pH-Dependent Leaching Characteristics of Major and Toxic Elements from Red Mud
Abstract
:1. Introduction
2. Material and Methods
2.1. Sampling and Mineralogy of Red Mud
2.2. Red Mud Physical Properties
2.3. Total Elemental Compositions and Carbon Analysis
2.4. pH-Dependent Leaching Analysis
2.5. Geochemical Modeling Analysis
3. Results
3.1. pH-Dependent Leaching Tests
3.1.1. Acid Neutralization Capacity
3.1.2. Oxidation-Reduction Potential
3.1.3. Leaching of Major Elements
3.1.4. Leaching of Trace Elements
3.1.5. Leaching of Toxic Anions
3.2. Geochemical Modeling with MINTEQ
3.2.1. Leaching Mechanisms of Major Elements
3.2.2. Leaching Mechanism of Trace Elements
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sun, C.; Chen, J.; Tian, K.; Peng, D.; Liao, X.; Wu, X. Geochemical Characteristics and Toxic Elements in Alumina Refining Wastes and Leachates from Management Facilities. Int. J. Environ. Res. Public Health 2019, 16, 1297. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Yang, J.; Xiao, B. Review on treatment and utilization of bauxite residues in China. Int. J. Miner. Process. 2009, 93, 220–231. [Google Scholar] [CrossRef]
- Evans, K. The History, Challenges, and New Developments in the Management and Use of Bauxite Residue. J. Sustain. Metall. 2016, 2, 316–331. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Li, W.; Guan, X. An active dealkalization of red mud with roasting and water leaching. J. Hazard. Mater. 2015, 286, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Koshy, N.; Dondrob, K.; Hu, L.; Wen, Q.; Meegoda, J.N. Synthesis and characterization of geopolymers derived from coal gangue, fly ash and red mud. Constr. Build. Mater. 2019, 206, 287–296. [Google Scholar] [CrossRef]
- Khairul, M.A.; Zanganeh, J.; Moghtaderi, B. The composition, recycling and utilisation of Bayer red mud. Resour. Conserv. Recycl. 2019, 141, 483–498. [Google Scholar] [CrossRef]
- Nie, Q.; Hu, W.; Huang, B.; Shu, X.; He, Q. Synergistic utilization of red mud for flue-gas desulfurization and fly ash-based geopolymer preparation. J. Hazard. Mater. 2019, 369, 503–511. [Google Scholar] [CrossRef]
- Rivera, R.M.; Ounoughene, G.; Malfliet, A.; Vind, J.; Panias, D.; Vassiliadou, V.; Binnemans, K.; Van Gerven, T. A Study of the Occurrence of Selected Rare-Earth Elements in Neutralized—Leached Bauxite Residue and Comparison with Untreated Bauxite Residue. J. Sustain. Metall. 2019, 5, 57–68. [Google Scholar] [CrossRef]
- Rivera, R.M.; Ounoughene, G.; Borra, C.R.; Binnemans, K.; Gerven, T. Van Neutralisation of bauxite residue by carbon dioxide prior to acidic leaching for metal recovery. Miner. Eng. 2017, 112, 92–102. [Google Scholar] [CrossRef]
- Rubinos, D.A.; Spagnoli, G.; Barral, M.T. Chemical and environmental compatibility of red mud liners for hazardous waste containment. Int. J. Environ. Sci. Technol. 2016, 13, 773–792. [Google Scholar] [CrossRef]
- Ghosh, I.; Guha, S.; Balasubramaniam, R.; Kumar, A.V.R. Leaching of metals from fresh and sintered red mud. J. Hazard. Mater. 2011, 185, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, S.; Yao, Z.; Wu, S.; Jiang, H.; Liang, M.; Qiao, Y. Environmental aspects and pavement properties of red mud waste as the replacement of mineral filler in asphalt mixture. Constr. Build. Mater. 2018, 180, 605–613. [Google Scholar] [CrossRef]
- Dodoo-Arhin, D.; Nuamah, R.A.; Agyei-Tuffour, B.; Obada, D.O.; Yaya, A. Awaso bauxite red mud-cement based composites: Characterisation for pavement applications. Case Stud. Constr. Mater. 2017, 7, 45–55. [Google Scholar] [CrossRef]
- Nikbin, I.M.; Aliaghazadeh, M.; Charkhtab, S.; Fathollahpour, A. Environmental impacts and mechanical properties of lightweight concrete containing bauxite residue (red mud). J. Clean. Prod. 2018, 172, 2683–2694. [Google Scholar] [CrossRef]
- Dayioglu, A.Y.; Aydilek, A.H.; Cimen, O.; Cimen, M. Trace Metal Leaching from Steel Slag Used in Structural Fills. J. Geotech. Geoenviron. Eng. 2018, 144, 4018089. [Google Scholar] [CrossRef]
- Uzun, D.; Gülfen, M. Dissolution kinetics of iron and aluminium from red mud in sulphuric acid solution. Indian J. Chem. Technol. 2007, 14, 263–268. [Google Scholar]
- Pepper, R.A.; Couperthwaite, S.J.; Millar, G.J. Comprehensive examination of acid leaching behaviour of mineral phases from red mud: Recovery of Fe, Al, Ti, and Si. Miner. Eng. 2016, 99, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Lim, K.; Shon, B. Metal components (Fe, Al, and Ti) recovery from red mud by sulfuric acid leaching assisted with ultrasonic waves. Int. J. Emerg. Technol. Adv. Eng 2015, 5, 25–32. [Google Scholar]
- Mudd, G.M.; Weaver, T.R.; Kodikara, J. Environmental geochemistry of leachate from leached brown coal ash. J. Environ. Eng. 2004, 130, 1514–1526. [Google Scholar] [CrossRef]
- Fruchter, J.S.; Rai, D.; Zachara, J.M. Identification of solubility-controlling solid phases in a large fly ash field lysimeter. Environ. Sci. Technol. 1990, 24, 1173–1179. [Google Scholar] [CrossRef] [Green Version]
- Ruyters, S.; Mertens, J.; Vassilieva, E.; Dehandschutter, B.; Poffijn, A.; Smolders, E. The red mud accident in Ajka (Hungary): Plant toxicity and trace metal bioavailability in red mud contaminated soil. Environ. Sci. Technol. 2011, 45, 1616–1622. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Wang, N.; Liu, S. Radiological restrictions of using red mud as building material additive. Waste Manag. Res. 2012, 30, 961–965. [Google Scholar] [CrossRef] [PubMed]
- Mongelli, G.; Boni, M.; Oggiano, G.; Mameli, P.; Sinisi, R.; Buccione, R.; Mondillo, N. Critical metals distribution in Tethyan karst bauxite: The cretaceous Italian ores. Ore Geol. Rev. 2017, 86, 526–536. [Google Scholar] [CrossRef]
- Der Sloot, H.A.; Seignette, P.; Meeussen, J.C.L.; Hjelmar, O.; Kosson, D.S. A database, speciation modelling and decision support tool for soil, sludge, sediments, wastes and construction products: LeachXSTM-Orchestra. In Proceedings of the Second International Symposium on Energy from Biomass and Waste, Venice, Italy, 17–20 November 2008. [Google Scholar]
- Yin, K.; Chan, W.-P.; Dou, X.; Lisak, G.; Chang, V.W.-C. Co-complexation effects during incineration bottom ash leaching via comparison of measurements and geochemical modeling. J. Clean. Prod. 2018, 189, 155–168. [Google Scholar] [CrossRef]
- Allison, J.D.; Brown, D.S.; Novo-Gradac, K.J. MINTEQA2/PRODEFA2, A Geochemical Assessment Model for Environmental Systems, Version 3.0 User’s Manual; Environmental Research Laboratory Office of Research and Development, US Environmental Protection Agency: Athens, GA, USA, 1991. Available online: https://www.epa.gov/sites/production/files/documents/USERMANU.PDF (accessed on 5 March 1991).
- Apul, D.S.; Gardner, K.H.; Eighmy, T.T.; Fällman, A.M.; Comans, R.N.J. Simultaneous application of dissolution/precipitation and surface complexation/surface precipitation modeling to contaminant leaching. Environ. Sci. Technol. 2005, 39, 5736–5741. [Google Scholar] [CrossRef] [PubMed]
- Langmuir, D. Aqueous Environmental Geochemistry; Geochemistry Prentice Hall: Upper Saddle River, NJ, USA, 1997. [Google Scholar]
- Garavaglia, R.; Caramuscio, P. Coal Fly-Ash Leaching Behaviour and Solubility Controlling Solids. In Environmental Aspects of Construction with Waste Materials; Goumans, J.J.J.M., van der Sloot, H.A., Aalbers, T.G., Eds.; Studies in Environmental Science; Elsevier Science B.V: Amsterdam, The Netherlands, 1994; Volume 60, pp. 87–102. [Google Scholar]
- Giampaolo, C.; Mastro, S.L.; Polettini, A.; Pomi, R.; Sirini, P. Acid neutralisation capacity and hydration behaviour of incineration bottom ash–Portland cement mixtures. Cem. Concr. Res. 2002, 32, 769–775. [Google Scholar] [CrossRef]
- Garrabrants, A.C.; Sanchez, F.; Kosson, D.S. Changes in constituent equilibrium leaching and pore water characteristics of a Portland cement mortar as a result of carbonation. Waste Manag. 2004, 24, 19–36. [Google Scholar] [CrossRef]
- Lv, Y.; Xiao, K.; Yang, J.; Zhu, Y.; Pei, K.; Yu, W.; Tao, S.; Wang, H.; Liang, S.; Hou, H.; et al. Correlation between oxidation-reduction potential values and sludge dewaterability during pre-oxidation. Water Res. 2019, 155, 96–105. [Google Scholar] [CrossRef]
- VanLoon, G.W.; Duffy, S.J. Environmental Chemistry: A Global Perspective; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Komonweeraket, K.; Cetin, B.; Benson, C.H.; Aydilek, A.H.; Edil, T.B. Leaching characteristics of toxic constituents from coal fly ash mixed soils under the influence of pH. Waste Manag. 2015, 38, 174–184. [Google Scholar] [CrossRef]
- Van der Sloot, H.A.; van Zomeren, A. Characterisation Leaching Tests and Associated Geochemical Speciation Modelling to Assess Long Term Release Behaviour from Extractive Wastes. Mine Water Environ. 2012, 31, 92–103. [Google Scholar] [CrossRef]
- Zhang, Y.; Cetin, B.; Likos, W.J.; Edil, T.B. Impacts of pH on leaching potential of elements from MSW incineration fly ash. Fuel 2016, 184, 815–825. [Google Scholar] [CrossRef]
- Cama, J.; Metz, V.; Ganor, J. The effect of pH and temperature on kaolinite dissolution rate under acidic conditions. Geochim. Cosmochim. Acta 2002, 66, 3913–3926. [Google Scholar] [CrossRef]
- Tiruta-Barna, L.; Imyim, A.; Barna, R. Long-term prediction of the leaching behavior of pollutants from solidified wastes. Adv. Environ. Res. 2004, 8, 697–711. [Google Scholar] [CrossRef]
- Komonweeraket, K.; Benson, C.H.; Edil, T.B.; Bleam, W.F. Leaching behavior and mechanisms controlling the release of elements from soil stabilized with fly ash. Geo-Frontiers 2011, 2011, 1101–1110. [Google Scholar] [CrossRef]
- Knauss, K.G.; Wolery, T.J. The dissolution kinetics of quartz as a function of pH and time at 70 °C. Geochim. Cosmochim. Acta 1988, 52, 43–53. [Google Scholar] [CrossRef]
- Ning, R.Y.; Tarquin, A.J.; Balliew, J.E. Seawater RO treatment of RO concentrate to extreme silica concentrations. Desalin. Water Treat. 2010, 22, 286–291. [Google Scholar] [CrossRef]
- Eikenberg, J. On the Problem of Silica Solubility at High pH; Nationale Genossenschaft für die Lagerung radioaktiver Abfalle: Baden, Switzerland, 1990; Technical Report 90–36; 54 p. [Google Scholar]
- Malviya, R.; Chaudhary, R. Leaching behavior and immobilization of heavy metals in solidified/stabilized products. J. Hazard. Mater. 2006, 137, 207–217. [Google Scholar] [CrossRef]
- Eighmy, T.T.; Eusden, J.D.; Krzanowski, J.E.; Domingo, D.S.; Staempfli, D.; Martin, J.R.; Erickson, P.M. Comprehensive approach toward understanding element speciation and leaching behavior in municipal solid waste incineration electrostatic precipitator ash. Environ. Sci. Technol. 1995, 29, 629–646. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Bradshaw, S.; Benson, C.H.; Tinjum, J.M.; Edil, T.B. pH-Dependent Leaching of Trace Elements from Recycled Concrete Aggregate. GeoCongress 2012, 2012, 3729–3738. [Google Scholar] [CrossRef]
- Cornelis, G.; Johnson, C.A.; Van Gerven, T.; Vandecasteele, C. Leaching mechanisms of oxyanionic metalloid and metal species in alkaline solid wastes: A review. Appl. Geochem. 2008, 23, 955–976. [Google Scholar] [CrossRef]
- Saikia, N.; Borah, R.R.; Konwar, K.; Vandecastelee, C. pH dependent leachings of some trace metals and metalloid species from lead smelter slag and their fate in natural geochemical environment. Groundw. Sustain. Dev. 2018, 7, 348–358. [Google Scholar] [CrossRef]
- Jarošíková, A.; Ettler, V.; Mihaljevič, M.; Kříbek, B.; Mapani, B. The pH-dependent leaching behavior of slags from various stages of a copper smelting process: Environmental implications. J. Environ. Manag. 2017, 187, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Sauer, J.J.; Benson, C.H.; Aydilek, A.H.; Edil, T.B. Trace elements leaching from organic soils stabilized with high carbon fly ash. J. Geotech. Geoenviron. Eng. 2011, 138, 968–980. [Google Scholar] [CrossRef]
- Bin-Shafique, M.S.; Benson, C.H.; Edil, T.B. Leaching of Heavy Metals from Fly Ash Stabilized Soils Used in Highway Pavements; Geo Engineering Program, Department of Civil and Environmental Engineering: Madison, WI, USA, 2002. [Google Scholar]
- Astrup, T.; Dijkstra, J.J.; Comans, R.N.J.; der Sloot, H.A.; Christensen, T.H. Geochemical modeling of leaching from MSWI air-pollution-control residues. Environ. Sci. Technol. 2006, 40, 3551–3557. [Google Scholar] [CrossRef] [PubMed]
- Gitari, W.M.; Fatoba, O.O.; Petrik, L.F.; Vadapalli, V.R. Leaching characteristics of selected South African fly ashes: Effect of pH on the release of major and trace species. J. Environ. Sci. Health Part A 2009, 44, 206–220. [Google Scholar] [CrossRef]
- Gong, W.-X.; Qu, J.-H.; Liu, R.-P.; Lan, H.-C. Adsorption of fluoride onto different types of aluminas. Chem. Eng. J. 2012, 189, 126–133. [Google Scholar] [CrossRef]
- Doull, J.; Boekelheide, K.; Farishian, B.G.; Isaacson, R.L.; Klotz, J.B.; Kumar, J.V.; Limeback, H.; Poole, C.; Puzas, J.E.; Reed, N.M.R.; et al. Fluoride in Drinking Water: A Scientific Review of EPA’s Standards; The National Academies Press: Washington, DC, USA, 2006; pp. 205–223. [Google Scholar]
- Kishida, M.; Harato, T.; Tokoro, C.; Owada, S. In situ remediation of bauxite residue by sulfuric acid leaching and bipolar-membrane electrodialysis. Hydrometallurgy 2017, 170, 58–67. [Google Scholar] [CrossRef]
- Wang, J.; Teng, X.; Wang, H.; Ban, H. Characterizing the Metal Adsorption Capability of a Class F Coal Fly Ash. Environ. Sci. Technol. 2004, 38, 6710–6715. [Google Scholar] [CrossRef]
- Murarka, I.P.; Rai, D.; Ainsworth, C.C. Geochemical basis for predicting leaching of inorganic constituents from coal-combustion residues. In Waste Testing and Quality Assurance: Third Volume; ASTM International: West Conshohocken, PA, USA, 1991. [Google Scholar]
- Dijkstra, J.J.; Meeussen, J.C.L.; Van der Sloot, H.A.; Comans, R.N.J. A consistent geochemical modelling approach for the leaching and reactive transport of major and trace elements in MSWI bottom ash. Appl. Geochem. 2008, 23, 1544–1562. [Google Scholar] [CrossRef] [Green Version]
- Bektaş, N.; Ağım, B.A.; Kara, S. Kinetic and equilibrium studies in removing lead ions from aqueous solutions by natural sepiolite. J. Hazard. Mater. 2004, 112, 115–122. [Google Scholar] [CrossRef]
- Dijkstra, J.J.; Van Der Sloot, H.A.; Comans, R.N.J. The leaching of major and trace elements from MSWI bottom ash as a function of pH and time. Appl. Geochem. 2006, 21, 335–351. [Google Scholar] [CrossRef]
Mineral | Formula | GX-A-B | GX-B-B | SD-A-B | SD-B-B | HN-A-C |
---|---|---|---|---|---|---|
Quartz | SiO2 | 10 | 10 | - | 10 | |
Calcite | CaCO3 | - | 20 | 10 | 10 | - |
Hematite | Fe2O3 | 20 | 40 | 35 | 35 | 50 |
Hydrogarnet | Ca3Al2(SiO4)2(OH)4 | 40 | - | 30 | 30 | - |
Sodalite | Na8(Al6Si6O24)Cl2 | 30 | 20 | - | 25 | - |
Anhydrite | CaSO4 | - | 10 | - | - | - |
Cancrinite | Na6Ca2((CO3)2Al6Si6O24)·2H2O | - | - | 25 | - | - |
Gibbsite | Al(OH)3 | - | - | - | - | 40 |
Bayer | Bayer | Bayer | Bayer | Combined |
Red Mud | Moisture Content (%) | Particle Size Distribution (mm) (%) | LOI (%) | ||||
---|---|---|---|---|---|---|---|
1–2 | 0.5–1 | 0.25–0.5 | 0.075–0.25 | < 0.075 | |||
Method | ASTM D2216 | ASTM D2487 | ASTM D7348 | ||||
GX-A-B | 20.2 | 7.1 | 19.2 | 14.0 | 15.1 | 44.6 | 11.6 |
GX-B-B | 11.7 | 5.5 | 12.7 | 11.3 | 14.7 | 55.8 | 9.1 |
SD-A-B | 29.0 | 4.7 | 16.0 | 15.0 | 17.5 | 46.8 | 7.7 |
SD-B-B | 11.0 | 6.3 | 23.3 | 19.1 | 18.7 | 32.6 | 10.3 |
HN-A-C | 24.1 | 1.0 | 5.2 | 14.2 | 23.5 | 56.1 | 12.8 |
Chemical Properties | Red mud samples | Ref. | ||||
---|---|---|---|---|---|---|
GX-A-B | GX-B-B | SD-A-B | SD-B-B | HN-A-C | ||
Major elements (%) | ASTM D5198 | |||||
Aluminum (Al) | 9.1 | 8.3 | 9.2 | 9.3 | 10.7 | 7.5 [21] |
Calcium (Ca) | 10.9 | 9.9 | 0.6 | 1.3 | 10.8 | 6.0 [21] |
Iron (Fe) | 18.6 | 19.7 | 23.6 | 22.7 | 6.2 | 20 [21] |
Sodium (Na) | 4.7 | 4.8 | 5.7 | 7.1 | 5.7 | 4.3 [21] |
Titanium (Ti) | 3.6 | 4.5 | 3.6 | 3.7 | 2.4 | 2.3 [21] |
Silicon (Si) | 6.4 | 6.2 | 6.6 | 6.5 | 10.6 | NA |
Trace elements (µg/g) | ASTM D5198 | |||||
Potassium (K) | 60 | 100 | 80 | 40 | 1140 | 420 [21] |
Magnesium (Mg) | 350 | 240 | 30 | 60 | 570 | 460 [21] |
Arsenic (As) | 102 | 203 | 36.2 | 29.4 | 28.7 | 10.7–40.3 [22] |
Barium (Ba) | 59.1 | 58.9 | 47.4 | 47.4 | 155.5 | 124–1380 [22] |
Cobalt (Co) | 42.5 | 50.7 | 3.2 | 18.9 | 9.8 | 5.3–348.9 [23] |
Chromium (Cr) | 1370 | 2370 | 570 | 640 | 480 | 123–1130 [23] |
Copper (Cu) | 71.2 | 97.7 | 11.6 | 52.0 | 30.3 | 31.9–107 [22] |
Lithium (Li) | 65.1 | 35.7 | 5.8 | 16 | 287 | 28.2–162 [22] |
Manganese (Mn) | 1310 | 814 | 73 | 447 | 188 | NA |
Molybdenum (Mo) | 4.93 | 11.6 | 5.38 | 6.44 | 1.46 | 4.12–13.2 [22] |
Nickel (Ni) | 123 | 98.7 | 24.8 | 55.3 | 46.5 | 59.7–1072 [23] |
Lead (Pb) | 119 | 132 | 43.7 | 49.4 | 64.9 | 47.4–272 [22] |
Zinc (Zn) | 48 | 56 | 17 | 84 | 17 | 33.3–110 [22] |
Carbon content (%) | LECO carbon analyzer | |||||
Total carbon | 1.3 | 1.2 | 0.7 | 1.1 | 1.6 | NA |
Inorganic carbon | 1.1 | 0.9 | 0.4 | 0.7 | 1.0 | NA |
Organic carbon | 0.2 | 0.3 | 0.3 | 0.4 | 0.6 | NA |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Chen, J.; Zhang, Y.; Peng, D.; Huang, T.; Sun, C. pH-Dependent Leaching Characteristics of Major and Toxic Elements from Red Mud. Int. J. Environ. Res. Public Health 2019, 16, 2046. https://doi.org/10.3390/ijerph16112046
Cui Y, Chen J, Zhang Y, Peng D, Huang T, Sun C. pH-Dependent Leaching Characteristics of Major and Toxic Elements from Red Mud. International Journal of Environmental Research and Public Health. 2019; 16(11):2046. https://doi.org/10.3390/ijerph16112046
Chicago/Turabian StyleCui, Yulong, Jiannan Chen, Yibo Zhang, Daoping Peng, Tao Huang, and Chunwei Sun. 2019. "pH-Dependent Leaching Characteristics of Major and Toxic Elements from Red Mud" International Journal of Environmental Research and Public Health 16, no. 11: 2046. https://doi.org/10.3390/ijerph16112046
APA StyleCui, Y., Chen, J., Zhang, Y., Peng, D., Huang, T., & Sun, C. (2019). pH-Dependent Leaching Characteristics of Major and Toxic Elements from Red Mud. International Journal of Environmental Research and Public Health, 16(11), 2046. https://doi.org/10.3390/ijerph16112046