B.; Zhang, Y.; Karlson, E.W.; Dawson-Hughes, B. Higher 25-hydroxyVitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged > or =60 y. Am. J. Clin. Nutr. 2004, 80, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Dhesi, J.K.; Bearne, L.M.; Moniz, C.; Hurley, M.V.; Jackson, S.H.; Swift, C.G.; Allain, T.J. Neuromuscular and psychomotor function in elderly subjects who fall and the relationship with Vitamin D status. J. Bone Miner. Res. 2002, 17, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Capiati, D.; Benassati, S.; Boland, R.L. 1,25(oh)2-Vitamin D3 induces translocation of the Vitamin D receptor (vdr) to the plasma membrane in skeletal muscle cells. J. Cell. Biochem. 2002, 86, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Lindeman, R.D.; Tobin, J.; Shock, N.W. Longitudinal studies on the rate of decline in renal function with age. J. Am. Geriatr. Soc. 1985, 33, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Muir, S.W.; Montero-Odasso, M. Effect of Vitamin D supplementation on muscle strength, gait and balance in older adults: A systematic review and meta-analysis. J. Am. Geriatr. Soc. 2011, 59, 2291–2300. [Google Scholar] [CrossRef] [PubMed]
- Bischoff-Ferrari, H.A.; Dawson-Hughes, B.; Willett, W.C.; Staehelin, H.B.; Bazemore, M.G.; Zee, R.Y.; Wong, J.B. Effect of Vitamin D on falls: A meta-analysis. Jama 2004, 291, 1999–2006. [Google Scholar] [CrossRef] [PubMed]
- Crum, R.M.; Anthony, J.C.; Bassett, S.S.; Folstein, M.F. Population-based norms for the mini-mental state examination by age and educational level. Jama 1993, 269, 2386–2391. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.J.; Rikli, R.E.; Beam, W.C. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res. Q. Exerc. Sport 1999, 70, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Suresh, K. An overview of randomization techniques: An unbiased assessment of outcome in clinical research. J. Hum. Reprod. Sci. 2011, 4, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Powers, H.; Cashman, K.; Francis, R.; Key, T.; Lanham-New, S.; McArdle, H.; Prentice, A.; Walsh, S.; Williams, A.; Young, I. Vitamin D and Health; Scientific Advisory Committee on Nutrition: London, UK, 2016.
- American Geriatrics Society Workgroup on Vitamin D Supplementation for Older Adults. Recommendations abstracted from the american geriatrics society consensus statement on Vitamin D for prevention of falls and their consequences. J. Am. Geriatr. Soc. 2014, 62, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Glade, M.J. A 21st century evaluation of the safety of oral Vitamin D. Nutrition 2012, 28, 344–356. [Google Scholar] [CrossRef] [PubMed]
- Vieth, R. Vitamin D supplementation, 25-hydroxyVitamin D concentrations, and safety. Am. J. Clin. Nutr. 1999, 69, 842–856. [Google Scholar] [CrossRef] [PubMed]
- Vieth, R. Vitamin D toxicity, policy, and science. J. Bone Miner. Res. 2007, 22, V64–V68. [Google Scholar] [CrossRef] [PubMed]
- Drouin, J.M.; Valovich-mcLeod, T.C.; Shultz, S.J.; Gansneder, B.M.; Perrin, D.H. Reliability and validity of the biodex system 3 pro isokinetic dynamometer velocity, torque and position measurements. Eur. J. Appl. Physiol. 2004, 91, 22–29. [Google Scholar] [PubMed]
- Zawadzki, J.; Bober, T.; Siemienski, A. Validity analysis of the biodex system 3 dynamometer under static and isokinetic conditions. Acta Bioeng. Biomech. 2010, 12, 25–32. [Google Scholar] [PubMed]
- Rombaut, L.; Malfait, F.; De Wandele, I.; Thijs, Y.; Palmans, T.; De Paepe, A.; Calders, P. Balance, gait, falls, and fear of falling in women with the hypermobility type of ehlers-danlos syndrome. Arthr. Care Res. (Hoboken) 2011, 63, 1432–1439. [Google Scholar] [CrossRef] [PubMed]
- Ruhe, A.; Fejer, R.; Walker, B. Center of pressure excursion as a measure of balance performance in patients with non-specific low back pain compared to healthy controls: A systematic review of the literature. Eur. Spine J. 2011, 20, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. A Scale of Magnitudes for Effect Statistics. Available online: http://www.sportsci.org/resource/stats/effectmag.html (accessed on 8 August 2015).
- Prusik, K.; Kortas, J.; Mieszkowski, J.; Jaworska, J.; Skrobot, W.; Lipinski, M.; Ziemann, E.; Antosiewicz, J. Nordic walking training causes a decrease in blood cholesterol in elderly women supplemented with Vitamin D. Front. Endocrinol. (Lausanne) 2018, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Gmiat, A.; Jaworska, J.; Micielska, K.; Kortas, J.; Prusik, K.; Lipowski, M.; Radulska, A.; Szupryczynska, N.; Antosiewicz, J.; Ziemann, E. Improvement of cognitive functions in response to a regular nordic walking training in elderly women—A change dependent on the training experience. Exp. Gerontol. 2018, 104, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.; Ebeling, P.R.; Sanders, K.M.; Aitken, D.; Winzenberg, T.; Jones, G. Vitamin D and physical activity status: Associations with five-year changes in body composition and muscle function in community-dwelling older adults. J. Clin. Endocrinol. Metab. 2015, 100, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Rejnmark, L. Effects of Vitamin D on muscle function and performance: A review of evidence from randomized controlled trials. Ther. Adv. Chronic Dis. 2011, 2, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Bunout, D.; Barrera, G.; Leiva, L.; Gattas, V.; de la Maza, M.P.; Avendano, M.; Hirsch, S. Effects of Vitamin D supplementation and exercise training on physical performance in chilean Vitamin D deficient elderly subjects. Exp. Gerontol. 2006, 41, 746–752. [Google Scholar] [CrossRef] [PubMed]
- Grimnes, G.; Emaus, N.; Cashman, K.D.; Jorde, R. The effect of high-dose Vitamin D supplementation on muscular function and quality of life in postmenopausal women-a randomized controlled trial. Clin. Endocrinol. (Oxf.) 2017, 87, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Bischoff-Ferrari, H.A.; Borchers, M.; Gudat, F.; Durmuller, U.; Stahelin, H.B.; Dick, W. Vitamin D receptor expression in human muscle tissue decreases with age. J. Bone Miner. Res. 2004, 19, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Aly, Y.E.; Abdou, A.S.; Rashad, M.M.; Nassef, M.M. Effect of exercise on serum Vitamin D and tissue Vitamin D receptors in experimentally induced type 2 diabetes mellitus. J. Adv. Res. 2016, 7, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M.; Endocrine, S. Evaluation, treatment, and prevention of Vitamin D deficiency: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed]
- Grimaldi, A.S.; Parker, B.A.; Capizzi, J.A.; Clarkson, P.M.; Pescatello, L.S.; White, M.C.; Thompson, P.D. 25(oh) Vitamin D is associated with greater muscle strength in healthy men and women. Med. Sci. Sports Exerc. 2013, 45, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Gerdhem, P.; Ringsberg, K.A.; Obrant, K.J.; Akesson, K. Association between 25-hydroxy Vitamin D levels, physical activity, muscle strength and fractures in the prospective population-based opra study of elderly women. Osteoporos. Int. 2005, 16, 1425–1431. [Google Scholar] [CrossRef] [PubMed]
- Van den Heuvel, E.G.; van Schoor, N.; de Jongh, R.T.; Visser, M.; Lips, P. Cross-sectional study on different characteristics of physical activity as determinants of Vitamin D status; inadequate in half of the population. Eur. J. Clin. Nutr. 2013, 67, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Wanner, M.; Richard, A.; Martin, B.; Linseisen, J.; Rohrmann, S. Associations between objective and self-reported physical activity and Vitamin D serum levels in the us population. Cancer Causes Control 2015, 26, 881–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brock, K.; Cant, R.; Clemson, L.; Mason, R.S.; Fraser, D.R. Effects of diet and exercise on plasma Vitamin D (25(oh)d) levels in vietnamese immigrant elderly in sydney, australia. J. Steroid. Biochem. Mol. Biol. 2007, 103, 786–792. [Google Scholar] [CrossRef] [PubMed]
- Pilch, W.; Tyka, A.; Cebula, A.; Sliwicka, E.; Pilaczynska-Szczesniak, L. Effects of a 6-week nordic walking training on changes in 25(oh)d blood concentration in women aged over 55. J. Sports Med. Phys. Fit. 2017, 57, 124–129. [Google Scholar]
- Lithgow, H.M.; Florida-James, G.; Leggate, M. The combined effect of high-intensity intermittent training and Vitamin D supplementation on glycemic control in overweight and obese adults. Physiol. Rep. 2018, 6, e13684. [Google Scholar] [CrossRef] [PubMed]
- Jastrzebska, M.; Kaczmarczyk, M.; Jastrzebski, Z. Effect of Vitamin D supplementation on training adaptation in well-trained soccer players. J. Strength Condit. Res. 2016, 30, 2648–2655. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, B.; Peyre-Tartaruga, L.A.; Zoppirolli, C.; Bortolan, L.; Bacchi, E.; Figard-Fabre, H.; Schena, F. Exploring muscle activation during nordic walking: A comparison between conventional and uphill walking. PLoS ONE 2015, 10, e0138906. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.; Blizzard, L.; Fell, J.; Ding, C.; Winzenberg, T.; Jones, G. A prospective study of the associations between 25-hydroxy-Vitamin D, sarcopenia progression and physical activity in older adults. Clin. Endocrinol. (Oxf.) 2010, 73, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, L.D.; Robertson, M.C.; Gillespie, W.J.; Sherrington, C.; Gates, S.; Clemson, L.M.; Lamb, S.E. Interventions for preventing falls in older people living in the community. Cochrane Database Syst. Rev. 2012, 9, CD007146. [Google Scholar] [CrossRef] [PubMed]
- Wiacek, M.; Hagner, W.; Hagner-Derengowska, M.; Bluj, B.; Drozd, M.; Czereba, J.; Zubrzycki, I.Z. Correlations between postural stability and strength of lower body extremities of women population living in long-term care facilities. Arch. Gerontol. Geriatr. 2008, 48, 346–349. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, M.; Begerow, B.; Minne, H.W.; Schlotthauer, T.; Pospeschill, M.; Scholz, M.; Lazarescu, A.D.; Pollähne, W. Vitamin D status, trunk muscle strength, body sway, falls, and fractures among 237 postmenopausal women with osteoporosis. Exp. Clin. Endocrinol. Diabetes 2001, 109, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, J.C. Vitamin D and falls—The dosage conundrum. Nat. Rev. Endocrinol. 2016, 12, 680–684. [Google Scholar] [CrossRef] [PubMed]
Variable | High-Intensity Interval Training | Moderate Intensity Continuous Training | ||
---|---|---|---|---|
800 IU/day D3 (n = 8) | 4000 IU/day D3 (n = 8) | 800 IU/day D3 (n = 13) | 4000 IU/day D3 (n = 13) | |
Age (years) | 67.37 ± 6.30 | 67.63 ± 7.29 | 69.08 ± 4.87 | 70.85 ± 4.61 |
Body mass (kg) | 67.78 ± 4.52 | 65.73 ± 4.51 | 73.47 ± 14.17 | 70.09 ± 10.16 |
Body height (cm) | 163.75 ± 4.56 | 162.57 ± 5.59 | 159.58 ± 7.35 | 163.08 ± 3.79 |
BMI (kg·m-2) | 25.23 ± 3.47 | 24.93 ± 2.54 | 28.77 ± 4.65 | 26.29 ± 3.21 |
Dose | High-Intensity Interval Training | Moderate Intensity Continuous Training | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Before | After | Cohen’s d | Before | After | Cohen’s d | |||||
Mean ± SD | 95% CI | Mean ± SD | 95% CI | Mean ± SD | 95% CI | Mean ± SD | 95% CI | |||
LD | 19.06 ± 8.88 | 11.64–26.49 | 37.13 ± 12.33 * | 26.81–47.43 | 1.68 | 21.77 ± 6.63 | 17.56–25.98 | 28.20 ± 12.09 | 20.52–35.88 | 0.66 |
HD | 22.87 ± 6.26 | 17.08–28.67 | 48.04 ± 15.08 * | 34.09–61.99 | 2.18 | 19.70 ± 8.61 | 14.49–24.90 | 40.98 ± 12.40 * | 33.49–48.48 | 1.99 |
Dose | High-Intensity Interval Training | Moderate-Intensity Continues Training | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Before | After | Cohen’s d | Before | After | Cohen’s d | |||||
Mean ± SD | 95% CI | Mean ± SD | 95% CI | Mean ± SD | 95% CI | Mean ± SD | 95% CI | |||
Body Mass (kg) | ||||||||||
LD | 67.78 ± 4.52 | 58.84–76.71 | 67.41 ± 11.79 | 57.56–77.27 | 0.04 | 73.47 ± 14.17 | 64.46–82.47 | 72.47 ± 14.58 | 63.21–81.73 | 0.06 |
HD | 65.73 ± 4.51 | 60.99–70.47 | 65.63 ± 5.40 | 59.97–71.30 | 0.02 | 70.09 ± 10.16 | 63.95–76.24 | 70.60 ± 10.21 | 64.43–76.77 | 0.05 |
Fat Mass (%) | ||||||||||
LD | 32.44 ± 5.42 | 27.91–36.97 | 32.23 ± 6.09 | 27.13–37.32 | 0.04 | 39.45 ± 7.36 | 34.77–44.12 | 39.79 ± 7.93 | 34.75–44.83 | 0.04 |
HD | 30.14 ± 6.38 | 23.44–36.83 | 30.52 ± 7.19 | 22.97–38.07 | 0.06 | 36.83 ± 5.88 | 33.28–40.38 | 35.59 ± 6.22 | 31.83–39.35 | 0.20 |
Mineral Mass (kg) | ||||||||||
LD | 3.21 ± 0.31 | 2.95–3.47 | 3.22 ± 0.35 | 2.92–3.51 | 0.03 | 3.05 ± 0.51 | 2.73–3.38 | 2.98 ± 0.35 | 2.76–3.20 | 0.16 |
HD | 3.19 ± 0.29 | 2.88–3.50 | 3.20 ± 0.13 | 2.87–3.54 | 0.04 | 3.15 ± 0.28 | 2.98–3.33 | 3.24 ± 0.26 | 3.09–3.41 | 0.33 |
Skeletal Muscle Mass (kg) | ||||||||||
LD | 24.67 ± 2.73 | 22.38–26.95 | 24.72 ± 3.13 | 22.11–27.33 | 0.02 | 23.82 ± 4.17 | 21.17–26.47 | 23.28 ± 3.32 | 21.17–25.39 | 0.14 |
HD | 24.86 ± 2.47 | 22.27–27.44 | 24.89 ± 3.19 | 21.55–28.24 | 0.01 | 23.65 ± 2.16 | 22.34–24.95 | 24.69 ± 2.30 | 23.29–26.08 | 0.47 |
Arm Lean Mass (kg) | ||||||||||
LD | 2.33 ± 0.37 | 2.02–2.64 | 2.35 ± 0.39 | 2.03–2.68 | 0.05 | 2.35 ± 0.55 | 1.99–2.69 | 2.29 ± 0.47 | 1.99–2.59 | 0.11 |
HD | 2.34 ± 0.25 | 2.08–2.59 | 2.34 ± 0.37 | 1.95–2.73 | 0.01 | 2.26 ± 0.27 | 2.09–2.43 | 2.37 ± 0.32 | 2.17–2.56 | 0.27 |
Leg Lean Mass (kg) | ||||||||||
LD | 6.94 ± 0.90 | 6.18–7.69 | 6.87 ± 0.99 | 6.04–7.69 | 0.07 | 6.65 ± 1.21 | 5.87–7.41 | 6.46 ± 0.97 | 5.84–7.07 | 0.17 |
HD | 7.05 ± 0.88 | 6.13–7.97 | 7.06 ± 1.07 | 5.94–8.19 | 0.01 | 6.66 ± 0.81 | 6.17–7.15 | 6.95 ± 0.73 * | 6.51–7.39 | 0.38 |
Variable | High-Intensity Interval Training | Moderate-Intensity Continues Training | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Before | After | Cohen’s d | Before | After | Cohen’s d | |||||
Mean ± SD | 95% CI | Mean ± SD | 95% CI | Mean ± SD | 95% CI | Mean ± SD | 95% CI | |||
KF | ||||||||||
LD | 38.01 ± 8.63 | 30.02–46.00 | 44.07 ± 14.07 | 30.43–57.71 | 0.50 | 36.21 ± 7.32 | 31.29–41.13 | 36.82 ± 8.16 | 31.33–42.30 | 0.08 |
HD | 36.66 ± 13.89 | 23.81–49.50 | 39.21 ± 16.79 | 23.68–54.75 | 0.17 | 36.99 ± 9.58 | 31.20–42.78 | 42.82 ± 10.80 | 36.29–49.34 | 0.57 |
KE | ||||||||||
LD | 101.56 ± 21.14 | 82.01–121.11 | 111.79 ± 30.67 | 83.42–140.15 | 0.39 | 103.27 ± 23.56 | 87.44–119.10 | 98.06 ± 23.46 | 82.30–113.82 | 0.22 |
HD | 98.81 ± 32 | 69.15–128.47 | 94.49–20.69 | 75.35–113.62 | 0.16 | 92.05 ± 23.19 | 78.04–106.07 | 94.82–18.02 | 83.93–105.71 | 0.13 |
EF | ||||||||||
LD | 26.56 ± 3.14 | 23.66–29.46 | 29.04 ± 3.62 * | 25.69–32.39 | 0.73 | 24.94 ± 5.46 | 20.74–29.14 | 25.33 ± 4.84 | 21.62–29.05 | 0.08 |
HD | 24.91 ± 3.33 | 21.83–27.99 | 27.83 ± 3.95 * | 24.17–31.48 | 0.80 | 22.97 ± 5.45 | 19.69–26.27 | 24.41 ± 2.89 | 22.66–26.16 | 0.33 |
EE | ||||||||||
LD | 22.69 ± 4.24 | 18.77–26.61 | 25.19 ± 6.62 | 19.06–31.31 | 0.45 | 18.60 ± 2.93 | 16.35–20.85 | 21.60 ± 5.83 | 17.11–26.08 | 0.65 |
HD | 20.74 ± 3.14 | 17.84–23.65 | 23.13 ± 2.99 | 20.35–25.90 | 0.78 | 23.87 ± 10.69 | 17.41–30.32 | 21.88 ± 4.23 | 19.33–24.44 | 0.24 |
CoP | High-Intensive Interval Training | Moderate-Intensity Continuous Training | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Velocity (cm/s) | Area (cm2) | Velocity (cm/s) | Area (cm2) | ||||||||||||||
Before | After | Before | After | Before | After | Before | After | ||||||||||
Group | Mean ± SD | 95% CI | Mean ± SD | 95% CI | Mean ± SD | 95% CI | Mean ± SD | 95% CI | Group | Mean ± SD | 95% CI | Mean ± SD | 95% CI | Mean ± SD | 95% CI | Mean ± SD | 95% CI |
Eyes Opened | |||||||||||||||||
LD (n = 8) | 1.30 ± 0.12 | 1.20–1.40 | 1.46 ± 0.19 # | 1.30–1.62 | 0.83 ± 0.22 | 0.64–1.01 | 1.28 ± 0.66 | 0.72–1.83 | LD (n = 11) | 1.27 ± 0.13 | 1.18–1.36 | 1.30 ± 0.25 | 1.14–1.47 | 1.42 ± 1.24 | 0.58–2.25 | 1.41 ± 0.95 | 0.77–2.05 |
HD (n = 7) | 1.29 ± 0.12 | 1.18–1.40 | 1.20 ± 0.13 | 1.09–1.32 | 1.17 ± 1.02 | 0.23–2.11 | 0.79 ± 0.28 | 0.53–1.05 | HD (n = 13) | 1.41 ± 0.27 | 1.24–1.57 | 1.35 ± 0.29 | 1.18–1.52 | 1.01 ± 0.72 | 0.58–1.44 | 1.19 ± 0.58 | 0.85–1.55 |
Eyes Closed | |||||||||||||||||
LD (n = 7) | 1.64 ± 0.34 | 1.33–1.94 | 1.79 ± 0.31 | 1.50–2.07 | 1.72 ± 0.33 | 0.50–2.95 | 1.54 ± 0.61 | 0.62–2.83 | LD (n = 11) | 1.81 ± 0.50 | 1.48–2.15 | 1.70 ± 0.27 | 1.52–1.89 | 2.23 ± 1.34 | 1.33–3.13 | 2.69 ± 1.86 | 1.32–3.47 |
HD (n = 7) | 1.95 ± 0.46 | 1.53–2.38 | 1.54 ± 0.44 | 1.14–1.95 | 1.72 ± 1.34 | 0.47–2.97 | 1.73 ± 1.19 | 0.99–2.11 | HD (n = 11) | 1.76 ± 0.25 | 1.59–1.93 | 2.20 ± 1.00 | 1.52–2.88 | 1.46 ± 0.86 | 0.89–2.04 | 2.39 ± 1.59 | 1.44–3.94 |
Single Leg Stance | |||||||||||||||||
LD (n = 7) | 4.06 ± 1.05 | 2.77–5.36 | 4.04 ± 0.78 | 3.08–5.01 | 4.65 ± 0.94 # | 3.48–5.82 | 4.40 ± 1.36 # | 2.71–6.09 | LD (n = 11) | 4.22 ± 1.11 | 3.48–4.98 | 4.28 ± 1.15 | 3.50–5.05 | 6.84 ± 3.54 | 4.46–9.22 | 6.35 ± 3.39 | 4.07–8.62 |
HD (n = 7) | 4.74 ± 1.49 | 3.36–6.13 | 4.68 ± 1.22 | 3.55–5.81 | 7.64 ± 2.82 | 5.04–10.26 | 8.01 ± 4.48 | 3.87–12.15 | HD (n = 9) | 4.84 ± 1.05 | 4.04–5.65 | 4.39 ± 1.05 | 3.59–5.20 | 5.71 ± 1.94 | 4.22–7.21 | 6.21 ± 2.61 | 4.21–8.21 |
Tandem Stance | |||||||||||||||||
LD (n = 7) | 2.94 ± 0.65 | 1.91–3.96 | 3.33 ± 1.17 | 1.47–5.18 | 3.23 ± 0.79 | 1.97–4.49 | 3.68 ± 0.71 | 2.54–4.82 | LD (n = 12) | 3.48 ± 0.95 | 2.86–4.08 | 3.07 ± 0.82 * | 2.54–3.59 | 5.56 ± 2.80 | 3.78–7.34 | 4.04 ± 2.81 | 2.25–5.83 |
HD (n = 7) | 3.31 ± 1.17 | 2.08–4.53 | 3.16 ± 0.68 | 2.45–3.88 | 4.09 ± 1.91 | 2.08–6.10 | 3.58 ± 1.41 | 2.10–5.06 | HD (n = 13) | 3.26 ± 0.97 | 2.67–3.85 | 2.97 ± 1.05 * | 2.33–3.61 | 4.21 ± 3.81 | 1.91–6.51 | 3.93 ± 2.70 | 2.29–5.56 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mieszkowski, J.; Niespodziński, B.; Kochanowicz, A.; Gmiat, A.; Prusik, K.; Prusik, K.; Kortas, J.; Ziemann, E.; Antosiewicz, J. The Effect of Nordic Walking Training Combined with Vitamin D Supplementation on Postural Control and Muscle Strength in Elderly People—A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2018, 15, 1951. https://doi.org/10.3390/ijerph15091951
Mieszkowski J, Niespodziński B, Kochanowicz A, Gmiat A, Prusik K, Prusik K, Kortas J, Ziemann E, Antosiewicz J. The Effect of Nordic Walking Training Combined with Vitamin D Supplementation on Postural Control and Muscle Strength in Elderly People—A Randomized Controlled Trial. International Journal of Environmental Research and Public Health. 2018; 15(9):1951. https://doi.org/10.3390/ijerph15091951
Chicago/Turabian StyleMieszkowski, Jan, Bartłomiej Niespodziński, Andrzej Kochanowicz, Anna Gmiat, Krzysztof Prusik, Katarzyna Prusik, Jakub Kortas, Ewa Ziemann, and Jędrzej Antosiewicz. 2018. "The Effect of Nordic Walking Training Combined with Vitamin D Supplementation on Postural Control and Muscle Strength in Elderly People—A Randomized Controlled Trial" International Journal of Environmental Research and Public Health 15, no. 9: 1951. https://doi.org/10.3390/ijerph15091951
APA StyleMieszkowski, J., Niespodziński, B., Kochanowicz, A., Gmiat, A., Prusik, K., Prusik, K., Kortas, J., Ziemann, E., & Antosiewicz, J. (2018). The Effect of Nordic Walking Training Combined with Vitamin D Supplementation on Postural Control and Muscle Strength in Elderly People—A Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 15(9), 1951. https://doi.org/10.3390/ijerph15091951