Effects of Regular Aerobic Exercise and Resistance Training on High-Density Lipoprotein Cholesterol Levels in Taiwanese Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database
2.2. Study Participants
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fletcher, G.F.; Landolfo, C.; Niebauer, J.; Ozemek, C.; Arena, R.; Lavie, C.J. Promoting physical activity and exercise: JACC health promotion series. J. Am. Coll. Cardiol. 2018, 72, 1622–1639. [Google Scholar] [CrossRef] [PubMed]
- Roth, G.A.; Huffman, M.D.; Moran, A.E.; Feigin, V.; Mensah, G.A.; Naghavi, M.; Murray, C.J. Global and regional patterns in cardiovascular mortality from 1990 to 2013. Circulation 2015, 132, 1667–1678. [Google Scholar] [CrossRef] [PubMed]
- Holmes, M.V.; Lange, L.A.; Palmer, T.; Lanktree, M.B.; North, K.E.; Almoguera, B.; Buxbaum, S.; Chandrupatla, H.R.; Elbers, C.C.; Guo, Y.; et al. Causal effects of body mass index on cardiometabolic traits and events: A Mendelian randomization analysis. Am. J. Hum. Genet. 2014, 94, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Stein, O.; Stein, Y. Atheroprotective mechanisms of HDL. Atherosclerosis 1999, 144, 285–301. [Google Scholar] [CrossRef]
- Jin, F.; Hagemann, N.; Sun, L.; Wu, J.; Doeppner, T.R.; Dai, Y.; Hermann, D.M. High-density lipoprotein (HDL) promotes angiogenesis via S1P3-dependent VEGFR2 activation. Angiogenesis 2018, 21, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Gordon, D.J.; Probstfield, J.L.; Garrison, R.J.; Neaton, J.D.; Castelli, W.P.; Knoke, J.D.; Jacobs, D.R., Jr.; Bangdiwala, S.; Tyroler, H.A. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 1989, 79, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Zhang, X.; Guo, J.; Roberts, C.K.; McKenzie, S.; Wu, W.C.; Liu, S.; Song, Y. Effects of exercise training on cardiorespiratory fitness and biomarkers of cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 2015, 4, e002014. [Google Scholar] [CrossRef] [PubMed]
- Lemes, Í.R.; Turi-Lynch, B.C.; Cavero-Redondo, I.; Linares, S.N.; Monteiro, H.L. Aerobic training reduces blood pressure and waist circumference and increases HDL-c in metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. J. Am. Soc. Hypertens. 2018, 12, 580–588. [Google Scholar] [CrossRef]
- Pattyn, N.; Cornelissen, V.A.; Eshghi, S.R.T.; Vanhees, L. The effect of exercise on the cardiovascular risk factors constituting the metabolic syndrome. Sports Med. 2013, 43, 121–133. [Google Scholar] [CrossRef]
- Lemes, Í.R.; Ferreira, P.H.; Linares, S.N.; Machado, A.F.; Pastre, C.M.; Netto, J. Resistance training reduces systolic blood pressure in metabolic syndrome: A systematic review and meta-analysis of randomised controlled trials. Br. J. Sports Med. 2016, 50, 1438–1442. [Google Scholar] [CrossRef]
- Warburton, D.E.; Nicol, C.W.; Bredin, S.S. Health benefits of physical activity: The evidence. Can. Med. Assoc. J. 2006, 174, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Eckel, R.H.; Jakicic, J.M.; Ard, J.D.; de Jesus, J.M.; Miller, N.H.; Hubbard, V.S.; Lee, I.M.; Lichtenstein, A.H.; Loria, C.M.; Millen, B.E.; et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2014, 63, 2960–2984. [Google Scholar] [CrossRef] [PubMed]
- Bickmore, T.W.; Schulman, D.; Sidner, C.L. A reusable framework for health counseling dialogue systems based on a behavioral medicine ontology. J. Biomed. Inform. 2011, 44, 183–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kodama, S.; Tanaka, S.; Saito, K.; Shu, M.; Sone, Y.; Onitake, F.; Suzuki, E.; Shimano, H.; Yamamoto, S.; Kondo, K.; et al. Effect of aerobic exercise training on serum levels of high-density lipoprotein cholesterol: A meta-analysis. Arch. Intern. Med. 2007, 167, 999–1008. [Google Scholar] [CrossRef] [PubMed]
- Vanhees, L.; Geladas, N.; Hansen, D.; Kouidi, E.; Niebauer, J.; Reiner, Ž.; Cornelissen, V.; Adamopoulos, S.; Prescott, E.; Börjesson, M. Importance of characteristics and modalities of physical activity and exercise in the management of cardiovascular health in individuals with cardiovascular risk factors: Recommendations from the EACPR (Part II). Eur. J. Prev. Cardiol. 2012, 19, 1005–1033. [Google Scholar] [CrossRef] [PubMed]
- Mann, S.; Beedie, C.; Jimenez, A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: Review, synthesis and recommendations. Sports Med. 2014, 44, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Banz, W.J.; Maher, M.A.; Thompson, W.G.; Bassett, D.R.; Moore, W.; Ashraf, M.; Keefer, D.J.; Zemel, M.B. Effects of resistance versus aerobic training on coronary artery disease risk factors. Exp. Biol. Med. 2003, 228, 434–440. [Google Scholar] [CrossRef]
- Leon, A.S.; Sanchez, O.A. Response of blood lipids to exercise training alone or combined with dietary intervention. Med. Sci. Sports Exerc. 2001, 33, S502–S515. [Google Scholar] [CrossRef]
- Maraki, M.I.; Sidossis, L.S. The latest on the effect of prior exercise on postprandial lipaemia. Sports Med. 2013, 43, 463–481. [Google Scholar] [CrossRef]
- Shaw, K.A.; Gennat, H.C.; O’Rourke, P.; Del Mar, C. Exercise for overweight or obesity. Cochrane Database Syst. Rev. 2006, 4, CD003817. [Google Scholar] [CrossRef]
- Aadahl, M.; von Huth Smith, L.; Pisinger, C.; Toft, U.N.; Glümer, C.; Borch-Johnsen, K.; Jørgensen, T. Five-year change in physical activity is associated with changes in cardiovascular disease risk factors: The Inter99 study. Prev. Med. 2009, 48, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Gordon, B.; Chen, S.; Durstine, J.L. The effects of exercise training on the traditional lipid profile and beyond. Transl. J. Am. Coll. Sports Med. 2016, 1, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Klancic, T.; Woodward, L.; Hofmann, S.M.; Fisher, E.A. High density lipoprotein and metabolic disease: Potential benefits of restoring its functional properties. Mol. Metab. 2016, 5, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Tomeleri, C.M.; Ribeiro, A.S.; Souza, M.F.; Schiavoni, D.; Schoenfeld, B.J.; Venturini, D.; Barbosa, D.S.; Landucci, K.; Sardinha, L.B.; Cyrino, E.S. Resistance training improves inflammatory level, lipid and glycemic profiles in obese older women: A randomized controlled trial. Exp. Gerontol. 2016, 84, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Lira, F.S.; Yamashita, A.S.; Uchida, M.C.; Zanchi, N.E.; Gualano, B.; Martins, E.; Caperuto, E.C.; Seelaender, M. Low and moderate, rather than high intensity strength exercise induces benefit regarding plasma lipid profile. Diabetol. Metab. Syndr. 2010, 2, 31. [Google Scholar] [CrossRef] [PubMed]
- Moro, T.; Tinsley, G.; Bianco, A.; Gottardi, A.; Gottardi, G.B.; Faggian, D.; Plebani, M.; Marcolin, G.; Paoli, A. High intensity interval resistance training (HIIRT) in older adults: Effects on body composition, strength, anabolic hormones and blood lipids. Exp. Gerontol. 2017, 98, 91. [Google Scholar] [CrossRef] [PubMed]
- Zaki, M.E. Effects of whole body vibration and resistance training on bone mineral density and anthropometry in obese postmenopausal women. J. Osteoporos. 2014, 2014, 6. [Google Scholar] [CrossRef]
- Rossi, F.E.; Fortaleza, A.C.; Neves, L.M.; Buonani, C.; Picolo, M.R.; Diniz, T.A.; Kalva-Filho, C.A.; Papoti, M.; Lira, F.S.; Junior, I.F.F. Combined training (aerobic plus strength) potentiates a reduction in body fat but demonstrates no difference on the lipid profile in postmenopausal women when compared with aerobic training with a similar training load. J. Strength Cond. Res. 2016, 30, 226–234. [Google Scholar] [CrossRef]
Variable | No Exercise (n = 16,245) | Aerobic Exercise (n = 7545) | Non-Aerobic | p-Value | ||
---|---|---|---|---|---|---|
Ball Game (n = 327) | Resistance Training (n = 69) | Mixed (n = 670) | ||||
HDL-C | 52.58 ± 0.10 | 54.61 ± 0.16 | 53.28 ± 0.70 | 54.83 ± 1.53 | 53.32 ± 0.51 | <0.0001 |
Sex | ||||||
Female | 57.18 ± 0.13 | 58.86 ± 0.21 | 61.38 ± 1.55 | 60.39 ± 2.80 | 61.80 ± 1.12 | <0.0001 |
Male | 46.84 ± 0.12 | 49.26 ± 0.20 | 50.70 ± 0.71 | 52.04 ± 1.69 | 50.96 ± 0.53 | <0.0001 |
WHR | ||||||
male <0.9; female < 0.8 | 54.36 ± 0.16 | 56.41 ± 0.27 | 54.42 ± 1.00 | 54.03 ± 1.74 | 54.23 ± 0.66 | <0.0001 |
male ≥ 0.9; female ≥ 0.8 | 51.43 ± 0.13 | 53.52 ± 0.19 | 51.98 ± 0.97 | 55.70 ± 2.60 | 51.86 ± 0.81 | <0.0001 |
Body Fat Rate | ||||||
Normal | 54.77 ± 0.15 | 56.19 ± 0.22 | 53.87 ± 0.88 | 58.26 ± 1.97 | 54.27 ± 0.61 | <0.0001 |
Overweight | 50.27 ± 0.13 | 52.65 ± 0.21 | 52.14 ± 1.16 | 50.37 ± 2.18 | 51.04 ± 0.94 | <0.0001 |
Age | ||||||
30–40 | 52.93 ± 0.16 | 54.97 ± 0.40 | 52.34 ± 1.23 | 56.33 ± 2.01 | 53.27 ± 0.80 | <0.0001 |
41–50 | 52.31 ± 0.19 | 55.04 ± 0.33 | 55.01 ± 1.64 | 56.70 ± 4.15 | 52.40 ± 1.01 | <0.0001 |
51–60 | 52.65 ± 0.22 | 54.95 ± 0.26 | 52.73 ± 1.29 | 52.79 ± 2.70 | 54.11 ± 1.16 | <0.0001 |
61–70 | 51.97 ± 0.32 | 53.56 ± 0.30 | 53.18 ± 1.49 | 37.00 ± 1.00 | 53.69 ± 1.32 | 0.0014 |
BMI | ||||||
Underweight | 63.81 ± 0.56 | 67.32 ± 0.99 | 56.67 ± 4.89 | 73.00 | 65.75 ± 5.13 | 0.0227 |
Normal | 56.80 ± 0.14 | 58.47 ± 0.22 | 56.50 ± 1.11 | 58.91 ± 2.11 | 58.44 ± 0.77 | <0.0001 |
Overweight | 49.30 ± 0.17 | 51.24 ± 0.25 | 50.89 ± 1.13 | 52.30 ± 1.95 | 50.06 ± 0.78 | <0.0001 |
Obese | 45.68 ± 0.17 | 47.29 ± 0.29 | 48.88 ± 1.21 | 46.92 ± 4.43 | 45.93 ± 0.77 | <0.0001 |
Smoking | ||||||
Never | 54.22 ± 0.12 | 56.12 ± 0.18 | 54.74 ± 0.86 | 58.12 ± 2.02 | 54.79 ± 0.63 | <0.0001 |
Former | 48.50 ± 0.28 | 49.94 ± 0.37 | 50.73 ± 1.60 | 53.58 ± 2.54 | 50.49 ± 1.04 | 0.0060 |
Current | 46.48 ± 0.24 | 47.66 ± 0.51 | 48.73 ± 1.58 | 45.79 ± 2.50 | 49.88 ± 1.41 | 0.0223 |
Drinking | ||||||
Never | 52.82 ± 0.11 | 54.93 ± 0.16 | 53.37 ± 0.77 | 55.34 ± 1.56 | 52.94 ± 0.54 | <0.0001 |
Former | 46.71 ± 0.58 | 47.31 ± 0.74 | 51.60 ± 3.21 | 40.50 ± 2.50 | 49.83 ± 0.54 | 0.4381 |
Current | 51.41 ± 0.40 | 54.01 ± 0.61 | 53.00 ± 2.10 | 52.50 ± 14.50 | 57.43 ± 1.89 | 0.0002 |
LDL-C | ||||||
<130 | 53.15 ± 0.13 | 54.79 ± 0.21 | 53.66 ± 0.96 | 55.45 ± 2.08 | 54.03 ± 0.67 | <0.0001 |
≥130 | 51.58 ± 0.15 | 54.29 ± 0.23 | 52.65 ± 0.97 | 53.97 ± 2.26 | 52.03 ± 0.76 | <0.0001 |
Triglyceride | ||||||
<150 | 55.30 ± 0.11 | 57.17 ± 0.17 | 55.35 ± 0.77 | 56.89 ± 1.66 | 55.69 ± 0.55 | <0.0001 |
≥150 | 42.70 ± 0.15 | 44.20 ± 0.23 | 44.77 ± 1.19 | 45.00 ± 2.34 | 42.35 ± 0.82 | <0.0001 |
SBP | ||||||
<120 | 54.41 ± 0.13 | 56.54 ± 0.22 | 54.63 ± 0.97 | 58.02 ± 1.76 | 55.11 ± 0.73 | <0.0001 |
120–139 | 49.68 ± 0.18 | 52.44 ± 0.26 | 51.23 ± 1.23 | 49.18 ± 3.22 | 51.42 ± 0.80 | <0.0001 |
≥140 | 49.25 ± 0.30 | 52.47 ± 0.41 | 52.50 ± 1.74 | 48.00 ± 4.02 | 52.40 ± 1.51 | <0.0001 |
DBP | ||||||
<80 | 54.06 ± 0.12 | 55.77 ± 0.19 | 54.52 ± 0.86 | 56.62 ± 1.73 | 54.71 ± 0.60 | <0.0001 |
80–89 | 48.72 ± 0.21 | 52.34 ± 0.33 | 50.01 ± 1.31 | 52.65 ± 3.51 | 50.81 ± 1.11 | <0.0001 |
≥90 | 47.53 ± 0.33 | 50.23 ± 0.54 | 51.48 ± 2.44 | 45.40 ± 4.86 | 48.87 ± 1.81 | 0.0002 |
Variable | β-Coefficient | SE | p-Value |
---|---|---|---|
Exercise (Ref: no exercise) | |||
Aerobic | 1.33748 | 0.15826 | <0.0001 |
Non-aerobic | 2.56210 | 0.34496 | <0.0001 |
Sex (Ref: female) | |||
male | −8.73486 | 0.18737 | <0.0001 |
WHR (Ref: male < 0.9; female < 0.8) | |||
Male > 0.9; female ≥ 0.8 | −2.43206 | 0.16432 | <0.0001 |
Body fat rate (Ref: Normal) | |||
Overweight | −1.76628 | 0.18631 | <0.0001 |
Age (Ref: 30–40) | |||
41–50 | −0.76063 | 0.18391 | <0.0001 |
51–60 | 1.44934 | 0.19494 | <0.0001 |
61–70 | 0.93248 | 0.24226 | 0.0001 |
BMI (Ref: Normal) | |||
Underweight | 4.86672 | 0.40332 | <0.0001 |
Overweight | −3.41607 | 0.18466 | <0.0001 |
Obese | −4.72790 | 0.23980 | <0.0001 |
Smoking (Ref: Never) | |||
Former | −0.16073 | 0.23368 | 0.4916 |
Current | −2.06155 | 0.23941 | <0.0001 |
Drinking (Ref: Never) | |||
Former | −0.41432 | 0.43680 | 0.3429 |
Current | 5.15102 | 0.28672 | <0.0001 |
LDL-C (Ref: <130) | |||
≥130 | 1.06658 | 0.14539 | <0.0001 |
Triglyceride (Ref: <150) | |||
≥150 | −8.52164 | 0.18090 | <0.0001 |
SBP (Ref: <120) | |||
120–139 | −0.19182 | 0.18188 | 0.2916 |
≥140 | 0.32595 | 0.30045 | 0.2780 |
DBP (Ref: <80) | |||
80–89 | 0.05259 | 0.20426 | 0.7968 |
≥90 | 0.25113 | 0.33033 | 0.4471 |
Variable | β-Coefficient | SE | p-Value |
---|---|---|---|
Exercise (Ref: no exercise) | |||
Aerobic | 1.33557 | 0.15827 | <0.0001 |
Ball game | 2.43815 | 0.60416 | <0.0001 |
Resistance training | 4.01828 | 1.30055 | 0.0020 |
Mixed | 2.47021 | 0.42890 | <0.0001 |
Sex (Ref: female) | |||
male | −8.73348 | 0.18738 | <0.0001 |
WHR (Ref: male < 0.9; female < 0.8) | |||
male > 0.9; female ≥ 0.8 | −2.43365 | 0.16434 | <0.0001 |
Body fat rate (Ref: Normal) | |||
Overweight | −1.76888 | 0.18633 | <0.0001 |
Age (Ref:30–40) | |||
41–50 | 0.76651 | 0.18400 | <0.0001 |
51–60 | 1.45484 | 0.19505 | <0.0001 |
61–70 | 0.94048 | 0.24244 | 0.0001 |
BMI (Ref: Normal) | |||
Underweight | 4.86663 | 0.40333 | <0.0001 |
Overweight | −3.41565 | 0.18468 | <0.0001 |
Obese | −4.72494 | 0.23981 | <0.0001 |
Smoking (Ref: Never) | |||
Former | −0.16315 | 0.23373 | 0.4852 |
Current | −2.06691 | 0.23946 | <0.0001 |
Drinking (Ref: Never) | |||
Former | −0.41375 | 0.43681 | 0.3435 |
Current | 5.15666 | 0.28677 | <0.0001 |
LDL-C (Ref: <130) | |||
≥130 | 1.06535 | 0.14540 | <0.0001 |
Triglyceride (Ref: <150) | |||
≥150 | −8.52168 | 0.18091 | <0.0001 |
SBP (Ref: <120) | |||
120–139 | −0.18963 | 0.18194 | 0.2973 |
≥140 | 0.32769 | 0.30047 | 0.2755 |
DBP (Ref: <80) | |||
80–89 | 0.04997 | 0.20428 | 0.8068 |
≥90 | 0.24884 | 0.33034 | 0.4513 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, C.-S.; Chang, S.-T.; Nfor, O.N.; Lee, K.-J.; Lee, S.-S.; Liaw, Y.-P. Effects of Regular Aerobic Exercise and Resistance Training on High-Density Lipoprotein Cholesterol Levels in Taiwanese Adults. Int. J. Environ. Res. Public Health 2019, 16, 2003. https://doi.org/10.3390/ijerph16112003
Hsu C-S, Chang S-T, Nfor ON, Lee K-J, Lee S-S, Liaw Y-P. Effects of Regular Aerobic Exercise and Resistance Training on High-Density Lipoprotein Cholesterol Levels in Taiwanese Adults. International Journal of Environmental Research and Public Health. 2019; 16(11):2003. https://doi.org/10.3390/ijerph16112003
Chicago/Turabian StyleHsu, Chun-Sheng, Shin-Tsu Chang, Oswald Ndi Nfor, Kuan-Jung Lee, Shiuan-Shinn Lee, and Yung-Po Liaw. 2019. "Effects of Regular Aerobic Exercise and Resistance Training on High-Density Lipoprotein Cholesterol Levels in Taiwanese Adults" International Journal of Environmental Research and Public Health 16, no. 11: 2003. https://doi.org/10.3390/ijerph16112003
APA StyleHsu, C. -S., Chang, S. -T., Nfor, O. N., Lee, K. -J., Lee, S. -S., & Liaw, Y. -P. (2019). Effects of Regular Aerobic Exercise and Resistance Training on High-Density Lipoprotein Cholesterol Levels in Taiwanese Adults. International Journal of Environmental Research and Public Health, 16(11), 2003. https://doi.org/10.3390/ijerph16112003