Environmental Risk Assessment of Metals in the Volcanic Soil of Changbai Mountain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Collection and Analysis
2.3. Ecological Risk Assessment
2.3.1. Geo-Accumulation Index (Igeo)
2.3.2. Enrichment Factor (EF)
2.3.3. Contamination Factor (CF)
2.3.4. Potential Ecological Risk Index (RI)
2.4. Health Risk Assessment
2.5. Data Treatment
3. Results and Discussion
3.1. Soil Properties
3.2. Metal Concentrations and Distributions
3.3. Source Identification
3.4. Contamination and Ecological Risk Assessment
3.5. Human Health Risk Assessment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fabricio Neta, A.B.; do Nascimento, C.W.A.; Biondi, C.M.; van Straaten, P.; Bittar, S.M.B. Natural concentrations and reference values for trace elements in soils of a tropical volcanic archipelago. Environ. Geochem. Health 2018, 40, 163–173. [Google Scholar] [CrossRef]
- Ruggieri, F.; Saavedra, J.; Fernandez-Turiel, J.L.; Gimeno, D.; Garcia-Valles, M. Environmental geochemistry of ancient volcanic ashes. J. Hazard. Mater. 2010, 183, 353–365. [Google Scholar] [CrossRef]
- Stewart, C.; Johnston, D.M.; Leonard, G.S.; Horwell, C.J.; Thordarson, T.; Cronin, S.J. Contamination of water supplies by volcanic ashfall: A literature review and simple impact modeling. J. Volcanol. Geotherm. Res. 2006, 158, 296–306. [Google Scholar] [CrossRef]
- Grison, H.; Petrovsky, E.; Stejskalova, S.; Kapicka, A. Magnetic and geochemical characterization of Andosols developed on basalts in the Massif Central, France. Geochem. Geophys. Geosyst. 2015, 16, 1348–1363. [Google Scholar] [CrossRef]
- Cabral Pinto, M.M.S.; Ferreira da Silva, E.; Silva, M.M.V.G.; Melo-Gonçalves, P. Heavy metals of Santiago Island (Cape Verde) top soils: Estimated Background Value maps and environmental risk assessment. J. Afr. Earth Sci. 2015, 101, 162–176. [Google Scholar] [CrossRef]
- Forghania, G.; Kelmb, U.; Mazinania, V. Spatial distribution and chemical partitioning of potentially toxic elements in soils around Khatoon-Abad Cu Smelter, SE Iran. J. Geochem. Explor. 2019, 196, 66–80. [Google Scholar] [CrossRef]
- Yu, S.; Chen, Z.; Zhao, K.; Ye, Z.; Zhang, L.; Dong, J.; Shao, Y.; Zhang, C.; Fu, W. Spatial Patterns of Potentially Hazardous Metals in Soils of Lin’an City, Southeastern China. Int. J. Environ. Res. Public Health 2019, 16, 246. [Google Scholar] [CrossRef]
- Zhang, X.; Wei1, S.; Sun, Q.; Wadood, S.A.; Guo, B. Source identification and spatial distribution of arsenic and heavy metals in agricultural soil around Hunan industrial estate by positive matrix factorization model, principle components analysis and geo statistical analysis. Ecotoxicol. Environ. Saf. 2018, 159, 354–362. [Google Scholar] [CrossRef]
- Adumitroaei, M.V.; Iancu, G.O.; Rățoi, B.G.; Doru, C.S.; Sandu, C.M. Spatial distribution and geochemistry of major and trace elements from Mohoș peatland, Harghita Mountains, Romania. Holocene 2018, 28, 1936–1947. [Google Scholar] [CrossRef]
- Memoli, V.; Eymar, E.; García-Delgado, C.; Esposito, F.; Panico, S.C.; Marco, A.D.; Barile, R.; Maistoa, G. Soil element fractions affect phytotoxicity, microbial biomass and activity in volcanic areas. Sci. Total Environ. 2018, 636, 1099–1108. [Google Scholar] [CrossRef]
- Ermolin, M.S.; Fedotov, P.S.; Malik, N.A.; Karandashev, V.K. Nanoparticles of volcanic ash as a carrier for toxic elements on the global scale. Chemosphere 2018, 200, 16–22. [Google Scholar] [CrossRef]
- Peña-Fernández, A.; González-Muñoz, M.J.; Lobo-Bedmar, M.C. Establishing the importance of human health risk assessment for metals and metalloids in urban environments. Environ. Int. 2014, 72, 176–185. [Google Scholar] [CrossRef]
- Adamo, P.; Denaix, L.; Terribile, F.; Zampella, M. Characterization of heavy metals in contaminated volcanic soils of the Solofrana river valley (southern Italy). Geoderma 2003, 117, 347–366. [Google Scholar] [CrossRef]
- Hussain, R.; Luo, K.; Chao, Z.; Zhao, X. Trace elements concentration and distributions in coal and coal mining wastes and their environmental and health impacts in Shaanxi, China. Environ. Sci. Pollut. Res. 2018, 25, 19566–19584. [Google Scholar] [CrossRef]
- Tran, T.H.M.; Nguyen, K.G. Metal and metalloid concentrations in soil, surface water, and vegetables and the potential ecological and human health risks in the northeastern area of Hanoi, Vietnam. Environ. Monit. Assess. 2018, 190, 624. [Google Scholar] [CrossRef]
- Adamo, P.; Iavazzo, P.; Albanese, S.; Agrelli, D.; Vivo, B.D.; Lima, A. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils. Sci. Total Environ. 2014, 500, 11–22. [Google Scholar] [CrossRef]
- Barraza, F.; Maurice, L.; Uzu, G.; Becerra, S.; López, F.; Ochoa-Herrera, V.; Ruales, J.; Schreck, E. Distribution, contents and health risk assessment of metal(loid)s in small-scale farms in the Ecuadorian Amazon: An insight into impacts of oil activities. Sci. Total Environ. 2018, 622, 106–120. [Google Scholar] [CrossRef]
- Schuller, P.; Castillo, A.; Voigt, G.; Semioshkina, N. Radiocaesium transfer from volcanic soils to Swiss chard, cabbage and sweet corn. J. Environ. Radioact. 2018, 192, 117–127. [Google Scholar] [CrossRef]
- Liang, G.; Gong, W.; Li, B.; Zuo, J.; Pan, L.; Liu, X. Analysis of Heavy Metals in Foodstuffs and an Assessment of the Health Risks to the General Public via Consumption in Beijing, China. Int. J. Environ. Res. Public Health 2019, 16, 909. [Google Scholar] [CrossRef]
- Gope, M.; Masto, R.E.; George, J.; Hoque, R.R.; Balachandran, S. Bioavailability and health risk of some potentially toxic elements (Cd, Cu, Pb and Zn) in street dust of Asansol, India. Ecotoxicol. Environ. Saf. 2017, 138, 231–241. [Google Scholar] [CrossRef]
- Vigneri, R.; Malandrino, P.; Gianì, F.; Russo, N.; Vigneri, P. Heavy metals in the volcanic environment and thyroid cancer. Mol. Cell. Endocrinol. 2017, 457, 73–80. [Google Scholar] [CrossRef]
- Hong, H. Prediction and Early-Warning of Volcano; Seismological Press: Beijing, China, 2013; pp. 267–269. [Google Scholar]
- Zhang, M.; Guo, Z.; Liu, J.; Liu, G.; Zhang, L.; Lei, M.; Zhao, W.; Ma, L.; Sepe, V.; Ventura, G. The intraplate Changbaishan volcanic field (China/North Korea): A review on eruptive history, magma genesis, geodynamic significance, recent dynamics and potential hazards. Earth-Sci. Rev. 2018, 187, 19–52. [Google Scholar] [CrossRef]
- Liu, J.; Chen, S.; Guo, Z.; Guo, W.; He, H.; You, H.; Kim, H.; Sung, G.; Kim, H. Geological background and geodynamic mechanism of Mt. Changbai volcanoes on the China–Korea border. Lithos 2015, 236, 46–73. [Google Scholar] [CrossRef]
- Kim, S.; Tkalčić, H.; Rhie, J. Seismic constraints on magma evolution beneath Mount Baekdu (Changbai) volcano from transdimensional Bayesian inversion of ambient noise data. J. Geophys. Res. Solid Earth 2017, 122, 5452–5473. [Google Scholar] [CrossRef]
- Liu, G.; Sun, Y.; Li, T.; Zhong, G.; Gong, Z.; Guo, F.; Su, X. The Geochemical Monitoring of Volcanic Gases in the Tianchi Area of the Changbaishan Mountains and Discussion of Their Data Processing Methods. Bull. Mineral. Petrol. Geochem. 2018, 37, 621–628. [Google Scholar]
- Cui, T.; Qian, C.; Jiang, B.; Tang, Z.; Zhang, C.; Lu, L.; Wu, T.; Chen, H.; Zhang, Y.; Yang, L. Volcanic Stratigraphic Sequence and Volcanism Revealed by CZK07Drill Core at Tianchi Volcano, Changbai Mountain. Acta Geol. Sin. 2017, 91, 2409–2422. [Google Scholar]
- Wei, H.; Liu, G.; Gill, J. Review of eruptive activity at Tianchi volcano, Changbaishan, northeast China: Implications for possible future eruptions. Bull. Volcanol. 2013, 75, 4. [Google Scholar] [CrossRef]
- Liu, R.; Li, J.; Wei, H.; Xu, D.; Zheng, X. Volcano at Tianchi Lake, Changbaishan MT—A Modern Volcano with Potential Danger of Eruption. Chin. J. Geophys. 1992, 35, 661–665. [Google Scholar]
- Yang, Q.; Shi, L.; Chen, X.; Chen, B.; Zhang, Y. Characteristics of Recent Ejecta of the Changbaishan Tianchi Volcano, China. Seismol. Geol. 2006, 28, 71–83. [Google Scholar]
- Yu, H.; Xu, J.; Luan, P.; Zhao, B.; Pan, B. Probabilistic assessment of tephra fallout hazard at Changbaishan volcano, Northeast China. Nat. Hazards 2013, 69, 1369–1388. [Google Scholar] [CrossRef]
- Pan, B.; Silva, S.D.; Xu, J.; Chen, Z.; Miggins, D.P.; Wei, H. The VEI-7 Millennium eruption, Changbaishan-Tianchi volcano, China/ DPRK: New field, petrological, and chemical constraints on stratigraphy, volcanology, and magma dynamics. J. Volcanol. Geotherm. Res. 2017, 343, 45–59. [Google Scholar] [CrossRef]
- Liu, J.; Chen, S.; Guo, W.; Sun, Q.; Zhang, M.; Guo, Z. Research Advances in the Mt. Changbai Volcano. Bull. Mineral. Petrol. Geochem. 2015, 34, 710–723. [Google Scholar]
- Lowe, D.J.; Green, B.E. A Hydrofluoric Acid Dissolution Method for Determiniig Volcanic Glass Content of Tephra-Derived Soils (Andisols). Aust. J. Soil Res. 1992, 30, 573–581. [Google Scholar] [CrossRef]
- CNEMC (The Chinese Environmental Monitoring Centre). The Background Values of Soil Elements in China; Chinese Environment Science Press: Beijing, China, 1990. [Google Scholar]
- Wang, S.; Wu, W.; Liu, F. Assessment of the human health risks of heavy metals in nine typical areas. Environ. Sci. Pollut. Res. 2019, 26, 12311–12323. [Google Scholar] [CrossRef] [PubMed]
- Shruti, V.C.; Rodríguez-Espinosa, P.F.; Martinez-Tavera, E.; Hernández-Gonzalez, D. Metal concentrations in recent ash fall of Popocatepetl volcano 2016, Central Mexico: Is human health at risk? Ecotoxicol. Environ. Saf. 2018, 162, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, J.; Mazurek, R.; Gąsiorek, M.; Setlak, M.; Zaleski, T.; Waroszewski, J. Soil pollution indices conditioned by medieval metallurgical activity—A case study from Krakow (Poland). Environ. Pollut. 2016, 218, 1023–1036. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, S.M.; Abdelrazek, M.A.S.; Elthoth, M.; Moghanm, F.S.; Mohamed, R.; Hamza, A.; El-Habashi, N.; Wang, J.; Rinklebe, J. Potentially toxic elements in saltmarsh sediments and common reed (Phragmites australis) of Burullus coastal lagoon at North Nile Delta, Egypt: A survey and risk assessment. Sci. Total Environ. 2019, 649, 1237–1249. [Google Scholar] [CrossRef] [PubMed]
- Pavlović, P.; Marković, M.; Kostić, O.; Sakan, S.; Đorđević, D.; Perović, V.; Pavlović, D.; Pavlović, M.; Čakmak, D.; Jarić, S.; et al. Evaluation of potentially toxic element contamination in the riparian zone of the River Sava. Catena 2019, 174, 399–412. [Google Scholar] [CrossRef]
- Liu, R.; Bao, K.; Yao, S.; Yang, F.; Wang, X. Ecological risk assessment and distribution of potentially harmful trace elements in lake sediments of Songnen Plain, NE China. Ecotoxicol. Environ. Saf. 2018, 163, 117–124. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, C.L. Riverine Composition and Estuarine Geochemistry of Particulate Metals in China—Weathering Features, Anthropogenic Impact and Chemical Fluxes. Estuar. Coast. Shelf Sci. 2002, 54, 1051–1070. [Google Scholar] [CrossRef]
- Håkanson, L. An Ecological Risk Index for Aquatic Pollution Control—A Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Maanan, M.; Saddik, M.; Maanan, M.; Chaibi, M.; Assobhei, O.; Zourarah, B. Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon, Morocco. Ecol. Indic. 2015, 48, 616–626. [Google Scholar] [CrossRef]
- Xu, Z.; Ni, S.; Tuo, X.; Zhang, C. Calculation of Heavy Metals’ Toxicity Coefficient in the Evaluation of Potential Ecological Risk Index. Environ. Sci. Technol. 2008, 31, 112–115. [Google Scholar] [CrossRef]
- Wang, Z.; Meng, B.; Zhang, W.; Bai, J.; Ma, Y.; Liu, M. Multi-Target Risk Assessment of Potentially Toxic Elements in Farmland Soil Based on the Environment-Ecological-Health Effect. Int. J. Environ. Res. Public Health 2018, 15, 1101. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Jiang, X.; Wang, Y.; Zhuang, D. Spatial characteristics of heavy metal pollution and the potential ecological risk of a typical mining area: A case study in China. Process Saf. Environ. Prot. 2018, 113, 204–219. [Google Scholar] [CrossRef]
- Chen, G.; Wang, X.; Wang, R.; Liu, G. Health risk assessment of potentially harmful elements in subsidence water bodies using a Monte Carlo approach: An example from the Huainan coal mining area, China. Ecotoxicol. Environ. Saf. 2019, 171, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Araújo, P.R.M.; Biondi, C.M.; Silva, F.B.V.D.; Nascimento, C.W.A.D.; Souza-Júnior, V.S.D. Geochemical soil anomalies: Assessment of risk to human health and implications for environmental monitoring. J. Geochem. Explor. 2018, 190, 325–335. [Google Scholar] [CrossRef]
- Gu, X.; Xiao, Y.; Yin, S.; Liu, H.; Men, B.; Hao, Z.; Qian, P.; Yan, H.; Hao, Q.; Niu, Y.; et al. Impact of Long-Term Reclaimed Water Irrigation on the Distribution of Potentially Toxic Elements in Soil: An In-Situ Experiment Study in the North China Plain. Int. J. Environ. Res. Public Health 2019, 16, 649. [Google Scholar] [CrossRef]
- Keshavarzi, B.; Najmeddin, A.; Moore, F.; Moghaddam, P.A. Risk-based assessment of soil pollution by potentially toxic elements in the industrialized urban and peri-urban areas of Ahvaz metropolis, southwest of Iran. Ecotoxicol. Environ. Saf. 2019, 167, 365–375. [Google Scholar] [CrossRef]
- Han, C.; Gu, X.; Liu, Y.; Li, Z.; Ji, Z.; Wang, Q. Properties and taxonomy of soils developed from volcano ejecta in Changbai Mountains. Acta Pedol. Sin. 2013, 50, 1061–1070. [Google Scholar]
- Ji, Z.; Han, C.; Qi, X.; Yang, Q.; Wang, Y. Properties of Soils Developed from Volcanic Tephra in Changbai Mountain. J. Soil Water Conserv. 2015, 29, 163–168. [Google Scholar] [CrossRef]
- Rehman, I.U.; Ishaqa, M.; Ali, L.; Khan, S.; Ahmad, I.; Din, I.U.; Ullah, H. Enrichment, spatial distribution of potential ecological and human health risk assessment via toxic metals in soil and surface water ingestion in the vicinity of Sewakht mines, district Chitral, Northern Pakistan. Ecotoxicol. Environ. Saf. 2018, 154, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Yan, B.; Chen, T.; Lei, C.; Lin, H.; Xiao, X. Contaminant characteristics and environmental risk assessment of heavy metals in the paddy soils from lead (Pb)-zinc (Zn) mining areas in Guangdong Province, South China. Environ. Sci. Pollut. Res. 2017, 24, 24387–24399. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhang, J.; Cao, T.; Li, S.; Chen, Y.; Liang, X.; Zhao, X.; Chen, J. Human Health Risk Assessment of Toxic Elements in Farmland Topsoil with Source Identification in Jilin Province, China. Int. J. Environ. Res. Public Health 2018, 15, 1040. [Google Scholar] [CrossRef] [PubMed]
- Petrik, A.; Thiombane, M.; Albanese, S.; Lima, A.; Vivo, B.D. Source patterns of Zn, Pb, Cr and Ni potentially toxic elements (PTEs) through a compositional discrimination analysis: A case study on the Campanian topsoil data. Geoderma 2018, 331, 87–99. [Google Scholar] [CrossRef]
- Brtnický, M.; Pecina, V.; Hladký, J.; Radziemska, M.; Koudelkova, Z.; Klimanek, M.; Richtera, L.; Adamcova, D.; Elbl, J.; Galiova, M.V.; et al. Assessment of phytotoxicity, environmental and health risks of historical urban park soils. Chemosphere 2019, 220, 678–686. [Google Scholar] [CrossRef] [PubMed]
- Krailertrattanachai, N.; Ketrot, D.; Wisawapipat, W. The Distribution of Trace Metals in Roadside Agricultural Soils, Thailand. Int. J. Environ. Res. Public Health 2019, 16, 714. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Jiang, L.; Xu, L.; Hao, X.; Zhang, S.; Xu, M.; Zhu, P.; Fu, S.; Liang, Y.; Yin, H.; et al. Spatial distribution and risk assessment of heavy metals in contaminated paddy fields—A case study in Xiangtan City, southern China. Ecotoxicol. Environ. Saf. 2019, 171, 281–289. [Google Scholar] [CrossRef]
- Jin, Y.; O’Connor, D.; Ok, Y.S.; Tsang, D.C.W.; Liu, A.; Hou, D. Assessment of sources of heavy metals in soil and dust at children’s playgrounds in Beijing using GIS and multivariate statistical analysis. Environ. Int. 2019, 124, 320–328. [Google Scholar] [CrossRef]
- Cao, Y.; Lei, K.; Zhang, X.; Xu, L.; Lin, C.; Yang, Y. Contamination and ecological risks of toxic metals in the Hai River, China. Ecotoxicol. Environ. Saf. 2018, 164, 210–218. [Google Scholar] [CrossRef]
- Huang, S.; Shao, G.; Wang, L.; Wang, L.; Tang, L. Distribution and Health Risk Assessment of Trace Metals in Soils in the Golden Triangle of Southern Fujian Province, China. Int. J. Environ. Res. Public Health 2019, 16, 97. [Google Scholar] [CrossRef]
- Shen, F.; Mao, L.; Sun, R.; Du, J.; Tan, Z.; Ding, M. Contamination Evaluation and Source Identification of Heavy Metals in the Sediments from the Lishui River Watershed, Southern China. Int. J. Environ. Res. Public Health 2019, 16, 336. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Zhang, Z.; Cao, H.; Xu, M.; Xu, L. Concentrations, speciation, and ecological risk of heavy metals in the sediment of the Songhua River in an urban area with petrochemical industries. Chemosphere 2019, 219, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Lian, M.; Wang, J.; Sun, L.; Xu, Z.; Tang, J.; Yan, J.; Zeng, X. Profiles and potential health risks of heavy metals in soil and crops from the watershed of Xi River in Northeast China. Ecotoxicol. Environ. Saf. 2019, 169, 442–448. [Google Scholar] [CrossRef] [PubMed]
pH | Organic Matter (%) | Volcanic Glass (%) | Phosphate Retention (%) | |
---|---|---|---|---|
Min | 4.51 | 1.25 | 66.38 | 9.47 |
Max | 5.84 | 15.69 | 88.26 | 48.99 |
Mean | 5.16 | 8.45 | 78.26 | 33.50 |
Metal | Volcanic Soil | Volcanic Ash | F | p | ||||
---|---|---|---|---|---|---|---|---|
Concentration (mg·kg−1) | SD | CV (%) | Concentration (mg·kg−1) | SD | CV (%) | |||
Al | 6967 | 2350 | 33.73 | 5465 | 1006 | 18.41 | 1.16 | 0.291 |
Fe | 14,939 | 2873 | 19.23 | 15,973 | 984 | 6.16 | 0.5 | 0.488 |
K | 18,663 | 7229 | 38.73 | 27,470 | 7759 | 28.25 | 5.03 | 0.033 * |
Ca | 2201 | 712 | 32.35 | 1892 | 874 | 46.19 | 0.61 | 0.44 |
Na | 17,497 | 10910 | 62.35 | 34,968 | 3946 | 11.28 | 9.79 | 0.004 ** |
Mg | 3498 | 1786 | 51.06 | 497.1 | 122.9 | 24.72 | 10.94 | 0.003 ** |
Mn | 451.8 | 216.8 | 47.99 | 518.6 | 184.4 | 35.56 | 0.34 | 0.566 |
Ti | 4230 | 1324 | 31.30 | 2161 | 242 | 11.20 | 9.44 | 0.005 ** |
Cu | 5.781 | 3.348 | 57.91 | 0.95 | 0.296 | 31.16 | 8.07 | 0.008 ** |
Pb | 9.43 | 6.77 | 71.79 | 16.16 | 7.16 | 44.31 | 3.36 | 0.078 |
Zn | 162.2 | 94.5 | 58.26 | 367 | 59.3 | 16.16 | 17.37 | <0.001 ** |
Cr | 22.63 | 12.59 | 55.63 | 0.824 | 0.702 | 85.19 | 11.64 | 0.002 ** |
Ni | 7.285 | 4.378 | 60.10 | 0.1498 | 0.1291 | 86.18 | 10.3 | 0.003 ** |
Ba | 221.7 | 130.9 | 59.04 | 24.32 | 15.28 | 62.83 | 8.81 | 0.006 ** |
Ga | 30.72 | 12.77 | 41.57 | 17.143 | 1.521 | 8.87 | 1.38 | 0.046 * |
Li | 27.77 | 7.7 | 27.73 | 40.66 | 11.48 | 28.23 | 8.51 | 0.007 ** |
Co | 4.585 | 2.959 | 64.54 | 1.946 | 0.622 | 31.96 | 3.07 | 0.091 |
As | 8.04 | 5.87 | 73.01 | 3.1 | 5.4 | 174.19 | 2.49 | 0.126 |
Sn | 2.933 | 1.863 | 63.52 | 6.76 | 1.844 | 27.28 | 14.59 | 0.001 ** |
Sr | 19.97 | 11.06 | 55.38 | 3.72 | 2.39 | 64.25 | 8.33 | 0.008 ** |
Element | Exposure Pathways | RfD | HQ | |
---|---|---|---|---|
Children | Adult | |||
Mn | Ingestion | 4.60 × 10−2 | 1.28 × 10−1 | 1.37 × 10−2 |
Inhalation | 1.43 × 10−5 | 1.15 × 10−2 | 6.49 × 10−3 | |
Dermal | 1.40 × 10−1 | 2.40 × 10−4 | 3.23 × 10−3 | |
Cu | Ingestion | 4.00 × 10−2 | 1.64 × 10−3 | 1.75 × 10−4 |
Inhalation | 4.02 × 10−2 | 4.55 × 10−8 | 2.56 × 10−8 | |
Dermal | 1.20 × 10−2 | 3.11 × 10−5 | 4.18 × 10−4 | |
Pb | Ingestion | 3.50 × 10−3 | 3.79 × 10−2 | 4.06 × 10−3 |
Inhalation | 3.52 × 10−3 | 1.05 × 10−6 | 5.93 × 10−7 | |
Dermal | 5.24 × 10−4 | 1.44 × 10−3 | 1.94 × 10−2 | |
Zn | Ingestion | 3.00 × 10−1 | 8.12 × 10−3 | 8.69 × 10−4 |
Inhalation | 3.00 × 10−1 | 2.27 × 10−7 | 1.28 × 10−7 | |
Dermal | 6.00 × 10−2 | 2.31 × 10−4 | 3.11 × 10−3 | |
Cr | Ingestion | 3.00 × 10−3 | 8.36 × 10−2 | 8.96 × 10−3 |
Inhalation | 2.86 × 10−5 | 2.45 × 10−4 | 1.38 × 10−4 | |
Dermal | 6.00 × 10−5 | 2.38 × 10−2 | 3.20 × 10−1 | |
Ni | Ingestion | 2.00 × 10−2 | 4.03 × 10−3 | 4.32 × 10−4 |
Inhalation | 2.06 × 10−2 | 1.09 × 10−7 | 6.16 × 10−8 | |
Dermal | 5.40 × 10−3 | 8.50 × 10−5 | 1.14 × 10−3 | |
Co | Ingestion | 2.00 × 10−2 | 2.70 × 10−3 | 2.89 × 10−4 |
Inhalation | 5.71 × 10−6 | 2.64 × 10−4 | 1.49 × 10−4 | |
Dermal | 1.60 × 10−2 | 1.92 × 10−5 | 2.59 × 10−4 | |
As | Ingestion | 3.00 × 10−4 | 3.14 × 10−1 | 3.36 × 10−2 |
Inhalation | 5.00 × 10−5 | 5.26 × 10−5 | 2.96 × 10−5 | |
Dermal | 3.00 × 10−4 | 1.79 × 10−3 | 2.40 × 10−2 | |
HI | 6.19 × 10−1 | 4.41 × 10−1 |
Element | Exposure Pathways | SF | CR | |
---|---|---|---|---|
Children | Adult | |||
Cr | Ingestion | 0.5 | 1.25 × 10−4 | 1.34 × 10−5 |
Inhalation | 42 | 2.94 × 10−7 | 1.66 × 10−7 | |
Dermal | - | - | - | |
Ni | Ingestion | 0.84 | 6.77 × 10−5 | 7.25 × 10−6 |
Inhalation | 0.84 | 1.89 × 10−9 | 1.07 × 10−9 | |
Dermal | - | - | - | |
As | Ingestion | 1.5 | 1.41 × 10−4 | 1.51 × 10−5 |
Inhalation | 15.1 | 3.97 × 10−8 | 2.24 × 10−8 | |
Dermal | 3.66 | 1.96 × 10−6 | 2.64 × 10−5 | |
TCR | 3.36 × 10−4 | 6.24 × 10−5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Q.; Han, L.; Zhang, J.; Zhang, Y.; Lang, Q.; Li, F.; Han, A.; Bao, Y.; Li, K.; Alu, S. Environmental Risk Assessment of Metals in the Volcanic Soil of Changbai Mountain. Int. J. Environ. Res. Public Health 2019, 16, 2047. https://doi.org/10.3390/ijerph16112047
Ma Q, Han L, Zhang J, Zhang Y, Lang Q, Li F, Han A, Bao Y, Li K, Alu S. Environmental Risk Assessment of Metals in the Volcanic Soil of Changbai Mountain. International Journal of Environmental Research and Public Health. 2019; 16(11):2047. https://doi.org/10.3390/ijerph16112047
Chicago/Turabian StyleMa, Qing, Lina Han, Jiquan Zhang, Yichen Zhang, Qiuling Lang, Fengxu Li, Aru Han, Yongbin Bao, Kaiwei Li, and Si Alu. 2019. "Environmental Risk Assessment of Metals in the Volcanic Soil of Changbai Mountain" International Journal of Environmental Research and Public Health 16, no. 11: 2047. https://doi.org/10.3390/ijerph16112047
APA StyleMa, Q., Han, L., Zhang, J., Zhang, Y., Lang, Q., Li, F., Han, A., Bao, Y., Li, K., & Alu, S. (2019). Environmental Risk Assessment of Metals in the Volcanic Soil of Changbai Mountain. International Journal of Environmental Research and Public Health, 16(11), 2047. https://doi.org/10.3390/ijerph16112047