Association between Weather Types based on the Spatial Synoptic Classification and All-Cause Mortality in Sweden, 1991–2014
Abstract
:1. Introduction
2. Materials and Methods
Statstical Analysis
3. Results
4. Discussion
4.1. Summer
4.2. Winter
4.3. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Rey, G.; Jougla, E.; Fouillet, A.; Pavillon, G.; Bessemoulin, P.; Frayssinet, P.; Clavel, J.; Hemon, D. The impact of major heat waves on all-cause and cause-specific mortality in France from 1971 to 2003. Int. Arch. Occup. Environ. Health 2007, 80, 615–626. [Google Scholar] [CrossRef] [PubMed]
- Braga, A.L.F.; Zanobetti, A.; Schwartz, J. The time course of weather-related deaths. Epidemiology 2001, 12, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Lam, H.C.Y.; Chan, J.C.N.; Luk, A.O.Y.; Chan, E.Y.Y.; Goggins, W.B. Short-term association between ambient temperature and acute myocardial infarction hospitalizations for diabetes mellitus patients: A time series study. PLoS Med. 2018, 15, e1002612. [Google Scholar] [CrossRef]
- Wichmann, J.; Rosengren, A.; Sjoberg, K.; Barregard, L.; Sallsten, G. Association between Ambient Temperature and Acute Myocardial Infarction Hospitalisations in Gothenburg, Sweden: 1985–2010. PLoS ONE 2013, 8, e62059. [Google Scholar] [CrossRef]
- Barnett, A.G.; Hajat, S.; Gasparrini, A.; Rocklov, J. Cold and heat waves in the United States. Environ. Res. 2012, 112, 218–224. [Google Scholar] [CrossRef]
- Anderson, B.G.; Bell, M.L. Weather-Related Mortality How Heat, Cold, and Heat Waves Affect Mortality in the United States. Epidemiology 2009, 20, 205–213. [Google Scholar] [CrossRef]
- Basu, R. High ambient temperature and mortality: A review of epidemiologic studies from 2001 to 2008. Environ. Health 2009, 8. [Google Scholar] [CrossRef]
- Ye, X.F.; Wolff, R.; Yu, W.W.; Vaneckova, P.; Pan, X.C.; Tong, S.L. Ambient Temperature and Morbidity: A Review of Epidemiological Evidence. Environ. Health Perspect. 2012, 120, 19–28. [Google Scholar] [CrossRef] [PubMed]
- McGeehin, M.A.; Mirabelli, M. The potential impacts of climate variability and change on temperature-related morbidity and mortality in the United States. Environ. Health Perspect. 2001, 109, 185–189. [Google Scholar] [PubMed]
- Patz, J.A.; Frumkin, H.; Holloway, T.; Vimont, D.J.; Haines, A. Climate change: Challenges and opportunities for global health. JAMA 2014, 312, 1565–1580. [Google Scholar] [CrossRef] [PubMed]
- Rocklöv, J. Short-Term Effects of Ambient Temperature on Daily Deaths and Hospital Admissions; Umeå Universitet: Umeå, Sweden, 2010. [Google Scholar]
- Vanos, J.K.; Warland, J.S.; Gillespie, T.J.; Kenny, N.A. Review of the physiology of human thermal comfort while exercising in urban landscapes and implications for bioclimatic design. Int. J. Biometeorol. 2010, 54, 319–334. [Google Scholar] [CrossRef]
- Lim, C.L.; Byrne, C.; Lee, J.K.W. Human thermoregulation and measurement of body temperature in exercise and clinical settings. Ann. Acad. Med. Singap. 2008, 37, 347–353. [Google Scholar] [PubMed]
- Lowen, A.C.; Mubareka, S.; Steel, J.; Palese, P. Influenza Virus Transmission Is Dependent on Relative Humidity and Temperature. PLoS Pathog. 2007, 3, e151. [Google Scholar] [CrossRef] [PubMed]
- Carder, M.; McNamee, R.; Beverland, I.; Elton, R.; Cohen, G.R.; Boyd, J.; Agius, R.M. The lagged effect of cold temperature and wind chill on cardiorespiratory mortality in Scotland. Occup. Environ. Med. 2005, 62, 702–710. [Google Scholar] [CrossRef]
- Ferrari, U.; Exner, T.; Wanka, E.R.; Bergemann, C.; Meyer-Arnek, J.; Hildenbrand, B.; Tufman, A.; Heumann, C.; Huber, R.M.; Bittner, M.; et al. Influence of air pressure, humidity, solar radiation, temperature, and wind speed on ambulatory visits due to chronic obstructive pulmonary disease in Bavaria, Germany. Int. J. Biometeorol. 2012, 56, 137–143. [Google Scholar] [CrossRef]
- Yarnal, B. Synoptic Climatology in Environmental Analysis: A Primer; Belhaven: London, UK, 1993. [Google Scholar]
- Cabanac, M. Physiological Role of Pleasure. Science 1971, 173, 1103–1107. [Google Scholar] [CrossRef]
- Jacquot, C.M.C.; Schellen, L.; Kingma, B.R.; van Baak, M.A.; van Marken Lichtenbelt, W.D. Influence of thermophysiology on thermal behavior: The essentials of categorization. Physiol. Behav. 2014, 128, 180–187. [Google Scholar] [CrossRef]
- Steadman, R.G. A Universal Scale of Apparent Temperature. J. Clin. Appl. Meteorol. 1984, 23, 1674–1687. [Google Scholar] [CrossRef]
- Hondula, D.M.; Vanos, J.K.; Gosling, S.N. The SSC: A decade of climate-health research and future directions. Int. J. Biometeorol. 2014, 58, 109–120. [Google Scholar] [CrossRef]
- Sheridan, S.C. The redevelopment of a weather-type classification scheme for North America. Int. J. Climatol. 2002, 22, 51–68. [Google Scholar] [CrossRef]
- Kalkstein, L.S.; Nichols, M.C.; Barthel, C.D.; Greene, J.S. A new spatial synoptic classification: Application to air-mass analysis. Int. J. Climatol. 1996, 16, 983–1004. [Google Scholar] [CrossRef]
- Gosling, S.N.; McGregor, G.R.; Paldy, A. Climate change and heat-related mortality in six cities part 1: Model construction and validation. Int. J. Biometeorol. 2007, 51, 525–540. [Google Scholar] [CrossRef]
- Hajat, S.; Sheridan, S.C.; Allen, M.J.; Pascal, M.; Laaidi, K.; Yagouti, A.; Bickis, U.; Tobias, A.; Bourque, D.; Armstrong, B.G.; et al. Heat-health warning systems: A comparison of the predictive capacity of different approaches to identifying dangerously hot days. Am. J. Public Health 2010, 100, 1137–1144. [Google Scholar] [CrossRef]
- Dixon, P.G.; Allen, M.; Gosling, S.N.; Hondula, D.M.; Ingole, V.; Lucas, R.; Vanos, J. Perspectives on the Synoptic Climate Classification and its Role in Interdisciplinary Research. Geogr. Compass 2016, 10, 147–164. [Google Scholar] [CrossRef]
- Kalkstein, A.J.; Sheridan, S.C. The social impacts of the heat-health watch/warning system in Phoenix, Arizona: Assessing the perceived risk and response of the public. Int. J. Biometeorol. 2007, 52, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, S.C.; Kalkstein, L.S. Progress in heat watch-warning system technology. Bull. Am. Meteorol. Soc. 2004, 85, 1931. [Google Scholar] [CrossRef]
- Rocklov, J.; Forsberg, B.; Ebi, K.; Bellander, T. Susceptibility to mortality related to temperature and heat and cold wave duration in the population of Stockholm County, Sweden. Glob. Health Action 2014, 7, 1–11. [Google Scholar] [CrossRef]
- Oudin Astrom, D.; Astrom, C.; Forsberg, B.; Vicedo-Cabrera, A.M.; Gasparrini, A.; Oudin, A.; Sundquist, K. Heat wave-related mortality in Sweden: A case-crossover study investigating effect modification by neighbourhood deprivation. Scand. J. Public Health 2018. [Google Scholar] [CrossRef] [PubMed]
- Rocklov, J.; Forsberg, B. The Effect of High Ambient Temperature on the Elderly Population in Three Regions of Sweden. Int. J. Environ. Res. Public Health 2010, 7, 2607–2619. [Google Scholar] [CrossRef]
- Malmberg, G.; Nilsson, L.G.; Weinehall, L. Longitudinal data for interdisciplinary ageing research. Design of the Linnaeus Database. Scand. J. Public Health 2010, 38, 761–767. [Google Scholar] [CrossRef]
- Gasparrini, A. Distributed Lag Linear and Non-Linear Models in R: The Package dlnm. J. Stat. Softw. 2011, 43, 1–20. [Google Scholar] [CrossRef]
- Gasparrini, A.; Armstrong, B.; Kenward, M.G. Distributed lag non-linear models. Stat. Med. 2010, 29, 2224–2234. [Google Scholar] [CrossRef] [PubMed]
- Gasparrini, A.; Armstrong, B.; Scheipl, F. Package ‘dlnm’ v.2.3.9. 2019. Available online: https://cran.r-project.org/web/packages/dlnm/dlnm.pdf (accessed on 20 March 2019).
- Gasparrini, A.; Package’mvMeta’. Multivariate Meta-analysis and Meta-regression. 2011. Available online: https://cran.r-project.org/web/packages/mvmeta/mvmeta.pdf (accessed on 15 January 2019).
- R_Development_Core_Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Sheridan, S.; Kalkstein, L. Heat watch-warning systems in urban areas. World Resour. Rev. 1998, 10, 375–383. [Google Scholar]
- Urban, A.; Kysely, J. Application of spatial synoptic classification in evaluating links between heat stress and cardiovascular mortality and morbidity in Prague, Czech Republic. Int. J. Biometeorol. 2018, 62, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.G.; Kim, K.R.; Kim, J.; Kim, B.J.; Cho, C.H.; Sheridan, S.C.; Kalkstein, L.S.; Kim, H.; Yi, S.M. Effects of heat waves on daily excess mortality in 14 Korean cities during the past 20 years (1991–2010): An application of the spatial synoptic classification approach. Int. J. Biometeorol. 2018, 62, 575–583. [Google Scholar] [CrossRef]
- Kalkstein, A.J.; Kalkstein, L.S.; Vanos, J.K.; Eisenman, D.P.; Grady Dixon, P. Heat/mortality sensitivities in Los Angeles during winter: A unique phenomenon in the United States. Environ. Health 2018, 17, 45. [Google Scholar] [CrossRef]
- Sheridan, S.C.; Lin, S. Assessing Variability in the Impacts of Heat on Health Outcomes in New York City Over Time, Season, and Heat-Wave Duration. EcoHealth 2014, 11, 512–525. [Google Scholar] [CrossRef] [PubMed]
- Gasparrini, A.; Guo, Y.; Hashizume, M.; Lavigne, E.; Zanobetti, A.; Schwartz, J.; Tobias, A.; Tong, S.; Rocklov, J.; Forsberg, B.; et al. Mortality risk attributable to high and low ambient temperature: A multicountry observational study. Lancet 2015, 386, 369–375. [Google Scholar] [CrossRef]
- Hajat, S.; Armstrong, B.G.; Gouveia, N.; Wilkinson, P. Mortality displacement of heat-related deaths: A comparison of Delhi, Sao Paulo, and London. Epidemiology 2005, 16, 613–620. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, S.; Coelho, M.S.Z.S.; Saldiva, P.H.N.; Hu, K.; Huxley, R.R.; Abramson, M.J.; Guo, Y. The association between heatwaves and risk of hospitalization in Brazil: A nationwide time series study between 2000 and 2015. PLoS Med. 2019, 16, e1002753. [Google Scholar] [CrossRef]
- Guo, Y.; Barnett, A.G.; Pan, X.; Yu, W.; Tong, S. The Impact of Temperature on Mortality in Tianjin, China: A Case-Crossover Design with a Distributed Lag Nonlinear Model. Environ. Health Perspect. 2011, 119, 1719–1725. [Google Scholar] [CrossRef] [PubMed]
- Saha, M.V.; Davis, R.E.; Hondula, D.M. Mortality Displacement as a Function of Heat Event Strength in 7 US Cities. Am. J. Epidemiol. 2014, 179, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Analitis, A.; Biggeri, A.; Hojs, A.; Forsberg, B.; Cadum, E.; Ballester, F.; Sunyer, J.; Katsouyanni, K.; Bisanti, L.; Baccini, M.; et al. Effects of Cold Weather on Mortality: Results From 15 European Cities Within the PHEWE Project. Am. J. Epidemiol. 2008, 168, 1397–1408. [Google Scholar] [CrossRef] [PubMed]
- Benmarhnia, T.; Deguen, S.; Kaufman, J.S.; Smargiassi, A. Vulnerability to Heat-related Mortality A Systematic Review, Meta-analysis, and Meta-regression Analysis. Epidemiology 2015, 26, 781–793. [Google Scholar] [CrossRef]
- Davidkovova, H.; Plavcova, E.; Kyncl, J.; Kysely, J. Impacts of hot and cold spells differ for acute and chronic ischaemic heart diseases. BMC Public Health 2014, 14. [Google Scholar] [CrossRef]
- Keatinge, W.R.; Donaldson, G.C.; Bucher, K.; Jendritsky, G.; Cordioli, E.; Martinelli, M.; Dardanoni, L.; Katsouyanni, K.; Kunst, A.E.; Mackenbach, J.P.; et al. Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe. Lancet 1997, 349, 1341–1346. [Google Scholar]
- Jonsson, O.; Andersson, C.; Forsberg, B.; Johansson, C. Air pollution episodes in Stockholm regional background air due to sources in Europe and their effects on human population. Boreal Environ. Res. 2013, 18, 280–302. [Google Scholar]
- Segersson, D.; Eneroth, K.; Gidhagen, L.; Johansson, C.; Omstedt, G.; Nylen, A.E.; Forsberg, B. Health Impact of PM10, PM2.5 and Black Carbon Exposure Due to Different Source Sectors in Stockholm, Gothenburg and Umea, Sweden. Int. J. Environ. Res. Public Health 2017, 14. [Google Scholar] [CrossRef]
- Martuzzi, M.; Mitis, F.; Iavarone, I.; Serinelli, M. Health Impact of PM10 and Ozone in 13 Italian Cities; WHO Regional Office for Europe: Copenhagen, Denmark, 2006. [Google Scholar]
- Liu, Y.; Zhao, N.Z.; Vanos, J.K.; Cao, G.F. Effects of synoptic weather on ground-level PM2.5 concentrations in the United States. Atmos. Environ. 2017, 148, 297–305. [Google Scholar] [CrossRef]
- Jendritzky, G. Selected Questions of Topical Interest in Human Bioclimatology. Int. J. Biometeorol. 1991, 35, 139–150. [Google Scholar] [CrossRef]
- De Freitas, C.R.; Grigorieva, E.A. Role of Acclimatization in Weather-Related Human Mortality During the Transition Seasons of Autumn and Spring in a Thermally Extreme Mid-Latitude Continental Climate. Int. J. Environ. Res. Public Health 2015, 12, 14974–14987. [Google Scholar] [CrossRef]
- Kalkstein, L.S.; Greene, J.S. An evaluation of climate/mortality relationships in large U.S. cities and the possible impacts of a climate change. Environ. Health Perspect. 1997, 105, 84–93. [Google Scholar] [CrossRef]
- Healy, J.D. Excess winter mortality in Europe: A cross country analysis identifying key risk factors. J. Epidemiol. Commun. Health 2003, 57, 784–789. [Google Scholar] [CrossRef]
- Braga, A.L.; Zanobetti, A.; Schwartz, J. The effect of weather on respiratory and cardiovascular deaths in 12 U.S. cities. Environ. Health Perspect. 2002, 110, 859–863. [Google Scholar] [CrossRef]
- Basu, R.; Dominici, F.; Samet, J.M. Temperature and mortality among the elderly in the United States—A comparison of epidemiologic methods. Epidemiology 2005, 16, 58–66. [Google Scholar] [CrossRef]
- Han, J.; Liu, S.; Zhang, J.; Zhou, L.; Fang, Q.; Zhang, J.; Zhang, Y. The impact of temperature extremes on mortality: A time-series study in Jinan, China. Bmj Open 2017, 7, e014741. [Google Scholar] [CrossRef]
- Davis, R.E.; Rossier, C.E.; Enfield, K.B. The impact of weather on influenza and pneumonia mortality in New York City, 1975-2002: A retrospective study. PLoS ONE 2012, 7, e34091. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.Z.; Cao, G.F.; Vanos, J.K.; Vecellio, D.J. The effects of synoptic weather on influenza infection incidences: A retrospective study utilizing digital disease surveillance. Int. J. Biometeorol. 2018, 62, 69–84. [Google Scholar] [CrossRef]
Weather Type | Months | Skåne (South West) MMX | Stockholm (South East) BMA | Jämtland (North West) OSD | Västerbotten (North East) UME | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | Ta | Tp | Td | % | Ta | Tp | Td | % | Ta | Tp | Td | % | Ta | Tp | Td | ||
DP | JAN | 6 | −6 | −5 | −9 | 15 | −9 | −8 | −11 | 12 | −18 | −18 | −21 | 24 | −15 | −15 | −17 |
JUL | 2 | 11 | 17 | 7 | 3 | 12 | 18 | 7 | 5 | 7 | 14 | 4 | 2 | 8 | 14 | 6 | |
DM | JAN | 10 | 2 | 2 | −2 | 11 | 1 | 1 | −3 | 13 | −1 | −1 | −6 | 10 | −1 | 0 | −4 |
JUL | 21 | 11 | 21 | 10 | 27 | 12 | 22 | 9 | 15 | 10 | 19 | 7 | 27 | 10 | 19 | 8 | |
DT | JAN | 0 | - | - | - | 0 | - | - | - | 0 | - | - | - | 0 | - | - | - |
JUL | 12 | 13 | 25 | 12 | 14 | 15 | 27 | 10 | 9 | 14 | 25 | 9 | 8 | 13 | 24 | 11 | |
MP | JAN | 25 | −4 | −3 | −4 | 30 | −4 | −4 | −5 | 31 | −11 | −10 | −12 | 31 | −9 | −9 | −10 |
JUL | 16 | 12 | 15 | 11 | 6 | 11 | 14 | 10 | 11 | 8 | 11 | 6 | 2 | 9 | 11 | 9 | |
MM | JAN | 45 | 2 | 3 | 2 | 32 | 1 | 2 | 0 | 33 | −2 | −1 | −3 | 24 | −1 | −1 | −2 |
JUL | 33 | 14 | 19 | 13 | 31 | 14 | 18 | 13 | 43 | 11 | 16 | 10 | 43 | 13 | 17 | 12 | |
MT | JAN | 5 | 6 | 7 | 5 | <1 | 6 | 7 | 4 | 0 | - | - | - | 0 | - | - | - |
JUL | 9 | 17 | 24 | 15 | 13 | 17 | 24 | 14 | 9 | 15 | 22 | 11 | 12 | 16 | 22 | 14 | |
TR | JAN | 8 | −4 | −1 | −3 | 12 | −4 | −2 | −4 | 11 | −7 | −5 | −8 | 11 | −9 | −5 | −8 |
JUL | 7 | 14 | 19 | 11 | 7 | 14 | 21 | 10 | 8 | 11 | 16 | 8 | 7 | 12 | 18 | 9 |
Location | Weather Type | |||||||
---|---|---|---|---|---|---|---|---|
DM | DP | DT | MM | MP | MT | TR | ||
Skåne (South west) | Number of days (%) | 1653 (18.9) | 625 (7.1) | 359 (4.1) | 3408 (38.9) | 1618 (18.5) | 479 (5.5) | 624 (7.1) |
Total number of deaths (%) | 37209 (18.3) | 14860 (7.3) | 8065 (4.0) | 79282 (39.0) | 38184 (18.8) | 11193 (5.5) | 14476 (7.1) | |
Mean daily number of deaths (±SD) | 22.5 (5.1) | 23.8 (5.3) | 22.5 (5.1) | 23.3 (5.2) | 23.6 (5.5) | 23.4 (4.7) | 23.2 (5.1) | |
Stockholm (South East) | Number of days (%) | 1966 (22.4) | 1154 (13.2) | 433 (4.9) | 2254 (25.7) | 1756 (20.1) | 430 (4.9) | 765 (8.7) |
Total number of deaths (%) | 80301 (21.9) | 48984 (13.3) | 17460 (4.8) | 94707 (25.8) | 75191 (20.5) | 17573 (4.8) | 32730 (8.9) | |
Mean daily number of deaths (±SD) | 40.8 (7.3) | 42.4 (7.5) | 40.3 (6.9) | 42 (7.3) | 42.8 (7.4) | 40.9 (7.2) | 42.8 (13.2) | |
Jämtland (North West) | Number of days (%) | 1556 (17.8) | 819 (9.3) | 247 (2.8) | 3184 (36.3) | 1950 (22.3) | 263 (3.0) | 741 (8.5) |
Total number of deaths (%) | 6885 (17.8) | 3646 (9.4) | 1033 (2.7) | 13792 (35.7) | 8853 (22.9) | 1053 (2.7) | 3398 (8.8) | |
Mean daily number of deaths (±SD) | 4.4 (2.2) | 4.5 (2.2) | 4.2 (2.1) | 4.3 (2.1) | 4.5 (2.2) | 4.0 (2.0) | 4.6 (2.2) | |
Västerbotten (North East) | Number of days (%) | 1795 (20.5) | 1459 (16.7) | 194 (2.2) | 2644 (30.3) | 1496 (17.1) | 340 (3.9) | 812 (9.3) |
Total number of deaths(%) | 8751 (19.9) | 7567 (17.2) | 958 (2.2) | 13090 (29.7) | 7902 (17.9) | 1619 (3.7) | 4180 (9.5) | |
Mean daily number of deaths (±SD) | 4.9 (2.2) | 5.2 (2.4) | 4.9 (2.4) | 5.0 (2.3) | 5.3 (2.4) | 4.8 (2.2) | 5.1 (2.4) |
Oppressive Weather | May–September | November–March | ||
---|---|---|---|---|
South | North | South | North | |
DP | 1.06 (0.94–1.20) | 1.00 (0.90–1.11) | 1.05 (1.01–1.09) | 0.98 (0.88–1.08) |
DT | 1.08 (1.02–1.14) | 0.93 (0.76–1.14) | 1.40 (0.87–2.23) | - |
MP | 1.05 (1.01–1.09) | 1.03 (0.86–1.25) | 1.03 (1.00–1.06) | 1.02 (0.95–1.11) |
MT | 1.05 (1.01–1.10) | 1.06 (0.93–1.21) | 1.06 (0.71–1.60) | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonseca-Rodríguez, O.; Lundevaller, E.H.; Sheridan, S.C.; Schumann, B. Association between Weather Types based on the Spatial Synoptic Classification and All-Cause Mortality in Sweden, 1991–2014. Int. J. Environ. Res. Public Health 2019, 16, 1696. https://doi.org/10.3390/ijerph16101696
Fonseca-Rodríguez O, Lundevaller EH, Sheridan SC, Schumann B. Association between Weather Types based on the Spatial Synoptic Classification and All-Cause Mortality in Sweden, 1991–2014. International Journal of Environmental Research and Public Health. 2019; 16(10):1696. https://doi.org/10.3390/ijerph16101696
Chicago/Turabian StyleFonseca-Rodríguez, Osvaldo, Erling Häggström Lundevaller, Scott C. Sheridan, and Barbara Schumann. 2019. "Association between Weather Types based on the Spatial Synoptic Classification and All-Cause Mortality in Sweden, 1991–2014" International Journal of Environmental Research and Public Health 16, no. 10: 1696. https://doi.org/10.3390/ijerph16101696
APA StyleFonseca-Rodríguez, O., Lundevaller, E. H., Sheridan, S. C., & Schumann, B. (2019). Association between Weather Types based on the Spatial Synoptic Classification and All-Cause Mortality in Sweden, 1991–2014. International Journal of Environmental Research and Public Health, 16(10), 1696. https://doi.org/10.3390/ijerph16101696