Multi-Indicator Approach for Characterising Urban Green Space Provision at City and City-District Level in Germany
Abstract
:1. Introduction
- –
- promotion of building development in the inner area of settlements (§ 35 BauGB (Federal Building Code))
- –
- –
2. Measurement Approach
2.1. Short Description of the Indicators and Data Used
- –
- ATKIS Basis DLM: data set 2015, source: Federal Agency for Cartography and Geodesy (Bundesamt für Kartographie und Geodäsie—BKG)
- –
- Hemeroby 2012: indicator Hemeroby 2012 (grid 100 m), source: IOER Monitor, own calculations
- –
- Imperviousness 2012: Indicator Imperviousness 2012 (grid 100 m), source: IOER Monitor, own calculations based on Imperviousness Data 2012 of the European Environment Agency
- –
- Administrative city boundaries (municipal boundaries): administrative boundary geometry VG25, source: BKG
- –
- Administrative city district boundaries (one level below municipal boundaries): OSM Boundaries Map 4.1, source: OpenStreetMap (https://osm.wno-edv-service.de/boundaries/)
- –
- Polygon features of basic raster geometries (INSPIRE grid 100 m), source: IOER, own calculations
- –
- Population raster of the 2011 census, size of raster cells 100 m, source: Federal Statistical Office (Statistisches Bundesamt, DESTATIS)
- –
- The municipal directory information system (Gemeindeverzeichnis-Informationssystem), source: Federal Statistical Office (Statistisches Bundesamt, DESTATIS).
2.2. Ranking and Classification via 9-Cell Matrix
3. Results
3.1. Results of the Individual Indicators i1–i6
3.2. Results of the Combined Indicator Application at City Level
3.3. Results of the Combined Indicator Application at City-District Level
3.4. Comparison of Results at City and City-District Levels within the Example of Stuttgart
4. Discussion
4.1. Specific Needs for Data and Indicators
4.2. Scores for the Presence of Green/Gray Characteristics
4.3. Results are Useful for Communication
4.4. Reflexion of the Methodology
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Keilman, N. Biodiversity: The threat of small households. Nature 2003, 421, 489–490. [Google Scholar] [CrossRef] [PubMed]
- Haber, W. Energy, food, and land—The ecological traps of humankind. Environ. Sci. Pollut. Res. Int. 2007, 14, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog. Plan. 2011, 75, 53–107. [Google Scholar] [CrossRef]
- Haase, D.; Kabisch, N.; Haase, A. Endless urban growth? On the mismatch of population, household and urban land area growth and its effects on the urban debate. PLoS ONE 2013, 8, e66531. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhang, H.; Liu, H.; Zhang, W. The Global Pattern of Urbanization and Economic Growth: Evidence from the Last Three Decades. PLoS ONE 2014, 9, e103799. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, S.H.; Gan, T.Y. Impact of anthropogenic climate change and human activities on environment and ecosystem services in arid regions. Sci. Total Environ. 2018, 633, 1329–1344. [Google Scholar] [CrossRef] [PubMed]
- Bürgi, M.; Hersperger, A.M.; Schneeberger, N. Driving forces of landscape change—Current and new directions. Landsc. Ecol. 2004, 19, 857–868. [Google Scholar] [CrossRef]
- Hersperber, A.M.; Bürgi, M. Going beyond landscape change description: Quantifying the importance of driving forces of landscape change in a Central Europe case study. Land Use Policy 2009, 26, 640–648. [Google Scholar] [CrossRef]
- Behnisch, M.; Poglitsch, H.; Krüger, T. Soil sealing and the complex bundle of influential factors: Germany as a case study. ISPRS Int. J. Geo-Inf. 2016, 5, 132. [Google Scholar] [CrossRef]
- Flächenverbrauch, Flächenpotenziale und Trends 2030. Beiträge Zum Siedlungsflächenmonitoring im Bundesgebiet. BBSR-Analysen KOMPAKT. 07/2014. Available online: http://www.bbr.bund.de/BBSR/DE/Veroeffentlichungen/AnalysenKompakt/2014/DL_07_2014.pdf?__blob=publicationFile&v=2 (accessed on 2 December 2018).
- Grün in Der Stadt—Für Eine Lebenswerte Zukunft. Grünbuch Stadtgrün. Available online: http://www.bmub.bund.de/service/publikationen/downloads/details/artikel/gruen-in-der-stadt-fuer-eine-lebenswerte-zukunft/?tx_ttnews[backPid]=289 (accessed on 27 June 2015).
- Kowarik, I.; Bartz, R.; Brenck, M. (Eds.) Naturkapital deutschland—TEEB DE. In Ökosystemleistungen in der Stadt—Gesundheit Schützen und Lebensqualität Erhöhen; Technische Universität Berlin: Berlin, Germany, 2016. [Google Scholar]
- Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (Ed.) Grün in der Stadt—Für Eine Lebenswerte Zukunft. Weißbuch Stadtgrün. 2017. Available online: https://www.bbsr.bund.de/BBSR/DE/Veroeffentlichungen/ministerien/BMUB/VerschiedeneThemen/2015/gruenbuch-2015-dl.pdf?__blob=publicationFile&v=2 (accessed on 10 May 2019).
- Elmqvist, T.; Setälä, H.; Handel, S.N.; van der Ploeg, S.; Aronson, J.; Blignaut, J.N.; Gómez-Baggethun, E.; Nowak, D.J.; Kronenberg, J.; de Groot, R. Benefits of restoring ecosystem services in urban areas. Curr. Opin. Environ. Sci. 2015, 14, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Grunewald, K.; Li, J.; Xie, G.; Kümper-Schlake, L. (Eds.) Towards Green Cities—Urban Biodiversity and Ecosystem Services in China and Germany; Springer: New York, NY, USA, 2018. [Google Scholar]
- Sachverständigenrat für Umweltfragen (Ed.) Wohnungsneubau Langfristig denken—Für Mehr Umweltschutz und Lebensqualität in den Städten. Self-Publishing. Available online: https://www.umweltrat.de/SharedDocs/Downloads/DE/04_Stellungnahmen/2016_2020/2018_11_Stellungnahme_Wohnungsneubau.pdf?__blob=publicationFile&v=15 (accessed on 13 May 2019).
- Bundesregierung (Ed.) Klimaschutzplan 2050. Klimaschutzpolitische Grundsätze und Ziele der Bundesregierung. 2016. Available online: https://www.bmu.de/fileadmin/Daten_BMU/Download_PDF/Klimaschutz/klimaschutzplan_2050_bf.pdf (accessed on 10 May 2019).
- Bundesregierung (Ed.) Deutsche Nachhaltigkeitsstrategie. Neuauflage 2016. Kabinettbeschluss vom 11. Januar 2017. Available online: https://www.bundesregierung.de/resource/blob/975292/730844/3d30c6c2875a9a08d364620ab7916af6/deutsche-nachhaltigkeitsstrategie-neuauflage-2016-download-bpa-data.pdf?download=1 (accessed on 4 April 2019).
- National Strategy on Biological Diversity; Federal Ministry for the Environment, Nature Conservation andNuclear Safety (BMU): Berlin, Germany, 7 November 2007. Available online: https://biologischevielfalt.bfn.de/fileadmin/NBS/.../BMU_Natio_Strategie_en_bf.pdf (accessed on 30 November 2016).
- Bolund, P.; Hunhammar, S. Ecosystem Services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Kumar, P. (Ed.) The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations; Earthscan: London, UK, 2010. [Google Scholar]
- Haase, D.; Frantzeskaki, N.; Elmqvist, T. Ecosystem services in urban landscapes: Practical applications and governance implications. Ambio 2004, 43, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Wurster, D.; Artmann, M. Non-monetary assessment of urban ecosystem services on site level—Development of a methodology for a standardized selection, mapping and assessment of representative sites. Ambio 2014, 43, 454–465. [Google Scholar] [CrossRef] [PubMed]
- Wüstemann, H.; Zhang, Y. Well-being and health effects of urban green space. In Towards Green Cities—Urban Biodiversity and Ecosystem Services in China and Germany; Grunewald, K., Li, J., Xie, G., Kümper-Schlake, L., Eds.; Springer: New York, NY, USA, 2018; pp. 44–48. [Google Scholar]
- Smyth, R.; Mishra, V.; Qian, X. The environment and well-being in urban China. Ecol. Econ. 2008, 68, 547–555. [Google Scholar] [CrossRef]
- Krekel, C.; Kolbe, J.; Wüstemann, H. The greener, the happier? The effect of urban land use on residential well-being. Ecol. Econ. 2016, 121, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Calfapietra, C.; Morani, A.; Sgrigna, G.; Di Giovanni, S.; Muzzini, V.; Pallozzi, E.; Fares, S. Removal of ozone by urban and peri-urban forests: Evidence from laboratory, field, and modeling approaches. J. Environ. Qual. 2016, 45, 224–233. [Google Scholar] [CrossRef] [PubMed]
- McPherson, E.G. Atmospheric carbon dioxide reduction by Sacramento’s urban forest. J. Arboricult. 1997, 24, 215–223. [Google Scholar]
- Chen, W.Y. The role of urban green infrastructure in offsetting carbon emissions in 35 major Chinese cities: A nationwide estimate. Cities 2015, 44, 112–120. [Google Scholar] [CrossRef]
- Tyagi, V.; Kumar, K.; Jain, V.K. Road traffic noise attenuation by vegetation belts at some sites in the Tarai region of India. Arch. Acoust. 2013, 38, 389–395. [Google Scholar] [CrossRef]
- Rook, G. Regulation of the immune system by biodiversity from the natural environment: An ecosystem service essential to health. Proc. Natl. Acad. Sci. USA 2013, 110, 18360–18367. [Google Scholar] [CrossRef] [Green Version]
- Newton, J. Well-Being and the Natural Environment: A Brief Overview of the Evidence; University of Bath: Bath, UK, 2007. [Google Scholar]
- Dantzig, G.B.; Saaty, T.L. Compact City: Plan for a Liveable Urban Environment; W.H. Freeman: New York, NY, USA, 1973. [Google Scholar]
- Jenks, M.; Burton, E.; Williams, K. (Eds.) The Compact City: A Sustainable Urban Form? Spon Press: London, UK, 1996. [Google Scholar]
- Artmann, M.; Bastian, O.; Grunewald, K. Using the concepts of green infrastructure and ecosystem services to specify Leitbilder for compact and green cities—The example of the landscape plan of Dresden (Germany). Sustainability 2017, 9, 198. [Google Scholar] [CrossRef]
- Haaland, C.; van den Bosch, C.K. Challenges and strategies for urban green-space planning in cities undergoing densification. A review. Urban For. Urban Green. 2015, 14, 760–771. [Google Scholar] [CrossRef]
- Larondelle, N.; Lauf, S. Balancing demand and supply of multiple urban ecosystem services on different spatial scales. Ecosyst. Serv. 2016, 22, 18–31. [Google Scholar] [CrossRef]
- European Commission (Ed.) Building a Green Infrastructure for Europe; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- Bundesamt für Naturschutz (Ed.) Bundeskonzept Grüne Infrastruktur. Available online: http://www.bfn.de/bkgi.html (accessed on 10 July 2019).
- Dosch, F.; Neubauer, U. Kennwerte für grüne Infrastruktur. Sicherung städtischer Freiraumqualität durch Richt- und Orientierungswerte? Raum Planung 2016, 185, 1–9. [Google Scholar]
- Syrbe, R.-U.; Hou, W.; Grunewald, K.; Mathey, J. How green are our cities? Green space provision in urban areas. In Towards Green Cities—Urban Biodiversity and Ecosystem Services in China and Germany; Grunewald, K., Li, J., Xie, G., Kümper-Schlake, L., Eds.; Springer: New York, NY, USA, 2018; pp. 86–94. [Google Scholar]
- World Health Organisation (Ed.) Urban Planning, Environment and Health: From Evidence to Policy Action; World Health Organisation: Geneva, Switzerland, 2010; p. 119. [Google Scholar]
- Siemens, A.G. The Green Cities Index. Available online: https://www.siemens.com/entry/cc/features/greencityindex_international/all/en/pdf/gci_report_summary.pdf (accessed on 1 May 2019).
- Xu, C.; Haase, D.; Pauleit, S. The impact of different urban dynamics on green space availability: A multiple scenario modeling approach for the region of Munich, Germany. Ecol. Indic. 2018, 93, 1–12. [Google Scholar] [CrossRef]
- Van Herzele, A.; Wiedemann, T. A monitoring tool for the provision of accessible and attractive urban green spaces. Landsc. Urban Plan. 2003, 63, 109–126. [Google Scholar] [CrossRef]
- Müller, F.; Burkhard, B. The indicator side of ecosystem services. Ecosyst. Serv. 2012, 1, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Kabisch, N.; Strohbach, M.; Hasse, D.; Kronenberg, J. Urban green space availability in European cities. Ecol. Indic. 2016, 70, 586–596. [Google Scholar] [CrossRef]
- World Health Organisation (Ed.) Urban Green Spaces and Health; World Health Organisation: Geneva, Switzerland, 2016. [Google Scholar]
- Hamstead, Z.A.; Fisher, D.; Ilieva, R.T.; Wood, S.A.; McPhearson, T.; Kremer, P. Geolocated social media as a rapid indicator of park visitation and equitable park access. Comput. Environ. Urban Syst. 2018, 72, 38–50. [Google Scholar] [CrossRef]
- Grunewald, K.; Richter, B.; Meinel, G.; Herold, H.; Syrbe, R.-U. Proposal of indicators regarding the provision and accessibility of green spaces for assessing the ecosystem service ‘recreation in the city” in Germany. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2017, 13, 26–39. [Google Scholar] [CrossRef]
- Deilmann, C.; Lehmann, I.; Schumacher, U.; Behnisch, M. (Eds.) Stadt im Spannungsfeld von Kompaktheit, Effizienz und Umweltqualität—Anwendungen urbaner Metrik; Springer Spektrum: Berlin, Germany, 2017. [Google Scholar]
- Hill, M.O.; Roy, D.B.; Thompson, K. Hemeroby, urbanity and ruderality: Bioindicators of disturbance and human impact. J. Appl. Ecol. 2002, 39, 708–720. [Google Scholar] [CrossRef]
- Walz, U.; Stein, C. Indicators of hemeroby for the monitoring of landscapes in Germany. J. Nat. Conserv. 2014, 22, 279–289. [Google Scholar] [CrossRef]
- Pan, H.; Zhang, L.; Cong, C.; Deal, B.; Wang, Y. A dynamic and spatially explicit modeling approach to identify the ecosystem service implications of complex urban systems interactions. Ecol. Indic. 2019, 102, 426–436. [Google Scholar] [CrossRef]
- Yang, T.; Pan, H.; Hewings, G.; Jin, Y. Understanding urban sub-centers with heterogeneity in agglomeration economies—Where do emerging commercial establishments locate? Cities 2019, 86, 25–36. [Google Scholar] [CrossRef]
- Grunewald, K.; Syrbe, R.-U.; Walz, U.; Richter, B.; Meinel, G.; Herold, H.; Marzelli, S. Germany’s Ecosystem Services—State of the Indicator Development for a Nationwide Assessment and Monitoring. One Ecosyst. 2017, 2, e14021. [Google Scholar] [CrossRef]
- Meinel, G.; Krüger, T. Methodik eines Flächennutzungsmonitorings auf Grundlage des ATKIS-Basis-DLM. Kartogr. Nachr. 2014, 64, 324–331. [Google Scholar]
- Schorcht, M.; Krüger, T.; Meinel, G. Measuring Land Take: Usability of National Topographic Databases as Input for Land Use Change Analysis: A Case Study from Germany. Int. J. Geo-Inf. 2016, 5, 134. [Google Scholar] [CrossRef]
- Richter, B.; Grunewald, K.; Meinel, G. Grünflächenausstattung und deren erreichbarkeit—Indikatordesign und empirischer Städtevergleich. In Flächennutzungsmonitoring VIII: Flächensparen—Ökosystemleistungen—Handlungsstrategien; Rhombos-Verlag: Berlin, Germany, 2016; pp. 293–303. [Google Scholar]
- Wüstemann, H.; Kalisch, D.; Kolbe, J. Towards a National Indicator for Urban Green Space Provision and Environmental Inequalities in Germany: Method and Findings (No. SFB649DP2016-022); Sonderforschungsbereich 649; Humboldt University: Berlin, Germany, 2016. [Google Scholar]
- Berliner Morgenpost (Ed.) Das Sind Deutschlands Grünste Städte. Available online: http://interaktiv.morgenpost.de/gruenste-staedte-deutschlands (accessed on 10 May 2018).
- Krekel, C.; Kolbe, J.; Wüstemann, H. The Greener, The Happier? The Effects of Urban Green and Abandoned Areas on Residential Well-Being. 2015. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2554477 (accessed on 27 June 2019).
- Schneiders, A.; Spanhove, T.; Breine, J.; Zomlot, Z.; Verbeiren, B.; Batelaan, O.; Decleyre, D. Hoofdstuk 22—Eco-systeemdienst regulering overstromingsrisico. (INBO.R.2014.2001135). In Natuurrapport—Toestand en trend van ecosystemen en ecosysteemdiensten in Vlaanderen; Technisch Rapport. Mededelingen van het Instituut voor Natuur- en Bosonderzoek, INBO.M.2014.1988582; INBO: Brussel, Belgium, 2014; Available online: https://www.researchgate.net/publication/269093192_Natuurrapport_-Toestand_en_trend_van_ecosystemen_en_ecosysteemdiensten_in_Vlaanderen_TECHNISCH_RAPPORT_Hoofdstuk_22_Ecosysteemdienst_regulering_overstromingsrisico (accessed on 27 June 2019).
- Handley, J.; Slinn, P.; Barber, A.; Baker, M.; Jones, C.; Lindley, S. Accessible Natural Green Space Standards in Towns and Cities: A Review and Toolkit for Their Implementation; English Nature: Peterborough, UK, 2003.
- Behnisch, M. Urban Data Mining—Operationalisierung der Strukturerkennung und Strukturbildung von Ähnlichkeitsmustern Über die Gebaute Umwelt; KIT Scientific Publishing: Karlsruhe, Germany, 2008. [Google Scholar]
- Behnisch, M.; Ultsch, A. Urban Data Mining: Spatiotemporal exploration of multidimensional data. Build. Res. Inf. 2009, 37, 520–532. [Google Scholar] [CrossRef]
- Smith, M.J.; Goodchild, M.F.; Longley, P.A. Geospatial Analysis—A Comprehensive Guide to Principles, Techniques and Software Tools, 6th ed.; Troubador Publishing Ltd.: Leicester, UK, 2018. [Google Scholar]
- Davies, C.; Hansen, R.; Rall, E.; Pauleit, S.; Lafortezza, R.; De Bellis, Y.; Santos, A.; Tosics, I. Green Infrastructure Planning and Implementation. The Status of European Green Space Planning and Implementation Based on an Analysis of Selected European City-Regions. 2015. Available online: http://greensurge.eu/working-packages/wp5/files/Green_Infrastructure_Planning_and_Implementation.pdf (accessed on 24 March 2019).
- Hansen, R.; Fratzeskaki, N.; McPhearson, T.; Rall, E.; Kabisch, N.; Kaczorowska, A.; Kain, J.-H.; Artmann, M.; Pauleit, S. The uptake of the ecosystem services concept in planning discourses of European and American cities. Ecosyst. Serv. 2015, 12, 228–246. [Google Scholar] [CrossRef] [Green Version]
- Handlungsziele für Stadtgrün und Deren Empirische Evidenz. Available online: https://www.bbsr.bund.de/BBSR/DE/Veroeffentlichungen/Sonderveroeffentlichungen/2018/handlungsziele-stadtgruen-dl.pdf?__blob=publicationFile&v=2 (accessed on 12 June 2018).
Indicator Name (Short Name) | Formula | Linear Distance (Approximate Path Distance) | Included Object Types (ATKIS Basis-DLM) | Reference Value |
---|---|---|---|---|
accessibility of urban green space (i1) | ≤300 m (500 m) and ≤700 m (1000 m) | recreational land use types: green areas, parks, cemeteries, grassland, orchard meadows, forests, woods, surface waters | population (population grid) | |
NOI number of inhabitants | ||||
green-space provision—settlement (i2) | ≤300 m (500 m) | |||
ISA inhabited settlement areas | ||||
green-space provision—total (i3) | - | population (municipal directory information system) | ||
soil sealing—settlement(i4) | 1 | - | residential and mixed use areas | inhabited settlement area |
ISA inhabited settlement areas | ||||
settlement density (i5) | - | residential and mixed use areas | ||
ISA inhabited settlement areas | ||||
NOI number of inhabitants | ||||
hemeroby (i6) is based on Walz & Stein (2014) | - | all land use types, grouped by degree of hemeroby | reference area | |
N number of degrees of hemeroby (n = 7) | ||||
proportion of hemeroby n | ||||
H degree of hemeroby |
Parameter Fruppiert Nach Stadtgrößen | Min | Q1 | Median | Mean | Q3 | Max | StDev. |
i1 accessibility of urban green space (%) | 49.5 | 71.1 | 80.4 | 79.2 | 87.5 | 99.1 | 10.9 |
i2 green space provision—settlement (m2/inh.) | 36.1 | 89.6 | 128.7 | 148.3 | 181.7 | 902.4 | 95.5 |
i3 green space provision—total (m2/inh.) | 46.1 | 206.8 | 346.8 | 453.9 | 589.0 | 1942.2 | 365.6 |
i4 soil sealing—settlement (%) | 23.4 | 43.6 | 48.4 | 47.9 | 51.9 | 66.9 | 7.1 |
i5 settlement density (total) (inh./ha) | 73.0 | 114.5 | 138.0 | 148.6 | 172.5 | 317.0 | 47.9 |
i6 hemeroby (class) | 3.5 | 4.4 | 4.7 | 4.7 | 5.0 | 5.5 | 0.4 |
Cities ≥ 500,000 inhabitants (n = 13) | Min | Q1 | Median | Mean | Q3 | Max | StDev. |
i1 accessibility of urban green space (%) | 59.9 | 72.1 | 76.8 | 78.3 | 88.7 | 94.6 | 11.1 |
i2 green space provision—settlement (m2/inh.) | 36.1 | 53.3 | 62.4 | 67.4 | 89.9 | 108.9 | 23.8 |
i3 green space provision—total (m2/inh.) | 46.1 | 98.8 | 119.8 | 130.7 | 127.5 | 251.1 | 55.9 |
i4 soil sealing—settlement (%) | 47.2 | 50.2 | 53.9 | 54.4 | 58.2 | 152.0 | 5.1 |
i5 settlement density (total) (inh./ha) | 140.0 | 178.0 | 211.0 | 209.8 | 242.0 | 317.0 | 51.7 |
i6 hemeroby (class) | 4.8 | 5.1 | 5.1 | 5.1 | 5.2 | 5.5 | 0.2 |
Cities ≥ 100,000 inhabitants (n = 64) | Min | Q1 | Median | Mean | Q3 | Max | StDev. |
i1 accessibility of urban green space (%) | 52.9 | 72.6 | 81.2 | 79.7 | 87.4 | 98.9 | 10.7 |
i2 green space provision—settlement (m2/inh.) | 41.3 | 79.9 | 94.3 | 116.0 | 151.4 | 271.3 | 54.1 |
i3 green space provision—total (m2/inh.) | 74.0 | 164.5 | 252.4 | 289.6 | 363.9 | 676.9 | 159.2 |
i4 soil sealing—settlement (%) | 34.2 | 46.9 | 49.6 | 49.7 | 52.9 | 66.6 | 6.1 |
i5 settlement density (total) (inh./ha) | 87.0 | 134.8 | 157.5 | 166.0 | 184.8 | 291.0 | 47.0 |
i6 hemeroby (class) | 3.9 | 4.6 | 4.9 | 4.8 | 5.1 | 5.5 | 0.4 |
Cities ≥ 50,000 inhabitants (n = 110) | Min | Q1 | Median | Mean | Q3 | Max | StDev. |
i1 accessibility of urban green space (%) | 49.5 | 70.6 | 80.4 | 79.0 | 87.3 | 99.1 | 11.2 |
i2 green space provision—settlement (m2/inh.) | 45.0 | 113.6 | 145.7 | 176.2 | 207.1 | 902.4 | 107.8 |
i3 green space provision—total (m2/inh.) | 83.9 | 297.0 | 440.3 | 587.7 | 771.4 | 1942.0 | 408.3 |
i4 soil sealing—settlement (%) | 23.4 | 41.5 | 46.1 | 46.0 | 50.5 | 66.9 | 7.1 |
i5 settlement density (total) (inh./ha) | 73.0 | 103.5 | 127.0 | 131.2 | 149.2 | 254.0 | 37.7 |
i6 hemeroby (class) | 3.5 | 4.3 | 4.7 | 4.6 | 4.8 | 5.3 | 0.4 |
Parameters | Min | Q1 | Median | Mean | Q3 | Max | StDev. |
---|---|---|---|---|---|---|---|
i1 accessibility of urban green space (%) | 0.6 | 59.5 | 73.5 | 70.6 | 88.0 | 100.0 | 23.1 |
i2 green space provision—settlement(m2/inh.) | 0.4 | 42.7 | 77.3 | 168.3 | 116.5 | 3231.5 | 347.4 |
i3 green space provision—total (m2/inh.) | 0.1 | 41.3 | 94.1 | 297.7 | 248.5 | 3585.7 | 594.0 |
i4 soil sealing—settlement (%) | 20.6 | 42.9 | 53.4 | 53.0 | 60.4 | 87.6 | 13.7 |
i5 settlement density (total) (inh./ha) | 28 | 163.8 | 213.5 | 244.8 | 297.5 | 972.0 | 132.9 |
i6 hemeroby (class) | 2.9 | 4.8 | 5.3 | 5.2 | 5.7 | 6.9 | 0.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grunewald, K.; Richter, B.; Behnisch, M. Multi-Indicator Approach for Characterising Urban Green Space Provision at City and City-District Level in Germany. Int. J. Environ. Res. Public Health 2019, 16, 2300. https://doi.org/10.3390/ijerph16132300
Grunewald K, Richter B, Behnisch M. Multi-Indicator Approach for Characterising Urban Green Space Provision at City and City-District Level in Germany. International Journal of Environmental Research and Public Health. 2019; 16(13):2300. https://doi.org/10.3390/ijerph16132300
Chicago/Turabian StyleGrunewald, Karsten, Benjamin Richter, and Martin Behnisch. 2019. "Multi-Indicator Approach for Characterising Urban Green Space Provision at City and City-District Level in Germany" International Journal of Environmental Research and Public Health 16, no. 13: 2300. https://doi.org/10.3390/ijerph16132300
APA StyleGrunewald, K., Richter, B., & Behnisch, M. (2019). Multi-Indicator Approach for Characterising Urban Green Space Provision at City and City-District Level in Germany. International Journal of Environmental Research and Public Health, 16(13), 2300. https://doi.org/10.3390/ijerph16132300