Distribution, Source and Risk Assessment of Heavy Metal(oid)s in Water, Sediments, and Corbicula Fluminea of Xijiang River, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Sampling Area and Sample Collection
2.2. Sample Preparation and Analysis
2.3. Quality Assurance and Quality Control
2.4. Statistical Analysis
2.5. Risk Assessment
3. Results and Discussion
3.1. Levels of Metals/Metalloids in the River Water
3.2. Heavy Metals/Metalloids in the Sediments
3.3. Heavy Metals/Metalloids in C. fluminea
3.4. Correlation Analysis and Source Apportionment
3.5. Potential Ecological Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zeng, H.; Wu, J. Heavy Metal Pollution of Lakes along the Mid-Lower Reaches of the Yangtze River in China: Intensity, Sources and Spatial Patterns. Int. J. Environ. Res. Public Health 2013, 10, 793–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mingkhwan, R.; Worakhunpiset, S. Heavy Metal Contamination Near Industrial Estate Areas in Phra Nakhon Si Ayutthaya Province, Thailand and Human Health Risk Assessment. Int. J. Environ. Res. Public Health 2018, 15, 1890. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.; Iqbal, J.; Akhter, G.; Shah, M.H. Fractionation, bioavailability, contamination and environmental risk of heavy metals in the sediments from a freshwater reservoir, Pakistan. J. Geochem. Explor. 2018, 184, 199–208. [Google Scholar] [CrossRef]
- Vongdala, N.; Hoang-Dung, T.; Tran Dang, X.; Teschke, R.; Tran Dang, K. Heavy Metal Accumulation in Water, Soil, and Plants of Municipal Solid Waste Landfill in Vientiane, Laos. Int. J. Environ. Res. Public Health 2019, 16, 22. [Google Scholar] [CrossRef]
- Resongles, E.; Casiot, C.; Freydier, R.; Dezileau, L.; Viers, J.; Elbaz-Poulichet, F. Persisting impact of historical mining activity to metal (Pb, Zn, Cd, Tl, Hg) and metalloid (As, Sb) enrichment in sediments of the Gardon River, Southern France. Sci. Total Environ. 2014, 481, 509–521. [Google Scholar] [CrossRef] [PubMed]
- Perner, K.; Leipe, T.; Dellwig, O.; Kuijpers, A.; Mikkelsen, N.; Andersen, T.J.; Harff, J. Contamination of arctic Fjord sediments by Pb-Zn mining at Maarmorilik in central West Greenland. Mar. Pollut. Bull. 2010, 60, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Ettler, V.; Mihaljevic, M.; Sebek, O.; Molek, M.; Grygar, T.; Zeman, J. Geochemical and Pb isotopic evidence for sources and dispersal of metal contamination in stream sediments from the mining and smelting district of Pribram, Czech Republic. Environ. Pollut. 2006, 142, 409–417. [Google Scholar] [CrossRef]
- Zhang, C.; Qiao, Q.; Piper, J.D.A.; Huang, B. Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods. Environ. Pollut. 2011, 159, 3057–3070. [Google Scholar] [CrossRef] [PubMed]
- Matos, M.d.F.; Rispoli Botta, C.M.; Fonseca, A.L. Toxicity Identification Evaluation (Phase I) of water and sediment samples from a tropical reservoir contaminated with industrial and domestic effluents. Environ. Monit. Assess. 2014, 186, 7999–8006. [Google Scholar] [CrossRef] [PubMed]
- Houda, B.; Dorra, G.; Chafai, A.; Emna, A.; Khaled, M. Impact of a Mixed “Industrial and Domestic” Wastewater Effluent on the Southern Coastal Sediments of Sfax (Tunisia) in the Mediterranean Sea. Int. J. Environ. Res. 2011, 5, 691–704. [Google Scholar]
- Walker, W.J.; McNutt, R.P.; Maslanka, C.K. The potential contribution of urban runoff to surface sediments of the Passaic River: Sources and chemical characteristics. Chemosphere 1999, 38, 363–377. [Google Scholar] [CrossRef]
- Jartun, M.; Ottesen, R.T.; Steinnes, E.; Volden, T. Runoff of particle bound pollutants from urban impervious surfaces studied by analysis of sediments from stormwater traps. Sci. Total Environ. 2008, 396, 147–163. [Google Scholar] [CrossRef] [PubMed]
- Jara-Marini, M.E.; Tapia-Alcaraz, J.N.; Dumer-Gutierrez, J.A.; Garcia-Rico, L.; Garcia-Hernandez, J.; Paez-Osuna, F. Distribution and accumulation of Cd, Cu, Hg, Pb and Zn in the surface sediments of El Tobari Lagoon, central-East Gulf of California: An ecosystem associated with agriculture and aquaculture activities. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2013, 48, 1842–1851. [Google Scholar] [CrossRef] [PubMed]
- Rimoldi, F.; Peluso, L.; Bulus Rossini, G.; Ronco, A.E.; Demetrio, P.M. Multidisciplinary approach to a study of water and bottom sediment quality of streams associated with mixed land uses: Case study Del Gato Stream, La Plata (Argentina). Ecol. Indic. 2018, 89, 188–198. [Google Scholar] [CrossRef]
- Goldberg, E.D.; Hodge, V.F.; Griffin, J.J.; Koide, M.; Edgington, D.N. Impact of fossil fuel combustion on the sediments of Lake Michigan. Environ. Sci. Technol. 1981, 15, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Engstrom, D.R.; Rose, N.L. Recent Changes in Atmospheric Mercury Deposition Recorded in the Sediments of Remote Equatorial Lakes in the Rwenzori Mountains, Uganda. Environ. Sci. Technol. 2010, 44, 6570–6575. [Google Scholar] [CrossRef]
- Duodu, G.O.; Goonetilleke, A.; Ayoko, G.A. Potential bioavailability assessment, source apportionment and ecological risk of heavy metals in the sediment of Brisbane River estuary, Australia. Mar. Pollut. Bull. 2017, 117, 523–531. [Google Scholar] [CrossRef]
- Alam, M.G.M.; Tanaka, A.; Stagnitti, F.; Allinson, G.; Maekawa, T. Observations on the effects of caged carp culture on water and sediment metal concentrations in Lake Kasumigaura, Japan. Ecotoxicol. Environ. Saf. 2001, 48, 107–115. [Google Scholar] [CrossRef]
- Bing, H.; Wu, Y.; Zhou, J.; Sun, H.; Wang, X.; Zhu, H. Spatial variation of heavy metal contamination in the riparian sediments after two-year flow regulation in the Three Gorges Reservoir, China. Sci. Total Environ. 2019, 649, 1004–1016. [Google Scholar] [CrossRef]
- Zahra, A.; Hashmi, M.Z.; Malik, R.N.; Ahmed, Z. Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah-Feeding tributary of the Rawal Lake Reservoir, Pakistan. Sci. Total Environ. 2014, 470, 925–933. [Google Scholar] [CrossRef]
- Superville, P.-J.; Prygiel, E.; Magnier, A.; Lesven, L.; Gao, Y.; Baeyens, W.; Ouddane, B.; Dumoulin, D.; Billon, G. Daily variations of Zn and Pb concentrations in the Defile River in relation to the resuspension of heavily polluted sediments. Sci. Total Environ. 2014, 470, 600–607. [Google Scholar] [CrossRef]
- Inza, B.; Ribeyre, F.; Maury-Brachet, R.; Boudou, A. Tissue distribution of inorganic mercury, methylmercury and cadmium in the Asiatic clam (Corbicula fluminea) in relation to the contamination levels of the water column and sediment. Chemosphere 1997, 35, 2817–2836. [Google Scholar] [CrossRef]
- Soucek, D.J.; Schmidt, T.S.; Cherry, D.S. In situ studies with Asian clams (Corbicula fluminea) detect acid mine drainage and nutrient inputs in low-order streams. Can. J. Fish. Aquat. Sci. 2001, 58, 602–608. [Google Scholar] [CrossRef]
- Dabney, B.L.; Clements, W.H.; Williamson, J.L.; Ranville, J.F. Influence of Metal Contamination and Sediment Deposition on Benthic Invertebrate Colonization at the North Fork Clear Creek Superfund Site, Colorado, USA. Environ. Sci. Technol. 2018, 52, 7072–7080. [Google Scholar] [CrossRef]
- Doherty, F.G. The Asiatic clam, Corbicula spp. as a biological monitor in freshwater environments. Environ. Monit. Assess. 1990, 15, 143–181. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, P.A.; Li, X.; Zhang, S.; Ren, M. Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in water and suspended particulate matter from the Xijiang River, China. J. Hazard. Mater. 2008, 152, 40–47. [Google Scholar] [CrossRef]
- Huang, X.; Li, N.; Wu, Q.; Long, J.; Luo, D.; Huang, X.; Li, D.; Zhao, D. Fractional distribution of thallium in paddy soil and its bioavailability to rice. Ecotoxicol. Environ. Saf. 2018, 148, 311–317. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.-L.; Chen, J.-B.; Zhong, J.; Yue, F.-J.; Lang, Y.; Ding, H. Temporal transport of major and trace elements in the upper reaches of the Xijiang River, SW China. Environ. Earth Sci. 2017, 76, 299. [Google Scholar] [CrossRef]
- Kaiser, H.F. The Application of Electronic Computers to Factor Analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Srichandan, S.; Panigrahy, R.C.; Baliarsingh, S.K.; Rao, S.B.; Pati, P.; Sahu, B.K.; Sahu, K.C. Distribution of trace metals in surface seawater and zooplankton of the Bay of Bengal, off Rushikulya estuary, East Coast of India. Mar. Pollut. Bull. 2016, 111, 468–475. [Google Scholar] [CrossRef]
- El Nemr, A.; El-Said, G.F.; Ragab, S.; Khaled, A.; El-Sikaily, A. The distribution, contamination and risk assessment of heavy metals in sediment and shellfish from the Red Sea coast, Egypt. Chemosphere 2016, 165, 369–380. [Google Scholar] [CrossRef]
- Müller, G. Index of geo-accumulation in sediments of Rhine River. J. Geol. 1979, 2, 108–118. [Google Scholar]
- Håkanson, L. An ecological risk index for aquatic pollution control. a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Achary, M.S.; Satpathy, K.K.; Panigrahi, S.; Mohanty, A.K.; Padhi, R.K.; Biswas, S.; Prabhu, R.K.; Vijayalakshmi, S.; Panigrahy, R.C. Concentration of heavy metals in the food chain components of the nearshore coastal waters of Kalpakkam, southeast coast of India. Food Control 2017, 72, 232–243. [Google Scholar] [CrossRef]
- Ahmed, I.; Mostefa, B.; Bernard, A.; Olivier, R. Levels and ecological risk assessment of heavy metals in surface sediments of fishing grounds along Algerian coast. Mar. Pollut. Bull. 2018, 136, 322–333. [Google Scholar] [CrossRef]
- Bi, B.; Liu, X.; Guo, X.; Lu, S. Occurrence and risk assessment of heavy metals in water, sediment, and fish from Dongting Lake, China. Environ. Sci. Pollut. Res. Int. 2018, 25, 34076–34090. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.; Zhuang, W.; Yuan, Y.; Yuan, Y.; Jiao, K.; Wang, M.; Chen, Q. Calculation of Thallium’s toxicity coefficient in the evaluation of potential ecological risk index: A case study. Chemosphere 2018, 194, 562–569. [Google Scholar] [CrossRef]
- Rodriguez Espinosa, P.F.; Shruti, V.C.; Jonathan, M.P.; Martinez Tavera, E. Metal concentrations and their potential ecological risks in fluvial sediments of Atoyac River basin, Central Mexico: Volcanic and anthropogenic influences. Ecotoxicol. Environ. Saf. 2018, 148, 1020–1033. [Google Scholar] [CrossRef]
- Wang, N.; Wang, A.; Kong, L.; He, M. Calculation and application of Sb toxicity coefficient for potential ecological risk assessment. Sci. Total Environ. 2018, 610, 167–174. [Google Scholar] [CrossRef]
- Chi, Q.; Yan, M. Handbook of Elemental Abundance for Applied Geochemistry; Geological Publishing House: Beijing, China, 2007. (In Chinese) [Google Scholar]
- Ministry of Ecology and Environment of the People’s Republic of China. GB3838-2002 Environmental Quality Standards for Surface Water; Ministry of Ecology and Environment of the People’s Republic of China, Ed.; Environmental Science Press: Beijing, China, 2002. (In Chinese)
- Li, R.; Tang, C.; Cao, Y.; Jiang, T.; Chen, J. The distribution and partitioning of trace metals (Pb, Cd, Cu, and Zn) and metalloid (As) in the Beijiang River. Environ. Monit. Assess. 2018, 190, 399. [Google Scholar] [CrossRef]
- Song, M.W.; Huang, P.; Li, F.; Zhang, H.; Xie, K.Z.; Wang, X.H.; He, G.X. Water quality of a tributary of the Pearl River, the Beijiang, Southern China: Implications from multivariate statistical analyses. Environ. Monit. Assess. 2011, 172, 589–603. [Google Scholar] [CrossRef]
- Zhou, K.; Pan, T.; Dong, Y. Investigation and Analysis on Water Quality of Beijiang River in 2016. City Town Water Supply 2017, 6, 22–25. (In Chinese) [Google Scholar]
- Liu, X.; Jiang, J.; Yan, Y.; Dai, Y.; Deng, B.; Ding, S.; Su, S.; Sun, W.; Li, Z.; Gan, Z. Distribution and risk assessment of metals in water, sediments, and wild fish from Jinjiang River in Chengdu, China. Chemosphere 2018, 196, 45–52. [Google Scholar] [CrossRef]
- Li, D.; Pi, J.; Zhang, T.; Tan, X.; Fraser, D.J. Evaluating a 5-year metal contamination remediation and the biomonitoring potential of a freshwater gastropod along the Xiangjiang River, China. Environ. Sci. Pollut. Res. 2018, 25, 21127–21137. [Google Scholar] [CrossRef]
- Wu, B.; Zhao, D.Y.; Jia, H.Y.; Zhang, Y.; Zhang, X.X.; Cheng, S.P. Preliminary Risk Assessment of Trace Metal Pollution in Surface Water from Yangtze River in Nanjing Section, China. Bull. Environ. Contam. Toxicol. 2009, 82, 405–409. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Zhang, R.; Wang, W.; Xu, D.; Guo, J.; Li, P.; Yu, K. Historical levels of heavy metals reconstructed from sedimentary record in the Hejiang River, located in a typical mining region of Southern China. Sci. Total Environ. 2015, 532, 645–654. [Google Scholar] [CrossRef]
- Lan, Y.; Liang, R.; Zhao, X.; Ma, Q.; Xu, Z.; Gou, T.; Wang, L.; Zhou, Q. Impacts of environmental pollution incident of cadmium and thallium and their emergency disposal on ecological risk of Hejiang River. Acta Sci. Circumstantiae 2017, 37, 3602–3612. (In Chinese) [Google Scholar]
- Li, X.; Qi, J.; Wang, C.; Chen, Y. Distribution of heavy metals in waters and pollution assessment in thallium contaminated area of Yunfu, Guangdong. Chin. J. Environ. Sci. 2011, 32, 1321–1328. (In Chinese) [Google Scholar]
- Zhao, H.; Xia, B.; Qin, J.; Zhang, J. Hydrogeochemical and mineralogical characteristics related to heavy metal attenuation in a stream polluted by acid mine drainage: A case study in Dabaoshan Mine, China. J. Environ. Sci. 2012, 24, 979–989. [Google Scholar] [CrossRef]
- Gao, B.; Lu, J.; Zhou, H.-D.; Yin, S.-H.; Hao, H. The distribution, accumulation and potential source of seldom monitored trace elements in sediments of Beijiang River, South China. Water Sci. Technol. 2012, 65, 2118–2124. [Google Scholar] [CrossRef]
- Gao, B.; Sun, K.; Ren, M.Z.; Liang, X.R.; Peng, P.A.; Sheng, G.Y.; Fu, J.M. Ecological risk assessment of thallium pollution in the surface sediment of Beijiang River. Ecol. Environ. Sci. 2008, 17, 528–532. (In Chinese) [Google Scholar]
- Li, R.; Tang, C.; Li, X.; Jiang, T.; Shi, Y.; Cao, Y. Reconstructing the historical pollution levels and ecological risks over the past sixty years in sediments of the Beijiang River, South China. Sci. Total Environ. 2019, 649, 448–460. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, Y.; Shen, Z.; Niu, J.; Tang, Z. Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China. J. Hazard. Mater. 2009, 166, 1186–1194. [Google Scholar] [CrossRef] [PubMed]
- Ning, Z.; Lan, X.; Huang, Z.; Chen, H.; Liu, Y.; Xiao, T.; Zhao, Y. Spatial distribution characteristics, sources and potential ecological risk of heavy metals in sediments of the Hejiang River. China Environ. Sci. 2017, 37, 3036–3047. (In Chinese) [Google Scholar]
- CFDA, GB 18421-2001 Marine Biological Quality; China Food and Drug Administration: Beijing, China, 2001; pp. 1–3. (In Chinese)
- Liu, H.; Yang, J. Determination and correlation analysis of six mineral element contents in soft parts of Corbicula fluminea. Food Sci. 2012, 33, 142–145. (In Chinese) [Google Scholar]
- Bonnail, E.; Sarmiento, A.M.; Angel DelValls, T. The use of a Weight-of-Evidence approach to address sediment quality in the Odiel River basin (SW, Spain). Ecotoxicol. Environ. Saf. 2016, 133, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Shoults Wilson, A.W.; Unrine, J.M.; Rickard, J.; Black, M.C. Comparison of metal concentrations in Corbicula fluminea and elliptio hopetonensis in the Altamaha River system, Georgia, USA. Environ. Toxicol. Chem. 2010, 29, 2026–2033. [Google Scholar]
- Hakenkamp, C.C.; Ribblett, S.G.; Palmer, M.A.; Swan, C.M.; Reid, J.W.; Goodison, M.R. The impact of an introduced bivalve (Corbicula fluminea) on the benthos of a sandy stream. Freshw. Biol. 2001, 46, 491–501. [Google Scholar] [CrossRef]
- Bonnail, E.; Macias, F.; Osta, V. Ecological improvement assessment of a passive remediation technology for acid mine drainage: Water quality biomonitoring using bivalves. Chemosphere 2019, 219, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Peltier, G.L.; Meyer, J.L.; Jagoe, C.H.; Hopkins, W.A. Using trace element concentrations in Corbicula fluminea to identify potential sources of contamination in an urban river. Environ. Pollut. 2008, 154, 283–290. [Google Scholar] [CrossRef]
- Rahman, M.S.; Molla, A.H.; Saha, N.; Rahman, A. Study on heavy metals levels and its risk assessment in some edible fishes from Bangshi River, Savar, Dhaka, Bangladesh. Food Chem. 2012, 134, 1847–1854. [Google Scholar] [CrossRef] [PubMed]
- Angelo, R.T.; Cringan, M.S.; Chamberlain, D.L.; Stahl, A.J.; Haslouer, S.G.; Goodrich, C.A. Residual effects of lead and zinc mining on freshwater mussels in the Spring River Basin (Kansas, Missouri, and Oklahoma, USA). Sci. Total Environ. 2007, 384, 467–496. [Google Scholar] [CrossRef]
- Ribeiro, C.; Scheufele, F.B.; Espinoza-Quinones, F.R.; Modenes, A.N.; Adeodato Vieira, M.G.; Kroumov, A.D.; Borba, C.E. A comprehensive evaluation of heavy metals removal from battery industry wastewaters by applying bio-residue, mineral and commercial adsorbent materials. J. Mater. Sci. 2018, 53, 7976–7995. [Google Scholar] [CrossRef]
- Sharma, N.; Chauhan, G.; Kumar, A.; Sharma, S.K. Statistical Optimization of Heavy Metal (Cu2+ and Co2+) Extraction from Printed Circuit Boards and Mobile Batteries Using Chelation Technology. Ind. Eng. Chem. Res. 2017, 56, 6805–6819. [Google Scholar] [CrossRef]
- Venkateswaran, P.; Vellaichamy, S.; Palanivelu, K. Speciation of heavy metals in electroplating industry sludge and wastewater residue using inductively coupled plasma. Int. J. Environ. Sci. Technol. 2007, 4, 497–504. [Google Scholar] [CrossRef] [Green Version]
- Dixit, S.; Yadav, A.; Dwivedi, P.D.; Das, M. Toxic hazards of leather industry and technologies to combat threat: A review. J. Clean. Prod. 2015, 87, 39–49. [Google Scholar] [CrossRef]
- Lin, L.Q.; Cong, L.; Yun, W.H.; Yang, J.; Ming, H.; Wan, Z.B.; Kai, C.; Lei, H. Association of soil cadmium contamination with ceramic industry: A case study in a Chinese town. Sci. Total Environ. 2015, 514, 26–32. [Google Scholar]
- Elias, S.H.; Mohamed, M.; Nor-Anuar, A.; Muda, K.; Hassan, M.A.H.M.; Othman, M.N.; Chelliapan, S. Water Hyacinth Bioremediation for Ceramic Industry Wastewater Treatment-Application of Rhizofiltration System. Sains Malays. 2014, 43, 1397–1403. [Google Scholar]
- Wang, C.; Chen, Y.; Liu, J.; Wang, J.; Li, X.; Zhang, Y.; Liu, Y. Health risks of thallium in contaminated arable soils and food crops irrigated with wastewater from a sulfuric acid plant in western Guangdong province, China. Ecotoxicol. Environ. Saf. 2013, 90, 76–81. [Google Scholar] [CrossRef]
- Graney, R.L.; Cherry, D.S.; Cairns, J. Heavy metal indicator potential of the Asiatic clam (Corbicula fluminea) in artificial stream systems. Hydrobiologia 1983, 102, 81–88. [Google Scholar] [CrossRef]
- Bonnail, E.; Buruaem, L.M.; Araujo, G.S.; Abessa, D.M.S.; Angel DelValls, T. Multiple Biomarker Responses in Corbicula fluminea Exposed to Copper in Laboratory Toxicity Tests. Arch. Environ. Contam. Toxicol. 2016, 71, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Belowitz, R.; O’Donnell, M.J. Ion-selective microelectrode measurements of Tl+ and K+ transport by the gut and associated epithelia in Chironomus riparius. Aquat. Toxicol. 2013, 138, 70–80. [Google Scholar] [CrossRef] [PubMed]
Metal | Water (µg L−1, n = 43) | Sediments (Dry Weight, mg kg−1, n = 43) | C. fluminea (Dry Weight, mg kg−1, n = 34) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Min | Max | S.D | Mean | Min | Max | S.D | Mean | Min | Max | S.D | |
V | 0.60 | 0.25 | 0.96 | 0.14 | 59.8 | 39.9 | 97.7 | 12.5 | 1.54 | 0.46 | 3.69 | 0.80 |
Co | 0.48 | 0.23 | 1.33 | 0.16 | 14.14 | 10.12 | 21.58 | 2.97 | 1.56 | 0.56 | 4.58 | 0.83 |
Cr | 2.37 | 0.29 | 6.67 | 1.79 | 88.43 | 26.19 | 200.13 | 45.23 | 1.03 | 0.25 | 1.97 | 0.46 |
Ni | 1.73 | 0.44 | 4.20 | 1.05 | 45.24 | 15.25 | 87.37 | 17.47 | 1.16 | 0.24 | 2.24 | 0.52 |
Cu | 3.08 | 0.45 | 8.42 | 2.06 | 70.43 | 24.22 | 166.10 | 30.81 | 59.5 | 18.1 | 121.9 | 28.6 |
Mn | 20.9 | 3.1 | 55.9 | 13.8 | 689.5 | 155.9 | 1405.0 | 282.9 | 58.5 | 11.8 | 128.7 | 28.5 |
Zn | 18.34 | 1.11 | 44.31 | 11.29 | 466.0 | 61.0 | 884.9 | 195.8 | 259.4 | 61.7 | 533.3 | 110.7 |
Cd | 0.17 | 0.02 | 0.44 | 0.11 | 5.09 | 0.31 | 21.83 | 4.77 | 4.02 | 0.62 | 7.79 | 2.22 |
Pb | 1.03 | 0.12 | 2.73 | 0.75 | 87.82 | 14.00 | 213.66 | 46.23 | 2.33 | 0.45 | 4.50 | 0.99 |
As | 1.72 | 0.11 | 5.73 | 1.63 | 83.30 | 22.09 | 237.0 | 46.17 | 4.66 | 1.14 | 9.87 | 2.41 |
Sb | 0.65 | 0.34 | 1.27 | 0.18 | 7.54 | 3.16 | 13.73 | 2.48 | 0.07 | 0.00 | 0.14 | 0.04 |
Tl | 0.03 | 0.00 | 0.11 | 0.03 | 1.21 | 0.11 | 4.75 | 1.13 | 0.11 | 0.01 | 0.29 | 0.07 |
Initial Eigenvalue | Rotation Sums of Squared Loadings | Principal Component | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Total | % of Variance | Cumulative% | Total | %of Variance | Cumulative% | PC1 | PC2 | PC3 | ||
1 | 7.152 | 59.597 | 59.597 | 6.238 | 51.982 | 51.982 | V | 0.070 | 0.943 | 0.116 |
2 | 1.788 | 14.898 | 74.494 | 1.993 | 16.605 | 68.587 | Co | 0.250 | 0.912 | 0.009 |
3 | 1.058 | 8.816 | 83.310 | 1.767 | 14.723 | 83.310 | Cr | 0.914 | 0.165 | 0.139 |
4 | 0.671 | 5.588 | 88.897 | Ni | 0.802 | 0.172 | 0.365 | |||
5 | 0.374 | 3.116 | 92.014 | Cu | 0.875 | 0.158 | 0.229 | |||
6 | 0.291 | 2.425 | 94.439 | Mn | 0.878 | 0.169 | 0.236 | |||
7 | 0.206 | 1.714 | 96.153 | Zn | 0.693 | 0.058 | 0.540 | |||
8 | 0.170 | 1.421 | 97.573 | Cd | 0.947 | −0.024 | 0.135 | |||
9 | 0.125 | 1.044 | 98.617 | Pb | 0.881 | 0.169 | −0.062 | |||
10 | 0.074 | 0.613 | 99.230 | As | 0.817 | 0.119 | 0.270 | |||
11 | 0.056 | 0.463 | 99.693 | Sb | 0.149 | 0.148 | 0.936 | |||
12 | 0.037 | 0.307 | 100.000 | Tl | 0.559 | −0.305 | 0.479 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Luo, D.; Zhao, D.; Li, N.; Xiao, T.; Liu, J.; Wei, L.; Liu, Y.; Liu, L.; Liu, G. Distribution, Source and Risk Assessment of Heavy Metal(oid)s in Water, Sediments, and Corbicula Fluminea of Xijiang River, China. Int. J. Environ. Res. Public Health 2019, 16, 1823. https://doi.org/10.3390/ijerph16101823
Huang X, Luo D, Zhao D, Li N, Xiao T, Liu J, Wei L, Liu Y, Liu L, Liu G. Distribution, Source and Risk Assessment of Heavy Metal(oid)s in Water, Sediments, and Corbicula Fluminea of Xijiang River, China. International Journal of Environmental Research and Public Health. 2019; 16(10):1823. https://doi.org/10.3390/ijerph16101823
Chicago/Turabian StyleHuang, Xuexia, Dinggui Luo, Dongye Zhao, Ning Li, Tangfu Xiao, Jingyong Liu, Lezhang Wei, Yu Liu, Lirong Liu, and Guowei Liu. 2019. "Distribution, Source and Risk Assessment of Heavy Metal(oid)s in Water, Sediments, and Corbicula Fluminea of Xijiang River, China" International Journal of Environmental Research and Public Health 16, no. 10: 1823. https://doi.org/10.3390/ijerph16101823
APA StyleHuang, X., Luo, D., Zhao, D., Li, N., Xiao, T., Liu, J., Wei, L., Liu, Y., Liu, L., & Liu, G. (2019). Distribution, Source and Risk Assessment of Heavy Metal(oid)s in Water, Sediments, and Corbicula Fluminea of Xijiang River, China. International Journal of Environmental Research and Public Health, 16(10), 1823. https://doi.org/10.3390/ijerph16101823