Estimation of Prevalence of Osteoporosis Using OSTA and Its Correlation with Sociodemographic Factors, Disability and Comorbidities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Main Instruments
2.2.1. Sociodemographic and Clinical Questionnaire
2.2.2. The Osteoporosis Self-Assessment Tool for Asians (OSTA)
2.2.3. World Health Organization Disability Assessment Schedule 2.0 (WHO-DAS 2.0)
3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- United Nations. World Populations Ageing; Department of Economic and Social Affairs Population Division: New York, NY, USA, 2013. [Google Scholar]
- Ageing and Life Course. Available online: http://www.who.int/ageing/about/facts/en/ (accessed on 18 June 2019).
- Vestergaard, P.; Rejnmark, L.; Mosekilde, L. Osteoporosis is markedly underdiagnosed: A nationwide study from Denmark. Osteoporos. Int. 2005, 16, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Chan, A. Singapore’s Changing Structure and the Policy Implications for Financial Security, Employment, Living Arrangements and Health Care; Asian Metacentre for Population and Sustainable Analysis: Singapore, 2001. [Google Scholar]
- Nutrition for Older Persons. Available online: http://www.who.int/nutrition/topics/ageing/en/index1.html (accessed on 18 June 2019).
- Buffa, R.; Floris, G.U.; Putzu, P.F. Marini E: Body composition variations in ageing. Coll. Antropol. 2011, 35, 259–265. [Google Scholar] [PubMed]
- Frisoli, A., Jr.; Chaves, P.H.; Ingham, S.J.; Fried, L.P. Severe osteopenia and osteoporosis, sarcopenia, and frailty status in community-dwelling older women: Results from the Women’s Health and Aging Study (WHAS) II. Bone 2011, 48, 952–957. [Google Scholar] [CrossRef] [PubMed]
- Peck, W.A. Consensus development conference: Diagnosis, prophylaxis, and treatment of osteoporosis. Am. J. Med. 1993, 94, 646–650. [Google Scholar]
- International Osteoporosis Foundation. ASIAN AUDIT: 2015. Available online: https://www.iofbonehealth.org/sites/default/files/PDFs/Audit%20Asia/Asian_regional_audit_Singapore.pdf. (accessed on 18 June 2019).
- Ministry of Health. MOH Clinical Practice Guidelines on Osteoporosis; MOH: Singapore, 2009.
- Report of a WHO Study Group. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. World Health Organ. Tech. Rep. Ser. 1994, 843, 1–129. [Google Scholar]
- Scientific Advisory Board, Osteoporosis Society of Canada. Clinical practice guidelines for the diagnosis and management of osteoporosis. CMAJ Can. Med Assoc. J. 1996, 155, 1113–1133. [Google Scholar]
- Council of the National Osteoporosis Foundation. Guidelines for the early detection of osteoporosis and prediction of fracture risk. South Afr. Med. J. Suid-Afrik. Tydskr. Vir Geneeskd. 1996, 86, 1113–1116. [Google Scholar]
- Koh, L.; Sedrine, W.B.; Torralba, T.; Kung, A.; Fujiwara, S.; Chan, S.; Huang, Q.; Rajatanavin, R.; Tsai, K.; Park, H. A simple tool to identify Asian women at increased risk of osteoporosis. Osteoporos. Int. 2001, 12, 699–705. [Google Scholar] [CrossRef]
- Kung, A.W.; Ho, A.Y.; Ross, P.D.; Reginster, J.Y. Development of a clinical assessment tool in identifying Asian men with low bone mineral density and comparison of its usefulness to quantitative bone ultrasound. Osteoporos. Int. 2005, 16, 849–855. [Google Scholar] [CrossRef]
- Farhat, G.N.; Cauley, J.A. The link between osteoporosis and cardiovascular disease. Clin. Cases Miner. Bone Metab. 2008, 5, 19. [Google Scholar]
- Gough, A.K.; Lilley, J.; Eyre, S.; Holder, R.L.; Emery, P. Generalised bone loss in patients with early rheumatoid arthritis. Lancet 1994, 344, 23–27. [Google Scholar] [CrossRef]
- Wilson, S.; Sharp, C.A.; Davie, M.W. Health-related quality of life in patients with osteoporosis in the absence of vertebral fracture: A systematic review. Osteoporos. Int. 2012, 23, 2749–2768. [Google Scholar] [CrossRef] [PubMed]
- Sanfelix-Genoves, J.; Hurtado, I.; Sanfelix-Gimeno, G.; Reig-Molla, B.; Peiro, S. Impact of osteoporosis and vertebral fractures on quality-of-life. A population-based study in Valencia, Spain (The FRAVO Study). Health Qual. Life Outcomes 2011, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- Dennison, E.M.; Syddall, H.E.; Statham, C.; Aihie Sayer, A.; Cooper, C. Relationships between SF-36 health profile and bone mineral density: The Hertfordshire Cohort Study. Osteoporos. Int. 2006, 17, 1435–1442. [Google Scholar] [CrossRef] [PubMed]
- Cauley, J.A.; Wu, L.; Wampler, N.S.; Barnhart, J.M.; Allison, M.; Chen, Z.; Jackson, R.; Robbins, J. Clinical risk factors for fractures in multi-ethnic women: The Women’s Health Initiative. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2007, 22, 1816–1826. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, M.; Chong, S.A.; Vaingankar, J.A.; Abdin, E.; Chua, B.Y.; Chua, H.C.; Eng, G.K.; Heng, D.; Hia, S.B.; Huang, W. Prevalence of Dementia in People Aged 60 Years and Above: Results from the WiSE Study. J. Alzheimer’s Dis. 2015, 45, 1127–1138. [Google Scholar] [CrossRef] [PubMed]
- Prince, M.J.; de Rodriguez, J.L.; Noriega, L.; Lopez, A.; Acosta, D.; Albanese, E.; Arizaga, R.; Copeland, J.R.; Dewey, M.; Ferri, C.P.; et al. The 10/66 Dementia Research Group’s fully operationalised DSM-IV dementia computerized diagnostic algorithm, compared with the 10/66 dementia algorithm and a clinician diagnosis: A population validation study. BMC. Public Health 2008, 8, 219. [Google Scholar] [CrossRef] [PubMed]
- Rehm, J.; Üstün, T.B.; Saxena, S.; Nelson, C.B.; Chatterji, S.; Ivis, F.; Adlaf, E.D. On the development and psychometric testing of the WHO screening instrument to assess disablement in the general population. Int. J. Methods Psychiatr. Res. 1999, 8, 110–122. [Google Scholar] [CrossRef]
- Looker, A.C.; Orwoll, E.S.; Johnston, C.C.; Lindsay, R.L., Jr.; Wahner, H.W.; Dunn, W.L.; Calvo, M.S.; Harris, T.B.; Heyse, S.P. Prevalence of low femoral bone density in older U.S. adults from NHANES III. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 1997, 12, 1761–1768. [Google Scholar] [CrossRef]
- Wong, M.; Ching, L.; Lim, S.; Lo, N. Osteoporotic hip fractures in Singapore--costs and patient’s outcome. Ann. Acad. Med. Singap. 2002, 31, 3–7. [Google Scholar]
- Lau, E.M.C.; Lee, J.K.; Suriwongpaisal, P.; Saw, S.M.; Das De, S.; Khir, A.; Sambrook, P. The Incidence of Hip Fracture in Four Asian Countries: The Asian Osteoporosis Study (AOS). Osteoporos. Int. 2001, 12, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Center, J.R.; Nguyen, T.V.; Schneider, D.; Sambrook, P.N.; Eisman, J.A. Mortality after all major types of osteoporotic fracture in men and women: An observational study. Lancet 1999, 353, 878–882. [Google Scholar] [CrossRef]
- National Health Survey. Epidemiology and Disease Control Division; Ministry of Health: Singapore, 2010; pp. 32–36.
- Edelstein, S.L.; Barrett-Connor, E. Relation between body size and bone mineral density in elderly men and women. Am. J. Epidemiol. 1993, 138, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.H.; Zmuda, J.M.; Barrett-Connor, E.; Sheu, Y.; Patrick, A.L.; Leung, P.C.; Kwok, A.; Kweon, S.S.; Nam, H.S.; Cauley, J.A. Race/ethnic differences in associations between bone mineral density and fracture history in older men. Osteoporos. Int. 2014, 25, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Marshall, L.M.; Zmuda, J.M.; Chan, B.K.; Barrett-Connor, E.; Cauley, J.A.; Ensrud, K.E.; Lang, T.F.; Orwoll, E.S. Race and ethnic variation in proximal femur structure and BMD among older men. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2008, 23, 121–130. [Google Scholar] [CrossRef]
- Meyer, H.E.; Tverdal, A.; Falch, J.A. Risk factors for hip fracture in middle-aged Norwegian women and men. Am. J. Epidemiol. 1993, 137, 1203–1211. [Google Scholar] [CrossRef]
- Farahmand, B.Y.; Persson, P.G.; Michaelsson, K.; Baron, J.A.; Parker, M.G.; Ljunghall, S. Socioeconomic status, marital status and hip fracture risk: A population-based case-control study. Osteoporos. Int. 2000, 11, 803–808. [Google Scholar] [CrossRef]
- Nabipour, I.; Cumming, R.; Handelsman, D.J.; Litchfield, M.; Naganathan, V.; Waite, L.; Creasey, H.; Janu, M.; Le Couteur, D.; Sambrook, P.N.; et al. Socioeconomic status and bone health in community-dwelling older men: The CHAMP Study. Osteoporos. Int. 2011, 22, 1343–1353. [Google Scholar] [CrossRef]
- Miller-Martinez, D.; Seeman, T.; Karlamangla, A.; Greendale, G.; Binkley, N.; Crandall, C. Marital histories, marital support, and bone density: Findings from the Midlife in the United States Study. Osteoporos. Int. 2014, 25, 1327–1335. [Google Scholar] [CrossRef]
- Mirowsky, J.; Ross, C.E. Education, Personal Control, Lifestyle and Health A Human Capital Hypothesis. Res. Aging 1998, 20, 415–449. [Google Scholar] [CrossRef]
- Pluskiewicz, W.; Adamczyk, P.; Czekajlo, A.; Grzeszczak, W.; Drozdzowska, B. Influence of education, marital status, occupation, and the place of living on skeletal status, fracture prevalence, and the course and effectiveness of osteoporotic therapy in women in the RAC-OST-POL Study. J. Bone Miner. Metab. 2014, 32, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Menzel, J.; Di Giuseppe, R.; Wientzek, A.; Kroke, A.; Boeing, H.; Weikert, C. Physical Activity, Bone Health, and Obesity in Peri-/Pre- and Postmenopausal Women: Results from the EPIC-Potsdam Study. Calcif. Tissue Int. 2015, 97, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Johansson, J.; Nordstrom, A.; Nordstrom, P. Objectively measured physical activity is associated with parameters of bone in 70-year-old men and women. Bone 2015, 81, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Langsetmo, L.; Hitchcock, C.L.; Kingwell, E.J.; Davison, K.S.; Berger, C.; Forsmo, S.; Zhou, W.; Kreiger, N.; Prior, J.C. Physical activity, body mass index and bone mineral density-associations in a prospective population-based cohort of women and men: The Canadian Multicentre Osteoporosis Study (CaMos). Bone 2012, 50, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.J. The Family Revolution in Modern China; Harvard University Press: Cambridge, UK, 1949. [Google Scholar]
- Lee, W.R. The changing demography of diabetes mellitus in Singapore. Diabetes Res. Clin. Pract. 2000, 50 (Suppl. 2), 35–39. [Google Scholar] [CrossRef]
- Greco, E.A.; Fornari, R.; Rossi, F.; Santiemma, V.; Prossomariti, G.; Annoscia, C.; Aversa, A.; Brama, M.; Marini, M.; Donini, L.M.; et al. Is obesity protective for osteoporosis? Evaluation of bone mineral density in individuals with high body mass index. Int. J. Clin. Pract. 2010, 64, 817–820. [Google Scholar] [CrossRef] [PubMed]
- Chau, D.L.; Edelman, S.V. Osteoporosis and diabetes. Clin. Diabetes 2002, 20, 153–157. [Google Scholar] [CrossRef]
- Jackuliak, P.; Payer, J. Osteoporosis, fractures, and diabetes. Int. J. Endocrinol. 2014, 2014, 820615. [Google Scholar] [CrossRef]
- Vestergaard, P.; Rejnmark, L.; Mosekilde, L. Hypertension is a risk factor for fractures. Calcif. Tissue Int. 2009, 84, 103–111. [Google Scholar] [CrossRef]
- Caudarella, R.; Vescini, F.; Rizzoli, E.; Francucci, C. Salt intake, hypertension, and osteoporosis. J. Endocrinol. Investig. 2008, 32 (Suppl. 4), 15–20. [Google Scholar]
- Carbone, L.D.; Barrow, K.D.; Bush, A.J.; Boatright, M.D.; Michelson, J.A.; Pitts, K.A.; Pintea, V.N.; Kang, A.H.; Watsky, M.A. Effects of a low sodium diet on bone metabolism. J. Bone Miner. Metab. 2005, 23, 506–513. [Google Scholar] [CrossRef]
- Ghosh, M.; Majumdar, S.R. Antihypertensive medications, bone mineral density, and fractures: A review of old cardiac drugs that provides new insights into osteoporosis. Endocrine 2014, 46, 397–405. [Google Scholar] [CrossRef]
Overall Sample | OSTA > −1 | OSTA ≤ −1 | ||||
---|---|---|---|---|---|---|
n | Weighted % | Weighted % | S.E. | Weighted % | S.E. | |
Overall | 2345 | 100 | 48.0 | 1.37 | 52.0 | 1.37 |
Age group | ||||||
60–74 | 1445 | 77.0 | 60.2 | 1.75 | 39.78 | 1.75 |
75–84 | 613 | 18.8 | 8.6 | 1.44 | 91.45 | 1.44 |
85+ | 287 | 4.2 | 0.3 | 0.17 | 99.66 | 0.17 |
Gender | ||||||
Males | 1052 | 44.7 | 62.9 | 1.92 | 37.14 | 1.92 |
Females | 1293 | 55.3 | 36.0 | 1.88 | 63.99 | 1.88 |
Ethnicity | ||||||
Chinese | 935 | 83.6 | 45.7 | 1.62 | 54.32 | 1.62 |
Malay | 651 | 9.0 | 59.6 | 1.85 | 40.37 | 1.85 |
Indian | 723 | 5.9 | 58.7 | 1.67 | 41.25 | 1.67 |
Others | 36 | 1.5 | 64.9 | 6.26 | 35.10 | 6.26 |
Marital status | ||||||
Married/cohabiting | 1411 | 65.0 | 56.8 | 1.76 | 59.26 | 5.47 |
Never married | 128 | 8.0 | 40.7 | 5.47 | 43.24 | 1.76 |
Widowed | 703 | 21.3 | 20.4 | 2.37 | 79.62 | 2.37 |
Divorced/separated | 101 | 5.6 | 63.3 | 6.33 | 36.67 | 6.33 |
Education | ||||||
None | 424 | 15.7 | 22.3 | 3.05 | 77.65 | 3.05 |
Some, but did not complete primary | 569 | 24.1 | 42.9 | 2.91 | 57.06 | 2.91 |
Completed primary | 604 | 24.9 | 50.7 | 2.92 | 49.28 | 2.92 |
Completed secondary | 492 | 22.7 | 58.2 | 3.09 | 41.81 | 3.09 |
Completed tertiary | 249 | 12.7 | 65.7 | 4.03 | 34.31 | 4.03 |
Employment status | ||||||
Paid work (part-time and full-time) | 684 | 35.3 | 66.0 | 2.46 | 34.02 | 2.46 |
Unemployed | 31 | 1.6 | 59.9 | 11.80 | 40.08 | 11.80 |
Homemaker | 714 | 26.0 | 37.6 | 2.71 | 62.42 | 2.71 |
Retired | 895 | 37.1 | 37.9 | 2.26 | 62.13 | 2.26 |
OR+ | 95% CI | p Value | ||
---|---|---|---|---|
Lower | Upper | |||
Age group | ||||
60–74 | ^ Ref | |||
75–84 | 15.6 | 9.923 | 24.48 | <0.001 |
85+ | ||||
Gender | ||||
Male | Ref | |||
Female | 3.5 | 2.406 | 5.112 | <0.001 |
Ethnicity | ||||
Chinese | Ref | |||
Malay | 0.4 | 0.334 | 0.605 | <0.001 |
Indian | 0.5 | 0.382 | 0.666 | <0.001 |
Others | 0.4 | 0.145 | 0.856 | 0.021 |
Marital status | ||||
Married/cohabiting | Ref | |||
Never married | 2.2 | 1.265 | 3.835 | 0.005 |
Widowed | 1.9 | 1.223 | 2.902 | 0.004 |
Divorced/separated | 0.8 | 0.386 | 1.459 | 0.397 |
Education | ||||
None | 2.8 | 1.507 | 5.203 | 0.001 |
Some, but did not complete primary | 1.8 | 1.047 | 2.959 | 0.033 |
Completed primary | 1.8 | 1.084 | 2.958 | 0.023 |
Completed secondary | 1.4 | 0.864 | 2.338 | 0.167 |
Completed tertiary | Ref | |||
Employment status | ||||
Paid work (part-time and full-time) | Ref | |||
Unemployed | 1.1 | 0.253 | 4.745 | 0.902 |
Homemaker | 0.9 | 0.579 | 1.433 | 0.686 |
Retired | 1.7 | 1.175 | 2.364 | 0.004 |
OR+ | 95% CI | p Value | ||
---|---|---|---|---|
Lower | Upper | |||
Hypertension | ||||
No | ^ Ref | |||
Yes | 0.6 | 0.4 | 0.9 | 0.008 |
Heart Problems ** | ||||
No | Ref | |||
Yes | 0.9 | 0.6 | 1.3 | 0.514 |
Diabetes | ||||
No | Ref | |||
Yes | 0.6 | 0.4 | 0.9 | 0.007 |
TIAs | ||||
No | Ref | |||
Yes | 0.6 | 0.2 | 2.3 | 0.491 |
Stroke | ||||
No | Ref | |||
Yes | 0.9 | 0.5 | 1.7 | 0.859 |
10/66 Dementia | ||||
No | Ref | |||
Yes | 0.9 | 0.4 | 2 | 0.744 |
Depression *** | ||||
No | Ref | |||
Yes | 0.9 | 0.6 | 1.3 | 0.571 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Abdin, E.; Shafie, S.; Chong, S.A.; Vaingankar, J.A.; Subramaniam, M. Estimation of Prevalence of Osteoporosis Using OSTA and Its Correlation with Sociodemographic Factors, Disability and Comorbidities. Int. J. Environ. Res. Public Health 2019, 16, 2338. https://doi.org/10.3390/ijerph16132338
Wang P, Abdin E, Shafie S, Chong SA, Vaingankar JA, Subramaniam M. Estimation of Prevalence of Osteoporosis Using OSTA and Its Correlation with Sociodemographic Factors, Disability and Comorbidities. International Journal of Environmental Research and Public Health. 2019; 16(13):2338. https://doi.org/10.3390/ijerph16132338
Chicago/Turabian StyleWang, Peizhi, Edimansyah Abdin, Saleha Shafie, Siow Ann Chong, Janhavi Ajit Vaingankar, and Mythily Subramaniam. 2019. "Estimation of Prevalence of Osteoporosis Using OSTA and Its Correlation with Sociodemographic Factors, Disability and Comorbidities" International Journal of Environmental Research and Public Health 16, no. 13: 2338. https://doi.org/10.3390/ijerph16132338
APA StyleWang, P., Abdin, E., Shafie, S., Chong, S. A., Vaingankar, J. A., & Subramaniam, M. (2019). Estimation of Prevalence of Osteoporosis Using OSTA and Its Correlation with Sociodemographic Factors, Disability and Comorbidities. International Journal of Environmental Research and Public Health, 16(13), 2338. https://doi.org/10.3390/ijerph16132338