Non-Motor Symptoms after One Week of High Cadence Cycling in Parkinson’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol
2.2. Inclusion/Exclusion Criteria
2.3. Baseline Participant Characteristics
2.4. BDNF Val66Met Polymorphism
2.5. Intervention
2.6. Non-Motor Symptoms
2.6.1. Cognition
2.6.2. Beck Depression Inventory-II (BDI-II)
2.7. Statistical Analysis
3. Results
4. Discussion
4.1. BDNF Val66Met Polymorphism Role
4.2. High Cadence Cycling Compared to High-Intensity Cycling
4.3. Possible Explanations
4.4. Study Limitations
5. Conclusions
6. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Goldman, W.P.; Baty, J.D.; Buckles, V.D.; Sahrmann, S.; Morris, J.C. Cognitive and motor functioning in parkinson disease: Subjects with and without questionable dementia. Arch. Neurol. 1998, 55, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Aarsland, D.; Marsh, L.; Schrag, A. Neuropsychiatric symptoms in parkinson’s disease. Mov. Disord. Off. J. Mov. Disord. Soc. 2009, 24, 2175–2186. [Google Scholar] [CrossRef] [PubMed]
- Van der Kolk, N.M.; Speelman, A.D.; van Nimwegen, M.; Kessels, R.P.; IntHout, J.; Hakobjan, M.; Munneke, M.; Bloem, B.R.; van de Warrenburg, B.P. Bdnf polymorphism associates with decline in set shifting in parkinson’s disease. Neurobiol. Aging 2015, 36, 1605.e1–1605.e6. [Google Scholar] [CrossRef] [PubMed]
- Le Couteur, D.G.; Muller, M.; Yang, M.C.; Mellick, G.D.; McLean, A.J. Age-environment and gene-environment interactions in the pathogenesis of parkinson’s disease. Rev. Environ. Health 2002, 17, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Bath, K.G.; Lee, F.S. Variant bdnf (val66met) impact on brain structure and function. Cogn. Affect. Behav. Neurosci. 2006, 6, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.P.; Tsai, S.J.; Hong, C.J.; Yang, C.H.; Lirng, J.F.; Yang, Y.M. The val66met polymorphism of the brain-derived neurotrophic-factor gene is associated with geriatric depression. Neurobiol. Aging 2006, 27, 1834–1837. [Google Scholar] [PubMed]
- Hariri, A.R.; Goldberg, T.E.; Mattay, V.S.; Kolachana, B.S.; Callicott, J.H.; Egan, M.F.; Weinberger, D.R. Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J. Neurosci. Off. J. Soc. Neurosci. 2003, 23, 6690–6694. [Google Scholar] [CrossRef]
- McAllister, A.K.; Katz, L.C.; Lo, D.C. Neurotrophins and synaptic plasticity. Annu. Rev. Neurosci. 1999, 22, 295–318. [Google Scholar] [CrossRef]
- Hyman, C.; Hofer, M.; Barde, Y.A.; Juhasz, M.; Yancopoulos, G.D.; Squinto, S.P.; Lindsay, R.M. Bdnf is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 1991, 350, 230–232. [Google Scholar]
- Rosenfeldt, A.B.; Rasanow, M.; Penko, A.L.; Beall, E.B.; Alberts, J.L. The cyclical lower extremity exercise for parkinson’s trial (cycle): Methodology for a randomized controlled trial. BMC Neurol. 2015, 15, 63. [Google Scholar] [CrossRef]
- Zigmond, M.J.; Cameron, J.L.; Hoffer, B.J.; Smeyne, R.J. Neurorestoration by physical exercise: Moving forward. Parkinsonism Relat. Disord. 2012, 18 (Suppl. 1), S147–S150. [Google Scholar] [CrossRef]
- Roemmich, R.T.; Field, A.M.; Elrod, J.M.; Stegemoller, E.L.; Okun, M.S.; Hass, C.J. Interlimb coordination is impaired during walking in persons with parkinson’s disease. Clin. Biomech. (Bristol Avon) 2013, 28, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Mermillod, M.; Mondillon, L.; Rieu, I.; Devaux, D.; Chambres, P.; Auxiette, C.; Dalens, H.; Coulangeon, L.M.; Jalenques, I.; Durif, F. Dopamine replacement therapy and deep brain stimulation of the subthalamic nuclei induce modulation of emotional processes at different spatial frequencies in parkinson’s disease. J. Parkinson Dis. 2014, 4, 97–110. [Google Scholar]
- Mondillon, L.; Mermillod, M.; Musca, S.C.; Rieu, I.; Vidal, T.; Chambres, P.; Auxiette, C.; Dalens, H.; Marie Coulangeon, L.; Jalenques, I.; et al. The combined effect of subthalamic nuclei deep brain stimulation and l-dopa increases emotion recognition in parkinson’s disease. Neuropsychologia 2012, 50, 2869–2879. [Google Scholar] [CrossRef] [PubMed]
- Monteiro-Junior, R.S.; Cevada, T.; Oliveira, B.R.; Lattari, E.; Portugal, E.M.; Carvalho, A.; Deslandes, A.C. We need to move more: Neurobiological hypotheses of physical exercise as a treatment for parkinson’s disease. Med. Hypotheses 2015, 85, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Tuon, T.; Valvassori, S.S.; Dal Pont, G.C.; Paganini, C.S.; Pozzi, B.G.; Luciano, T.F.; Souza, P.S.; Quevedo, J.; Souza, C.T.; Pinho, R.A. Physical training prevents depressive symptoms and a decrease in brain-derived neurotrophic factor in parkinson’s disease. Brain Res. Bull. 2014, 108, 106–112. [Google Scholar] [CrossRef]
- Knaepen, K.; Goekint, M.; Heyman, E.M.; Meeusen, R. Neuroplasticity—Exercise-induced response of peripheral brain-derived neurotrophic factor: A systematic review of experimental studies in human subjects. Sports Med. (Auckland N.Z.) 2010, 40, 765–801. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Bath, K.; McEwen, B.; Hempstead, B.; Lee, F. Impact of genetic variant bdnf (val66met) on brain structure and function. Novartis Found. Symp. 2008, 289, 180–188. [Google Scholar]
- Egan, M.F.; Kojima, M.; Callicott, J.H.; Goldberg, T.E.; Kolachana, B.S.; Bertolino, A.; Zaitsev, E.; Gold, B.; Goldman, D.; Dean, M.; et al. The bdnf val66met polymorphism affects activity-dependent secretion of bdnf and human memory and hippocampal function. Cell 2003, 112, 257–269. [Google Scholar] [CrossRef]
- Ridgel, A.; Phillips, R.; Walter, B.; Discenzo, F.; Loparo, K. Dynamic high-cadence cycling improves motor symptoms in parkinson’s disease. Front. Neurol. 2015, 6, 194. [Google Scholar] [CrossRef]
- Ridgel, A.L.; Walter, B.L.; Tatsuoka, C.; Walter, E.M.; Colon-Zimmermann, K.; Welter, E.; Sajatovic, M. Enhanced exercise therapy in parkinson’s disease: A comparative effectiveness trial. J. Sci. Med. Sport Sports Med. Aust. 2015, 19, 12–17. [Google Scholar] [CrossRef] [PubMed]
- ACSM. Acsm’s Guidelines for Exercise Testing and Prescription; American College of Sports Medicine: Baltimore, MD, USA, 2014. [Google Scholar]
- Soh, S.E.; Morris, M.E.; Watts, J.J.; McGinley, J.L.; Iansek, R. Health-related quality of life in people with parkinson’s disease receiving comprehensive care. Aust. Health Rev. Publ. Aust. Hosp. Assoc. 2016, 40, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, M.E.; Davis, F.C.; Vantieghem, M.R.; Whalen, P.J.; Bucci, D.J. Differential effects of acute and regular physical exercise on cognition and affect. Neuroscience 2012, 215, 59–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borg, G. Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 1988. [Google Scholar]
- Mohammadi-Abdar, H.; Ridgel, A.L.; Discenzo, F.M.; Loparo, K.A. Design and development of a smart exercise bike for motor rehabilitation in individuals with parkinson’s disease. IEEE/ASME Trans. Mechatron. 2016, 21, 1650–1658. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, S.M.; Berten, S.; Olson, P.; Paul, R.; Willams, L.M.; Cooper, N.; Gordon, E. Development and validation of a world-wide-web-based neurocognitive assessment battery: Webneuro. Behav. Res. Methods 2007, 39, 940–949. [Google Scholar] [CrossRef] [PubMed]
- Stanek, K.M.; Strain, G.; Devlin, M.; Cohen, R.; Paul, R.; Crosby, R.D.; Mitchell, J.E.; Gunstad, J. Body mass index and neurocognitive functioning across the adult lifespan. Neuropsychology 2013, 27, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Clark, U.S.; Neargarder, S.; Cronin-Golomb, A. Specific impairments in the recognition of emotional facial expressions in parkinson’s disease. Neuropsychologia 2008, 46, 2300–2309. [Google Scholar] [CrossRef] [PubMed]
- Enrici, I.; Adenzato, M.; Ardito, R.B.; Mitkova, A.; Cavallo, M.; Zibetti, M.; Lopiano, L.; Castelli, L. Emotion processing in parkinson’s disease: A three-level study on recognition, representation, and regulation. PLoS ONE 2015, 10, e0131470. [Google Scholar] [CrossRef]
- Chou, K.L.; Amick, M.M.; Brandt, J.; Camicioli, R.; Frei, K.; Gitelman, D.; Goldman, J.; Growdon, J.; Hurtig, H.I.; Levin, B.; et al. A recommended scale for cognitive screening in clinical trials of parkinson’s disease. Mov. Disord. 2010, 25, 2501–2507. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bedirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The montreal cognitive assessment, moca: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Beck, A.T.; Steer, R.A.; Ball, R.; Ciervo, C.A.; Kabat, M. Use of the beck anxiety and depression inventories for primary care with medical outpatients. Assessment 1997, 4, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Dashtipour, K.; Johnson, E.; Kani, C.; Kani, K.; Hadi, E.; Ghamsary, M.; Pezeshkian, S.; Chen, J.J. Effect of exercise on motor and nonmotor symptoms of parkinson’s disease. Parkinson Dis. 2015, 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Doose, M.; Ziegenbein, M.; Hoos, O.; Reim, D.; Stengert, W.; Hoffer, N.; Vogel, C.; Ziert, Y.; Sieberer, M. Self-selected intensity exercise in the treatment of major depression: A pragmatic rct. Int. J. Psychiatry Clin. Pract. 2015, 19, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Teixeira-Machado, L.; Araujo, F.M.; Cunha, F.A.; Menezes, M.; Menezes, T.; Melo DeSantana, J. Feldenkrais method-based exercise improves quality of life in individuals with parkinson’s disease: A controlled, randomized clinical trial. Altern. Ther. Health Med. 2015, 21, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Li, S.C.; Chicherio, C.; Nyberg, L.; von Oertzen, T.; Nagel, I.E.; Papenberg, G.; Sander, T.; Heekeren, H.R.; Lindenberger, U.; Backman, L. Ebbinghaus revisited: Influences of the bdnf val66met polymorphism on backward serial recall are modulated by human aging. J. Cogn. Neurosci. 2010, 22, 2164–2173. [Google Scholar] [CrossRef] [PubMed]
- Schofield, P.R.; Williams, L.M.; Paul, R.H.; Gatt, J.M.; Brown, K.; Luty, A.; Cooper, N.; Grieve, S.; Dobson-Stone, C.; Morris, C.; et al. Disturbances in selective information processing associated with the bdnf val66met polymorphism: Evidence from cognition, the p300 and fronto-hippocampal systems. Biol. Psychol. 2009, 80, 176–188. [Google Scholar] [CrossRef] [PubMed]
- Foltynie, T.; Cheeran, B.; Williams-Gray, C.H.; Edwards, M.J.; Schneider, S.A.; Weinberger, D.; Rothwell, J.C.; Barker, R.A.; Bhatia, K.P. Bdnf val66met influences time to onset of levodopa induced dyskinesia in parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2009, 80, 141–144. [Google Scholar] [CrossRef]
- Guerini, F.R.; Beghi, E.; Riboldazzi, G.; Zangaglia, R.; Pianezzola, C.; Bono, G.; Casali, C.; Di Lorenzo, C.; Agliardi, C.; Nappi, G.; et al. Bdnf val66met polymorphism is associated with cognitive impairment in italian patients with parkinson’s disease. Eur. J. Neurol. 2009, 16, 1240–1245. [Google Scholar] [CrossRef]
- Alonso-Recio, L.; Serrano-Rodriguez, J.M.; Carvajal-Molina, F.; Loeches-Alonso, A.; Martin-Plasencia, P. Recognition of facial expression of emotions in parkinson’s disease: A theoretical review. Rev. Neurol. 2012, 54, 479–489. [Google Scholar]
- Lin, C.Y.; Tien, Y.M.; Huang, J.T.; Tsai, C.H.; Hsu, L.C. Degraded impairment of emotion recognition in parkinson’s disease extends from negative to positive emotions. Behav. Neurol. 2016, 2016, 9287092. [Google Scholar] [CrossRef]
- Mathersul, D.; Palmer, D.M.; Gur, R.C.; Gur, R.E.; Cooper, N.; Gordon, E.; Williams, L.M. Explicit identification and implicit recognition of facial emotions: Ii. Core domains and relationships with general cognition. J. Clin. Exp. Neuropsychol. 2009, 31, 278–291. [Google Scholar] [CrossRef]
- Ridgel, A.L.; Peacock, C.A.; Fickes, E.J.; Kim, C.H. Active-assisted cycling improves tremor and bradykinesia in parkinson’s disease. Arch. Phys. Med. Rehabil. 2012, 93, 2049–2054. [Google Scholar] [CrossRef] [PubMed]
- Ridgel, A.L.; Vitek, J.L.; Alberts, J.L. Forced, not voluntary, exercise improves motor function in parkinson’s disease patients. Neurorehabilit. Neural Repair 2009, 23, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, K.R.; Schapira, A.H. Non-motor symptoms of parkinson’s disease: Dopaminergic pathophysiology and treatment. Lancet Neurol. 2009, 8, 464–474. [Google Scholar] [CrossRef]
- Honig, H.; Antonini, A.; Martinez-Martin, P.; Forgacs, I.; Faye, G.C.; Fox, T.; Fox, K.; Mancini, F.; Canesi, M.; Odin, P.; et al. Intrajejunal levodopa infusion in parkinson’s disease: A pilot multicenter study of effects on nonmotor symptoms and quality of life. Mov. Disord. 2009, 24, 1468–1474. [Google Scholar] [CrossRef] [PubMed]
- Pantcheva, P.; Reyes, S.; Hoover, J.; Kaelber, S.; Borlongan, C.V. Treating non-motor symptoms of parkinson’s disease with transplantation of stem cells. Expert Rev. Neurother. 2015, 15, 1231–1240. [Google Scholar] [CrossRef]
- Tsui, A.; Isacson, O. Functions of the nigrostriatal dopaminergic synapse and the use of neurotransplantation in parkinson’s disease. J. Neurol. 2011, 258, 1393–1405. [Google Scholar] [CrossRef] [PubMed]
- Schrag, A.; Jahanshahi, M.; Quinn, N.P. What contributes to depression in parkinson’s disease? Psychol. Med. 2001, 31, 65–73. [Google Scholar] [CrossRef]
- Wishart, S.; Macphee, G.J.A. Evaluation and management of the non-motor features of parkinson’s disease. Ther. Adv. Chronic Dis. 2011, 2, 69–85. [Google Scholar] [CrossRef]
- Seifert, T.; Brassard, P.; Wissenberg, M.; Rasmussen, P.; Nordby, P.; Stallknecht, B.; Adser, H.; Jakobsen, A.H.; Pilegaard, H.; Nielsen, H.B.; et al. Endurance training enhances bdnf release from the human brain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 298, R372–R377. [Google Scholar] [CrossRef]
- Frazzitta, G.; Maestri, R.; Ghilardi, M.F.; Riboldazzi, G.; Perini, M.; Bertotti, G.; Boveri, N.; Buttini, S.; Lombino, F.L.; Uccellini, D.; et al. Intensive rehabilitation increases bdnf serum levels in parkinsonian patients: A randomized study. Neurorehabilit. Neural Repair 2014, 28, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Demonceau, M.; Maquet, D.; Jidovtseff, B.; Donneau, A.F.; Bury, T.; Croisier, J.L.; Crielaard, J.M.; Rodriguez de la Cruz, C.; Delvaux, V.; Garraux, G. Effects of twelve weeks of aerobic or strength training in addition to standard care in parkinson’s disease: A controlled study. Eur. J. Phys. Rehabil. Med. 2017, 53, 184–200. [Google Scholar] [PubMed]
- Nadeau, A.; Lungu, O.; Duchesne, C.; Robillard, M.-È.; Bore, A.; Bobeuf, F.; Plamondon, R.; Lafontaine, A.-L.; Gheysen, F.; Bherer, L.; et al. A 12-week cycling training regimen improves gait and executive functions concomitantly in people with parkinson’s disease. Front. Hum. Neurosci. 2017, 10, 690. [Google Scholar] [CrossRef] [PubMed]
Variable | Cycling (n = 20) | Control (n = 15) | p-Value | 95% CI |
---|---|---|---|---|
Age, years | 65.05 ± 9.13 | 64.87 ± 6.90 | p = 0.949 | (−5.55, 5.92) |
Gender, Female | 9, 45% | 3, 20% | p = 0.130 | (−0.07, 0.58) |
Val66Met Polymorphism | 5, 25% | 5, 33% | p = 0.602 | (−0.402, 0.239) |
BMI, kg/m2 | 26.15 ± 4.7 | 29.90 ± 4.3 | p = 0.025 * | (−7.01, −0.51) |
Education, years | 15.3 ± 2.1 | 15.6 ± 2.0 | p = 0.624 | (−1.79, 1.09) |
LED, mg | 532 ± 275 | 560 ± 557 | p = 0.847 | (−268.48, 325.27) |
EQ-5D QOL, points | 6.9 ± 1.8 | 7.7 ± 1.8 | p = 0.222 | (−0.49, 2.02) |
QOL VAS, % | 72.58 ± 18.2 | 71.00 ± 14.0 | p = 0.782 | (−9.93, 13.08) |
Variable | Visit 1 | Visit 2 | Visit 3 | p-Value | ηp2 |
---|---|---|---|---|---|
Cadence, rpm | 80.3 ± 3.9 | 79.7 ± 4.4 | 78.0 ± 7.7 | p = 0.811 | 0.019 |
Power | 5.3 ± 23.6 | 0.7 ± 28.0 | 0.0 ± 23.7 | p = 0.824 | 0.068 |
Torque, Nm | 3.81 ± 20.19 | −0.65 ± 25.13 | 3.34 ± 27.62 | p = 0.630 | 0.057 |
Heart rate, bpm | 84.5 ± 12.0 | 86.0 ± 13.0 | 88.4 ± 13.8 | p = 0.584 | 0.042 |
RPE, Borg 6–20 | 11.0 ± 2.2 | 11.0 ± 2.6 | 11.2 ± 2.2 | p = 0.566 | 0.100 |
Variable | Pre-Test | Post-Test | Statistical Results |
---|---|---|---|
Attention/Concentration | control 160.47 ± 30.36 cycling 167.60 ± 51.98 | control 152.89 ± 47.47 cycling 164.92 ± 47.22 | F = 0.164 p = 0.688 |
Executive Function | control 7612.75 ± 2232.06 cycling 7148.00 ± 2745.56 | control 5912.83 ± 2999.25 cycling 6569.44 ± 2628.10 | F = 0.400 p = 0.532 |
Emotional Recognition | control 0.04 ± 0.80 cycling −0.36 ± 1.35 | control −0.28 ± 0.97 cycling −0.48 ± 1.27 | F = 4.262 p = 0.048 * |
MoCA | control 25.7 ± 3.2 cycling 25.7 ± 2.8 | control 25.6 ± 3.3 cycling 25.0 ± 3.2 | F = 0.614 p = 0.439 |
BDI-II | control 9.7 ± 7.5 cycling 9.45 ± 10.0 | control 25.6 ± 3.3 cycling 25.00 ± 3.2 | F = 0.837 p = 0.367 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harper, S.A.; Dowdell, B.T.; Kim, J.H.; Pollock, B.S.; Ridgel, A.L. Non-Motor Symptoms after One Week of High Cadence Cycling in Parkinson’s Disease. Int. J. Environ. Res. Public Health 2019, 16, 2104. https://doi.org/10.3390/ijerph16122104
Harper SA, Dowdell BT, Kim JH, Pollock BS, Ridgel AL. Non-Motor Symptoms after One Week of High Cadence Cycling in Parkinson’s Disease. International Journal of Environmental Research and Public Health. 2019; 16(12):2104. https://doi.org/10.3390/ijerph16122104
Chicago/Turabian StyleHarper, Sara A., Bryan T. Dowdell, Jin Hyun Kim, Brandon S. Pollock, and Angela L. Ridgel. 2019. "Non-Motor Symptoms after One Week of High Cadence Cycling in Parkinson’s Disease" International Journal of Environmental Research and Public Health 16, no. 12: 2104. https://doi.org/10.3390/ijerph16122104
APA StyleHarper, S. A., Dowdell, B. T., Kim, J. H., Pollock, B. S., & Ridgel, A. L. (2019). Non-Motor Symptoms after One Week of High Cadence Cycling in Parkinson’s Disease. International Journal of Environmental Research and Public Health, 16(12), 2104. https://doi.org/10.3390/ijerph16122104