High Prevalence of Respiratory Symptoms among Particleboard Workers in Ethiopia: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Period
2.2. Exposure Measurements
2.3. Study Population and Sample Size
2.4. Data Collection
2.4.1. Respiratory Symptom Assessment
2.4.2. Lung Function Test
2.5. Data Management and Analysis
2.6. Ethical Approval
3. Results
3.1. Characteristics of the Study Population
3.2. Respiratory Symptoms
3.3. Lung Function
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- The National Institute of Occupational Health and Safety. Wood Dust. Available online: http://www.cdc.gov/niosh/pel88/wooddust.html (accessed on 1 December 2018).
- International Agency for Research on Cancer. Arsenic, Metals, Fibres, and Dusts: A Review of Human Carcinogens; IARC: Lyon, France, 2012; p. 527. [Google Scholar]
- Neghab, M.; Jabari, Z.; Kargar Shouroki, F. Functional disorders of the lung and symptoms of respiratory disease associated with occupational inhalation exposure to wood dust in Iran. Epidemiol. Health 2018, 40, e2018031. [Google Scholar] [CrossRef] [PubMed]
- Bislimovska, D.; Petrovska, S.; Minov, J. Respiratory symptoms and lung function in never-smoking male workers exposed to hardwood dust. Open Access Maced. J. Med Sci. 2015, 3, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Badirdast, P.; Rezazadeh Azari, M.; Salehpour, S.; Ghadjari, A.; Khodakarim, S.; Panahi, D.; Fadaei, M.; Rahimi, A. The effect of wood aerosols and bioaerosols on the respiratory systems of wood manufacturing industry workers in Golestan Province. Tanaffos 2017, 16, 53–59. [Google Scholar] [PubMed]
- Thetkathuek, A.; Yingratanasuk, T.; Demers, P.A.; Thepaksorn, P.; Saowakhontha, S.; Keifer, M.C. Rubberwood dust and lung function among Thai furniture factory workers. Int. J. Occup. Environ. Health 2010, 16, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Sripaiboonkij, P.; Phanprasit, W.; Jaakkola, M.S. Respiratory and skin effects of exposure to wood dust from the rubber tree Hevea brasiliensis. Occup. Environ. Med. 2009, 66, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Liebers, V.; Raulf-Heimsoth, M.; Brüning, T. Health effects due to endotoxin inhalation (review). Arch. Toxicol. 2008, 82, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Dutch Expert Committee on Occupational Safety. Endotoxins: Health-Based Recommended Occupational Exposure Limit; Health Council of the Netherlands: The Hague, The Netherlands, 2010; 100p. [Google Scholar]
- Ljubičić Ćalušić, A.; Varnai, V.M.; Čavlović, A.O.; Šegvić Klarić, M.; Beljo, R.; Prester, L.; Macan, J. Respiratory health and breath condensate acidity in sawmill workers. Int. Arch. Occup. Environ. Health 2013, 86, 815–825. [Google Scholar] [CrossRef]
- Farokhi, A.; Heederik, D.; Smit, L.A.M. Respiratory health effects of exposure to low levels of airborne endotoxin—A systematic review. Environ. Health 2018, 17, 14. [Google Scholar] [CrossRef]
- Thetkathuek, A.; Yingratanasuk, T.; Ekburanawat, W. Respiratory symptoms due to occupational exposure to formaldehyde and MDF dust in a MDF furniture factory in Eastern Thailand. Adv. Prev. Med. 2016, 2016, 11. [Google Scholar] [CrossRef]
- Mathur, N.; Rastogi, S.K. Respiratory effects due to occupational exposure to formaldehyde: Systematic review with meta-analysis. Indian J. Occup. Env. Med. 2007, 11, 26–31. [Google Scholar] [CrossRef]
- Malaka, T.; Kodama, A.M. Respiratory health of plywood workers occupationally exposed to formaldehyde. Arch. Environ. Health 1990, 45, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Central Statistical Agency. Key Findings on the 2013 National Labour Force Survey; The Federal Democratic Republic of Ethiopia Central Statistical Agency: Addis Ababa, Ethiopia, 2013.
- Forum for Environment. Ethiopian Environment Review; Forum for Environment: Addis Ababa, Ethiopia, 2010; p. 227. [Google Scholar]
- 2Merkato.com. Maichew Particleboard Manufacturing PLC. Available online: http://www.2merkato.com/directory/17560-maichew-particleboard-manufacturing-plc (accessed on 22 February 2016).
- Environmental Protection Agency. Particleboard manufacturing. In Wood Products Industry; Environmental Protection Agency: Washington, DC, USA, 2002; p. 29. [Google Scholar]
- MIDROCK Ethiopia. Awassa Chipwood Plant Project; MIDROCK Ethiopia: Addis Ababa, Ethiopia, 2009. [Google Scholar]
- Kumie, A.; Amera, T.; Berhane, K.; Samet, J.; Hundal, N.; G/Michael, F.; Gilliland, F. Occupational health and safety in Ethiopia: A review of situational analysis and needs assessment. Ethiop. J. Health Dev. Ya’ityopya Tena Lemat Mashet 2016, 30, 17–27. [Google Scholar]
- Lofstedt, H.; Hagstrom, K.; Bryngelsson, I.L.; Holmstrom, M.; Rask-Andersen, A. Respiratory symptoms and lung function in relation to wood dust and monoterpene exposure in the wood pellet industry. Upps. J. Med. Sci. 2017, 122, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Meo, S.A. Lung function in Pakistani wood workers. Int. J. Environ. Health Res. 2006, 16, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Baran, S.; Swietlik, K.; Teul, I. Lung function: Occupational exposure to wood dust. Eur. J. Med. Res. 2009, 14 (Suppl. 4), 14–17. [Google Scholar]
- Jacobsen, G.H.; Schlunssen, V.; Schaumburg, I.; Sigsgaard, T. Cross-shift and longitudinal changes in FEV1 among wood dust exposed workers. Occup. Environ. Med. 2013, 70, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Tatum, V.L.; Ray, A.E.; Rovell-Rixx, D.C. The performance of personal inhalable dust samplers in wood-products industry facilities. Appl. Occup. Environ. Hyg. 2001, 16, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Nigsti, A. Pulmonary Function Test and Pulseoximetry in Chip Wood Factory Workers of Maichew, Tigray Region; Addis Ababa University: Addis Ababa, Ethiopia, 2014. [Google Scholar]
- Asgedom, A.A.; Bratveit, M.; Moen, B.E. Knowledge, attitude and practice related to chemical hazards and personal protective equipment among particleboard workers in Ethiopia: A cross-sectional study. BMC Public Health 2019, 19, 440. [Google Scholar] [CrossRef]
- American Thoracic Society. Standards for epidemiologic surveys in chronic respiratory disease. Recommended Respiratory Disease Questionnaires for Use with Adults and Children in Epidemiological Research; American Thoracic Society: New York, NY, USA, 1978. [Google Scholar]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.M.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [Green Version]
- Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease (2018 Report); Global Initiative for Chronic Obstructive Lung Disease: Fontana, WI, USA, 2018. [Google Scholar]
- Tamhane, A.R.; Westfall, A.O.; Burkholder, G.A.; Cutter, G.R. Prevalence odds ratio versus prevalence ratio: Choice comes with consequences. Stat. Med. 2016, 35, 5730–5735. [Google Scholar] [CrossRef]
- Moore, V.C. Spirometry: Step by step. Breathe 2012, 8, 232–240. [Google Scholar] [CrossRef]
- Garcia-Rio, F.; Calle, M.; Burgos, F.; Casan, P.; Del Campo, F.; Galdiz, J.B.; Giner, J.; Gonzalez-Mangado, N.; Ortega, F.; Puente Maestu, L. Spirometry. Spanish Society of Pulmonology and Thoracic Surgery (SEPAR). Arch. De Bronconeumol. 2013, 49, 388–401. [Google Scholar] [CrossRef]
- Pinkerton, K.E.; Harbaugh, M.; Han, M.K.; Jourdan Le Saux, C.; Van Winkle, L.S.; Martin, W.J., 2nd; Kosgei, R.J.; Carter, E.J.; Sitkin, N.; Smiley-Jewell, S.M.; et al. Women and lung disease. Sex differences and global health disparities. Am. J. Respir. Crit. Care Med. 2015, 192, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Rongo, L.M.; Besselink, A.; Douwes, J.; Barten, F.; Msamanga, G.I.; Dolmans, W.M.; Demers, P.A.; Heederik, D. Respiratory symptoms and dust exposure among male workers in small-scale wood industries in Tanzania. J. Occup. Environ. Med. 2002, 44, 1153–1160. [Google Scholar] [CrossRef] [PubMed]
- Raji, H.; Haddadzadeh Shoushtari, M.; Idani, E.; Tavakol, H.; Afrakhteh, S.; Dastoorpoor, M.; Borsi, S.H. Forced expiratory flow at 25–75% as a marker for airway hyper responsiveness in adult patients with asthma-like symptoms. Tanaffos 2018, 17, 90–95. [Google Scholar] [PubMed]
- Douwes, J.; McLean, D.; Slater, T.; Pearce, N. Asthma and other respiratory symptoms in New Zealand pine processing sawmill workers. Am. J. Ind. Med. 2001, 39, 608–615. [Google Scholar] [CrossRef] [PubMed]
- American Conference of Governmental Industrial Hygienists. Threshold Limit Values and Biological Exposure Indices; ACGIH: Cincinnati, OH, USA, 2019. [Google Scholar]
- World Health Organization. Risk Factors for Chronic Respiratory Diseases. Available online: https://www.who.int/gard/publications/Risk%20factors.pdf (accessed on 12 June 2019).
Variable | Exposed | Controls | p-Value | |
---|---|---|---|---|
Continuous variables | AM (SD) | AM (SD) | ||
Age (years) | 28 (7) | 25 (7) | 0.006 a | |
Service year (years) | 4 (3) | 2.2 (2) | <0.001 a | |
Height (m) | 1.70 (0.05) | 1.70 (0.05) | 0.634 a | |
Weight (kg) | 63 (10) | 56 (6) | <0.001 a | |
Body Mass Index | 21.8 (3.1) | 19.4(1.9) | <0.001 a | |
Categorical variables | N (%) | N (%) | p-value | |
Education | Grade 1–10 | 17(23) | 60 (82) | <0.001 b |
Vocationally trained and above | 57(77) | 13 (18) | ||
Availability of separate kitchen | 47 (64) | 28(38) | 0.002 b | |
Uses biomass fuel for cooking | 22 (30) | 59 (81) | <0.001 b |
Variable | Exposed N (%) | Controls N (%) | p-Value |
---|---|---|---|
Cough | 29 (39) | 11 (15) | 0.001 a |
Cough with sputum production | 23 (31) | 4 (5.5) | <0.001 b |
Phlegm | 20 (27) | 2 (2.7) | <0.001 b |
Wheezing | 33 (45) | 2(2.7) | <0.001 b |
Shortness of breath | 18 (24) | 2 (2.7) | <0.001 b |
Lung Function Parameters | Exposed | Controls | pa | (Exposed vs. Controls) b | |
---|---|---|---|---|---|
β (SE) | p | ||||
FVC – AM (SD) | 4.96 (0.37) | 4.93 (0.39) | 0.608 | 0.02 (0.03) | 0.453 |
FEV1 – AM (SD) | 4.10 (0.30) | 4.12 (0.30) | 0.743 | 0.012 (0.02) | 0.519 |
(FEV1/FVC) × 100 – AM (SD) | 82.36 (1.54) | 83.14 (1.75) | 0.004 | −0.045 (0.11) | 0.697 |
FEF25–75% – AM (SD) | 4.27 (0.37) | 4.38 (0.35) | 0.073 | 0.007 (0.02) | 0.709 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asgedom, A.A.; Bråtveit, M.; Moen, B.E. High Prevalence of Respiratory Symptoms among Particleboard Workers in Ethiopia: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2019, 16, 2158. https://doi.org/10.3390/ijerph16122158
Asgedom AA, Bråtveit M, Moen BE. High Prevalence of Respiratory Symptoms among Particleboard Workers in Ethiopia: A Cross-Sectional Study. International Journal of Environmental Research and Public Health. 2019; 16(12):2158. https://doi.org/10.3390/ijerph16122158
Chicago/Turabian StyleAsgedom, Akeza Awealom, Magne Bråtveit, and Bente Elisabeth Moen. 2019. "High Prevalence of Respiratory Symptoms among Particleboard Workers in Ethiopia: A Cross-Sectional Study" International Journal of Environmental Research and Public Health 16, no. 12: 2158. https://doi.org/10.3390/ijerph16122158
APA StyleAsgedom, A. A., Bråtveit, M., & Moen, B. E. (2019). High Prevalence of Respiratory Symptoms among Particleboard Workers in Ethiopia: A Cross-Sectional Study. International Journal of Environmental Research and Public Health, 16(12), 2158. https://doi.org/10.3390/ijerph16122158