Hydrologic Modeling for Sustainable Water Resources Management in Urbanized Karst Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Databases and Software
2.3. Hydrological Modeling
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. JAMS J2000 Modules Used in the Hydrologic Modeling
Module | Parameter | Description |
---|---|---|
Start up | mFCa | Multiplier of field capacity |
mACa | Multiplier of air capacity | |
initRG1 | Initial capacity in the upper underground reservoir | |
initRG2 | Initial capacity in the lower underground reservoir | |
Interception | α, rain | Maximum interception capacity of leaf area |
Water in soil | soiMaxDPS | Maximum storage capacity in the surface |
soilPolRed | Polynomial reduction factor of potential evapotranspiration | |
soilLinRed | Linear reduction factor of potential evapotranspiration | |
soilMaxInf1 | Maximum infiltration in the April–September period | |
soilMaxInf2 | Maximum infiltration in the October–March period | |
soilImpGT80 | Relative infiltration capacity in areas with waterproofing larger than 80% | |
soilImpLT80 | Relative infiltration capacity in areas with waterproofing smaller than 80% | |
soilDistMPSLPS | Coefficient of infiltration distribution between medium and large pores | |
soilDiffMPSLPS | Diffusion coefficient from large to medium pores | |
soilOutLPS | Output coefficient from large pores | |
soilLatVertLPS | Distribution coefficient between interflow and percolation | |
soilMaxPerc | Maximum percolation capacity | |
soilConcRD1 | Retention coefficient of surface flow | |
soilConcRD2 | Retention coefficient of interflow | |
Groundwater | gwRG1RG2dist | Distribution coefficient between storage in the upper and lower groundwater reservoirs |
gwRG1fact | Dynamic flow factor in the upper reservoir | |
gwRG2fact | Dynamic flow factor in the lower reservoir | |
gwCapRise | Capillary factor | |
Routing | flowRouteTA | Time of concentration |
Appendix B. Intervals and Values of JAMS J2000 Module Parameters Obtained after Calibration
Module | Parameters | Interval | Unit | Calibrated Value |
---|---|---|---|---|
Start up | mFCa | 0–5 | ─ | 4.99 |
mACa | 0–5 | ─ | 4.98 | |
initRG1 | 0–1 | ─ | 0.40 | |
initRG2 | 0–1 | ─ | 0.72 | |
Interception | α,rain | 0–10 | mm | 5.80 |
Water in soil | soiMaxDPS | 0–10 | mm | 3.49 |
soilPolRed | 0–10 | ─ | 6.78 | |
soilLinRed | 0–10 | ─ | 1.57 | |
soilMaxInf1 | 0–200 | mm | 129.97 | |
soilMaxInf2 | 1–200 | mm | 75.99 | |
soilImpGT80 | 0–1 | ─ | 0.07 | |
soilImpLT80 | 1–1 | ─ | 0.31 | |
soilDistMPSLPS | 0–10 | ─ | 0.13 | |
soilDiffMPSLPS | 0–10 | ─ | 0.34 | |
soilOutLPS | 0–10 | ─ | 2.27 | |
soilLatVertLPS | 0–10 | ─ | 0.70 | |
soilMaxPerc | 0–20 | mm | 5.10 | |
soilConcRD1 | 0–10 | ─ | 1.49 | |
soilConcRD2 | 1–10 | ─ | 9.99 | |
Groundwater | gwRG1RG2dist | 0–1 | ─ | 0.31 |
gwRG1fact | 0–10 | ─ | 3.40 | |
gwRG2fact | 0–10 | ─ | 1.27 | |
gwCapRise | 0–1 | ─ | 0.41 | |
Routing | flowRouteTA | 0–100 | h | 46.80 |
References
- Auler, A.S.; Piló, L.B.; Saadi, A. Ambientes Cársticos. In Quaternário do Brasil, Ribeirão Preto; Souza, C.R.G., Ed.; Holos: Ribeirão Preto, Brasil, 2005; pp. 321–337. [Google Scholar]
- Hartmann, A.; Goldscheider, N.; Wagener, T.; Lange, J.; Weiler, M. Karst water resources in a changing world: Review of hydrological modeling approaches. Rev. Geophys. 2014, 52, 218–242. [Google Scholar] [CrossRef]
- Perrin, J. A Conceptual Model of Flow and Transport in A Karst Aquifer Based on Spatial and Temporal Variations of Natural Tracers. Ph.D. Thesis, University of Neuchâtel, Neuchâtel, Switzerland, 2003; 228p. [Google Scholar]
- Kovács, A.; Sauter, M. Modelling karst hydrodynamics. In Methods in Karst Hydrogeology, IAH: International Contributions to Hydrogeology, 26; Taylor & Francis: Boca Raton, FL, USA, 2014; p. 22. ISBN 6087858393. [Google Scholar]
- Lorette, G.; Lastennet, R.; Peyraube, N.; Denis, A. Groundwater-flow characterization in a multilayered karst aquifer on the edge of a sedimentary basin in western France. J. Hydrol. 2018, 566, 137–149. [Google Scholar] [CrossRef]
- Chang, Y.; Wu, J.; Jiang, G.; Liu, L.; Reimann, T.; Sauter, M. Modelling spring discharge and solute transport in conduits by coupling CFPv2 to an epikarst reservoir for a karst aquifer. J. Hydrol. 2019, 569, 587–599. [Google Scholar] [CrossRef]
- Kalhor, K.; Ghasemizadeh, R.; Rajic, L.; Alshawabkeh, A. Assessment of groundwater quality and remediation in karst aquifers: A review. Groundw. Sustain. Dev. 2019, 8, 104–121. [Google Scholar] [CrossRef] [PubMed]
- Kosič Ficco, K.; Sasowsky, I.D. An interdisciplinary framework for the protection of karst aquifers. Environ. Sci. Policy 2018, 89, 41–48. [Google Scholar] [CrossRef]
- Pacheco, F.A.L. Regional groundwater flow in hard rocks. Sci. Total Environ. 2015, 506–507, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.M.B.; Sanches Fernandes, L.F.; Moura, J.P.; Pereira, M.G.; Pacheco, F.A.L. The impact of climate change, human interference, scale and modeling uncertainties on the estimation of aquifer properties and river flow components. J. Hydrol. 2014, 519, 1297–1314. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Van der Weijden, C.H. Role of hydraulic diffusivity in the decrease of weathering rates over time. J. Hydrol. 2014, 512, 87–106. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Van der Weijden, C.H. Mineral weathering rates calculated from spring water data: A case study in an area with intensive agriculture, the Morais Massif, northeast Portugal. Appl. Geochem. 2002, 17, 583–603. [Google Scholar] [CrossRef]
- Van der Weijden, C.H.; Pacheco, F.A.L. Hydrogeochemistry in the Vouga River basin (central Portugal): Pollution and chemical weathering. Appl. Geochem. 2006, 21, 580–613. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Sousa Oliveira, A.; Van Der Weijden, A.J.; Van Der Weijden, C.H. Weathering, biomass production and groundwater chemistry in an area of dominant anthropogenic influence, the Chaves-Vila Pouca de Aguiar region, north of Portugal. Water Air Soil Pollut. 1999, 115, 481–512. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Van der Weijden, C.H. Integrating topography, hydrology and rock structure in weathering rate models of spring watersheds. J. Hydrol. 2012, 428–429, 32–50. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Van der Weijden, C.H. Weathering of plagioclase across variable flow and solute transport regimes. J. Hydrol. 2012, 420–421, 46–58. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Van der Weijden, C.H. Modeling rock weathering in small watersheds. J. Hydrol. 2014, 513, 13–27. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Szocs, T. “Dedolomitization reactions” driven by anthropogenic activity on loessy sediments, SW Hungary. Appl. Geochem. 2006, 21, 614–631. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Landim, P.M.B. Two-Way Regionalized Classification of Multivariate Datasets and its Application to the Assessment of Hydrodynamic Dispersion. Math. Geol. 2005, 37, 393–417. [Google Scholar] [CrossRef] [Green Version]
- Luo, P.; Zhou, M.; Deng, H.; Lyu, J.; Cao, W.; Takara, K.; Nover, D.; Geoffrey Schladow, S. Impact of forest maintenance on water shortages: Hydrologic modeling and effects of climate change. Sci. Total Environ. 2018, 615, 1355–1363. [Google Scholar] [CrossRef]
- Luo, P.; Mu, D.; Xue, H.; Ngo-Duc, T.; Dang-Dinh, K.; Takara, K.; Nover, D.; Schladow, G. Flood inundation assessment for the Hanoi Central Area, Vietnam under historical and extreme rainfall conditions. Sci. Rep. 2018, 8, 12623. [Google Scholar] [CrossRef]
- Luo, P.; Apip; He, B.; Duan, W.; Takara, K.; Nover, D. Impact assessment of rainfall scenarios and land-use change on hydrologic response using synthetic Area IDF curves. J. Flood Risk Manag. 2018, 11, S84–S97. [Google Scholar] [CrossRef]
- Luo, P.; He, B.; Takara, K.; Xiong, Y.E.; Nover, D.; Duan, W.; Fukushi, K. Historical assessment of Chinese and Japanese flood management policies and implications for managing future floods. Environ. Sci. Policy 2015, 48, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Bellu, A.; Sanches Fernandes, L.F.; Cortes, R.M.V.; Pacheco, F.A.L. A framework model for the dimensioning and allocation of a detention basin system: The case of a flood-prone mountainous watershed. J. Hydrol. 2016, 533, 567–580. [Google Scholar] [CrossRef]
- Terêncio, D.P.S.; Sanches Fernandes, L.F.; Cortes, R.M.V.; Moura, J.P.; Pacheco, F.A.L. Can Land Cover Changes Mitigate Large Floods? A Reflection Based on Partial Least Squares-Path Modeling. Water 2019, 11, 684. [Google Scholar] [CrossRef]
- Terêncio, D.P.S.; Sanches Fernandes, L.F.; Cortes, R.M.V.; Pacheco, F.A.L. Improved framework model to allocate optimal rainwater harvesting sites in small watersheds for agro-forestry uses. J. Hydrol. 2017, 550, 318–330. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Fallico, C. Hydraulic head response of a confined aquifer influenced by river stage fluctuations and mechanical loading. J. Hydrol. 2015, 531, 716–727. [Google Scholar] [CrossRef]
- Terêncio, D.P.S.; Sanches Fernandes, L.F.; Cortes, R.M.V.; Moura, J.P.; Pacheco, F.A.L. Rainwater harvesting in catchments for agro-forestry uses: A study focused on the balance between sustainability values and storage capacity. Sci. Total Environ. 2018, 613–614, 1079–1092. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, F.A.L. Hydraulic diffusivity and macrodispersivity calculations embedded in a geographic information system. Hydrol. Sci. J. 2013, 58, 930–944. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, F.A.L.; Sanches Fernandes, L.F. Environmental land use conflicts in catchments: A major cause of amplified nitrate in river water. Sci. Total Environ. 2016, 548–549, 173–188. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Martins, L.M.O.; Quininha, M.; Oliveira, A.S.; Sanches Fernandes, L.F. An approach to validate groundwater contamination risk in rural mountainous catchments: The role of lateral groundwater flows. MethodsX 2018, 5, 1447–1455. [Google Scholar] [CrossRef]
- Valle Junior, R.F.; Varandas, S.G.P.; Sanches Fernandes, L.F.; Pacheco, F.A.L. Multi Criteria Analysis for the monitoring of aquifer vulnerability: A scientific tool in environmental policy. Environ. Sci. Policy 2015, 48, 250–264. [Google Scholar] [CrossRef] [Green Version]
- Santos, R.M.B.; Sanches Fernandes, L.F.; Cortes, R.M.V.; Varandas, S.G.P.; Jesus, J.J.B.; Pacheco, F.A.L. Integrative assessment of river damming impacts on aquatic fauna in a Portuguese reservoir. Sci. Total Environ. 2017, 601–602, 1108–1118. [Google Scholar] [CrossRef]
- Ferreira, A.R.L.; Sanches Fernandes, L.F.; Cortes, R.M.V.; Pacheco, F.A.L. Assessing anthropogenic impacts on riverine ecosystems using nested partial least squares regression. Sci. Total Environ. 2017, 583, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, F.A.L. Application of Correspondence Analysis in the Assessment of Groundwater Chemistry. Math. Geol. 1998, 30, 129–161. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Santos, R.M.B.; Sanches Fernandes, L.F.; Pereira, M.G.; Cortes, R.M.V. Controls and forecasts of nitrate yields in forested watersheds: A view over mainland Portugal. Sci. Total Environ. 2015, 537, 421–440. [Google Scholar] [CrossRef] [PubMed]
- Valle Junior, R.F.; Varandas, S.G.P.; Sanches Fernandes, L.F.; Pacheco, F.A.L. Groundwater quality in rural watersheds with environmental land use conflicts. Sci. Total Environ. 2014, 493, 812–827. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.M.B.; Sanches Fernandes, L.F.; Pereira, M.G.; Cortes, R.M.V.; Pacheco, F.A.L. Water resources planning for a river basin with recurrent wildfires. Sci. Total Environ. 2015, 526, 1–13. [Google Scholar] [CrossRef]
- Fonseca, A.R.; Sanches Fernandes, L.F.; Fontainhas-Fernandes, A.; Monteiro, S.M.; Pacheco, F.A.L. The impact of freshwater metal concentrations on the severity of histopathological changes in fish gills: A statistical perspective. Sci. Total Environ. 2017, 599–600, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.M.B.; Sanches Fernandes, L.F.; Pereira, M.G.; Cortes, R.M.V.; Pacheco, F.A.L. A framework model for investigating the export of phosphorus to surface waters in forested watersheds: Implications to management. Sci. Total Environ. 2015, 536, 295–305. [Google Scholar] [CrossRef]
- Álvarez, X.; Valero, E.; Santos, R.M.B.; Varandas, S.G.P.; Sanches Fernandes, L.F.; Pacheco, F.A.L. Anthropogenic nutrients and eutrophication in multiple land use watersheds: Best management practices and policies for the protection of water resources. Land Use Policy 2017, 69, 1–11. [Google Scholar] [CrossRef]
- Fonseca, A.R.; Sanches Fernandes, L.F.; Fontainhas-Fernandes, A.; Monteiro, S.M.; Pacheco, F.A.L. From catchment to fish: Impact of anthropogenic pressures on gill histopathology. Sci. Total Environ. 2016, 550, 972–986. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef]
- Abbott, M.B.; Bathurst, J.C.; Cunge, J.A.; O’Connell, P.E.; Rasmussen, J. An introduction to the European Hydrological System—Systeme Hydrologique Europeen, “SHE”, 1: History and philosophy of a physically-based, distributed modelling system. J. Hydrol. 1986, 87, 45–59. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Coe, M.T.; Costa, M.H.; Howard, E.A. Simulating the surface waters of the Amazon River basin: Impacts of new river geomorphic and flow parameterizations. Hydrol. Process. 2008, 22, 2542–2553. [Google Scholar] [CrossRef]
- Krause, P. Quantifying the impact of land use changes on the water balance of large catchments using the J2000 model. Phys. Chem. Earth Parts A/B/C 2002, 27, 663–673. [Google Scholar] [CrossRef]
- Nepal, S.; Flügel, W.-A.; Shrestha, A.B. Upstream-downstream linkages of hydrological processes in the Himalayan region. Ecol. Process. 2014, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, M.; Uhlein, A. Estratigrafia do Grupo Bambuí e coberturas fanerozóicas no vale do rio São Francisco, norte de Minas Gerais. Revista Brasileira de Geociências 2009, 39, 256–266. [Google Scholar] [CrossRef]
- CPRM/CODEMIG—Companhia de Pesquisa de Recursos Minerais/Companhia de Desenvolvimento Econômico de Minas Gerais. Mapa Geológico do Estado de Minas Gerais. Available online: www.portaldageologia.com.br (accessed on 1 October 2018).
- Universidade Federal De Lavras; Fundação Estadual Do Meio Ambiente De Minas Gerais. Mapa de Solos do Estado de Minas Gerais. Available online: http://www.dps.ufv.br/?page_id=742 (accessed on 1 November 2018).
- FBDS—Fundação Brasileira para o Desenvolvimento Sustentável. Mapeamento em Alta Resolução dos Biomas Brasileiros. Available online: http://geo.fbds.org.br/ (accessed on 1 November 2018).
- Rita de Cássia Rosado Batista. Caracterização Hidrogeológica do Entorno do Centro Nacional de Pesquisa de Milho e Sorgo (CNPMS), em Sete Lagoas, MG; Universidade Federal de Minas Gerais: Belo Horizonte, Brazil, 2009. [Google Scholar]
- Pessoa, P.F.P. Caracterização hidrogeológica da região cárstica de Sete lagoas-MG: Potencialidades e riscos. Master’s Thesis, São Paulo University, São Paulo, Brazil, 1996. [Google Scholar]
- IBGE Sistema IBGE de Recuperação Automática (SIDRA). Available online: http://www.sidra.ibge.gov.br/bda/orcfam/default.asp?t=2&z=t&o=23&u1=1&u2=1&u3=1&u4=1&u5=1&u6=1 (accessed on 1 November 2018).
- Botelho, L.A.L.A. Gestão dos Recursos Hídricos em Sete Lagoas/MG: Uma Abordagem a partir da Evolução Espaçotemporal da Demanda e da Captação de água; Federal University of Minas Gerais: Belo Horizonte, Brazil, 2008. [Google Scholar]
- Galvão, P.; Halihan, T.; Hirata, R. Evaluating karst geotechnical risk in the urbanized area of Sete Lagoas, Minas Gerais, Brazil. Hydrogeol. J. 2015, 23, 1499–1513. [Google Scholar] [CrossRef]
- UAF-NASA Alaska Satellite Facility—Making Remote-sensing Data Accessible Since 1991. Available online: https://www.asf.alaska.edu/ (accessed on 1 November 2018).
- U.S.G.S. USGS EarthExplorer. Available online: http://earthexplorer.usgs.gov/ (accessed on 28 November 2018).
- Instituto Nacional de Meteorologia, Ministério da Agricultura, Pecuária e Abastecimento. Dados Meteorológicos. Available online: http://www.inmet.gov.br/portal/ (accessed on 1 November 2018).
- Agência Nacional de Águas. HidroWEB: Acervo de Dados Hidrológicos. Available online: http://www.snirh.gov.br/hidroweb/publico/apresentacao.jsf (accessed on 1 November 2018).
- Sistema Nacional de Cadastro Ambiental Rural. Consulta Pública dos Dados do Cadastro Ambiental Rural. Available online: http://www.car.gov.br/publico/municipios/downloads (accessed on 1 November 2018).
- Pfennig, B.; Kipka, H.; Wolf, M.; Fink, M.; Krause, P.; Flügel, W.A. Development of an extended routing scheme in reference to consideration of multi-dimensional flow relations between hydrological model entities. In Proceedings of the 18th World IMACS Congress MODSIM09, Cairns, Australia, 13–17 July 2009. [Google Scholar]
- Braga, C.C.; Amanajás, J.C.; Alcântara, C.R.; Dantas, M.P. Avaliação do albedo nos diferentes tipos de cobertura do cerrado do Amapá—Brasil com imagens MODIS. Territorium 2018, 25, 129–134. [Google Scholar] [CrossRef]
- Giongo, P.R.; Vettorazzi, C.A. Albedo da superfície por meio de imagens TM-Landsat 5 e modelo numérico do terreno. Revista Brasileira de Engenharia Agricola e Ambiental-Agriambi 2014, 18, 833–838. [Google Scholar] [CrossRef]
- Testa, G.; Gresta, F.; Cosentino, S.L. Dry matter and qualitative characteristics of alfalfa as affected by harvest times and soil water content. Eur. J. Agron. 2011, 34, 144–152. [Google Scholar] [CrossRef]
- Ribeiro, E.P.; Nóbrega, R.S.; Mota Filho, F.O.; Moreira, E.B. Estimativa dos índices de vegetação na detecção de mudanças ambientais na bacia hidrográfica do rio Pajeú. Geosul 2016, 31, 59–92. [Google Scholar]
- Scolforo, J.R.; de Oliveira, A.D.; de Mello, J.M.; de Castro Silva, C.P.; Ferraz-Filho, A.C.; Andrade, I.S.; Abreu, E.C.R. Análise da estrutura fitossociológica dos fragmentos inventariados e dos grupos fisionômicos. In Inventário Florestal de Minas Gerais: Floresta Estacional Decidual—Florística, Estrutura, Diversidade, Similaridade, Distribuição Diamétrica e de Altura, Volumetria, Tendências de Crescimento e Áreas Aptas para Manejo Florestal; UFLA: Lavras, Brazil, 2008; pp. 99–114. [Google Scholar]
- Schwarze, C.P.; Wollmann, H.A.; Binder, G.; Ranke, M.B. Short-term increments of insulin-like growth factor I (IGF-I) and IGF-binding protein-3 predict the growth response to growth hormone (GH) therapy in GH-sensitive children. Acta Paediatr. 1999, 88, 200–208. [Google Scholar] [CrossRef]
- Srinivas, N.; Deb, K. Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evol. Comput. 1994, 2, 221–248. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng. 2002, 4, 135–143. [Google Scholar] [CrossRef]
- Lee Rodgers, J.; Nicewander, W.A. Thirteen Ways to Look at the Correlation Coefficient. Am. Stat. 1988, 42, 59–66. [Google Scholar] [CrossRef]
- Liu, Y.; Gupta, H.V. Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Engeland, K.; Steinsland, I.; Johansen, S.S.; Petersen-Øverleir, A.; Kolberg, S. Effects of uncertainties in hydrological modelling. A case study of a mountainous catchment in Southern Norway. J. Hydrol. 2016, 536, 147–160. [Google Scholar] [CrossRef]
- Pellicciotti, F.; Buergi, C.; Immerzeel, W.W.; Konz, M.; Shrestha, A.B. Challenges and Uncertainties in Hydrological Modeling of Remote Hindu Kush–Karakoram–Himalayan (HKH) Basins: Suggestions for Calibration Strategies. Mt. Res. Dev. 2012, 32, 39–50. [Google Scholar] [CrossRef]
- Kiang, J.E.; Gazoorian, C.; McMillan, H.; Coxon, G.; Le Coz, J.; Westerberg, I.K.; Belleville, A.; Sevrez, D.; Sikorska, A.E.; Petersen-Øverleir, A.; et al. A Comparison of Methods for Streamflow Uncertainty Estimation. Water Resour. Res. 2018, 54, 7149–7176. [Google Scholar] [CrossRef] [Green Version]
- Krause, P.; Boyle, D.P.; Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Kemmerly, P.R. A time-distribution study of doline collapse: Framework for prediction. Environ. Geol. 1980, 3, 123–130. [Google Scholar] [CrossRef]
- Tihansky, A.B. Sinkholes, west-central Florida. Land Subsid. U. S. US Geol. Surv. Circ. 1999, 1182, 121–140. [Google Scholar]
- Kaufmann, O.; Quinif, Y. Geohazard map of cover-collapse sinkholes in the ‘Tournaisis’ area, southern Belgium. Eng. Geol. 2002, 65, 117–124. [Google Scholar] [CrossRef]
- García-Moreno, I.; Mateos, R.M. Sinkholes related to discontinuous pumping: Susceptibility mapping based on geophysical studies. The case of Crestatx (Majorca, Spain). Environ. Earth Sci. 2011, 64, 523–537. [Google Scholar] [CrossRef]
- Doğan, U.; Yılmaz, M. Natural and induced sinkholes of the Obruk Plateau and Karapınar-Hotamış Plain, Turkey. J. Asian Earth Sci. 2011, 40, 496–508. [Google Scholar] [CrossRef]
- Bonneau, J.; Fletcher, T.D.; Costelloe, J.F.; Burns, M.J. Stormwater infiltration and the ‘urban karst’—A review. J. Hydrol. 2017, 552, 141–150. [Google Scholar] [CrossRef]
- Locatelli, L.; Mark, O.; Mikkelsen, P.S.; Arnbjerg-Nielsen, K.; Deletic, A.; Roldin, M.; Binning, P.J. Hydrologic impact of urbanization with extensive stormwater infiltration. J. Hydrol. 2017, 544, 524–537. [Google Scholar] [CrossRef] [Green Version]
- Ghasemizadeh, R.; Hellweger, F.; Butscher, C.; Padilla, I.; Vesper, D.; Field, M.; Alshawabkeh, A. Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico. Hydrogeol. J. 2012, 20, 1441–1461. [Google Scholar] [CrossRef] [Green Version]
- Groves, C.G.; Howard, A.D. Early development of karst systems: 1. Preferential flow path enlargement under laminar flow. Water Resour. Res. 1994, 30, 2837–2846. [Google Scholar] [CrossRef]
- Malard, A.; Jeannin, P.-Y.; Vouillamoz, J.; Weber, E. An integrated approach for catchment delineation and conduit-network modeling in karst aquifers: Application to a site in the Swiss tabular Jura. Hydrogeol. J. 2015, 23, 1341–1357. [Google Scholar] [CrossRef]
- Perrin, J.; Luetscher, M. Inference of the structure of karst conduits using quantitative tracer tests and geological information: Example of the Swiss Jura. Hydrogeol. J. 2008, 16, 951–967. [Google Scholar] [CrossRef]
- White, E.L.; Aron, G.; White, W.B. The influence of urbanization of sinkhole development in central Pennsylvania. Environ. Geol. Water Sci. 1986, 8, 91–97. [Google Scholar] [CrossRef]
- Soares, S.; Terêncio, D.; Fernandes, L.; Machado, J.; Pacheco, F. The Potential of Small Dams for Conjunctive Water Management in Rural Municipalities. Int. J. Environ. Res. Public Health 2019, 16, 1239. [Google Scholar] [CrossRef] [PubMed]
- Cortes, R.M.V.; Peredo, A.; Terêncio, D.P.S.; Sanches Fernandes, L.F.; Moura, J.P.; Jesus, J.; Magalhães, M.; Ferreira, P.; Pacheco, F.A.L. Undamming the Douro River Catchment: A Stepwise Approach for Prioritizing Dam Removal. Water 2019, 11, 693. [Google Scholar] [CrossRef]
- Pulido-Velazquez, M.; Jenkins, M.W.; Lund, J.R. Economic values for conjunctive use and water banking in southern California. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef] [Green Version]
- Fitch, P.; Brodaric, B.; Stenson, M.; Booth, N. Integrated groundwater data management. In Integrated Groundwater Management: Concepts, Approaches and Challenges; Springer International Publishing: Cham, Switzerland, 2016; pp. 667–692. ISBN 9783319235769. [Google Scholar]
- Bazargan-Lari, M.R.; Kerachian, R.; Mansoori, A. A conflict-resolution model for the conjunctive use of surface and groundwater resources that considers water-quality issues: A case study. Environ. Manag. 2009, 43, 470–482. [Google Scholar] [CrossRef]
- Ross, A. Speeding the transition towards integrated groundwater and surface water management in Australia. J. Hydrol. 2018, 567, e1–e10. [Google Scholar] [CrossRef]
- Zhu, T.; Marques, G.F.; Lund, J.R. Hydroeconomic optimization of integrated water management and transfers under stochastic surface water supply. Water Resour. Res. 2015, 51, 3568–3587. [Google Scholar] [CrossRef]
- Blomquist, W.; Heikkila, T.; Schlager, E. Institutions and Conjunctive Water Management among Three Western States. In Economics of Water Resources; Routledge: London, UK, 2018; pp. 241–271. [Google Scholar] [Green Version]
- Atapour, H.; Aftabi, A. Geomorphological, geochemical and geo-environmental aspects of karstification in the urban areas of Kerman city, southeastern, Iran. Environ. Geol. 2002, 42, 783–792. [Google Scholar]
- Gutiérrez, F.; Galve, J.P.; Guerrero, J.; Lucha, P.; Cendrero, A.; Remondo, J.; Bonachea, J.; Gutiérrez, M.; Sánchez, J.A. The origin, typology, spatial distribution and detrimental effects of the sinkholes developed in the alluvial evaporite karst of the Ebro River valley downstream of Zaragoza city (NE Spain). Earth Surf. Process. Landf. 2007, 32, 912–928. [Google Scholar] [CrossRef]
- Fernandes, L.F.S.; Marques, M.J.; Oliveira, P.C.; Moura, J.P. Decision support systems in water resources in the demarcated region of Douro—Case study in Pinhão river basin, Portugal. Water Environ. J. 2014, 28, 350–357. [Google Scholar] [CrossRef]
- Sanches Fernandes, L.F.; Seixas, F.J.; Oliveira, P.C.; Leitão, S.; Moura, J.P. Climate-change impacts on nitrogen in a hydrographical Basin in the Northeast of Portugal. Fresenius Environ. Bull. 2012, 21, 3643–3650. [Google Scholar]
- Hughes, S.J.; Cabecinha, E.; Andrade dos Santos, J.C.; Mendes Andrade, C.M.; Mendes Lopes, D.M.; da Fonseca Trindade, H.M.; dos Santos Cabral, J.A.F.A.; dos Santos, M.G.S.; Lourenço, J.M.M.; Marques Aranha, J.T.; et al. A predictive modelling tool for assessing climate, land use and hydrological change on reservoir physicochemical and biological properties. Area 2012, 44, 432–442. [Google Scholar] [CrossRef]
Data Type | Use in the Hydrologic Model | URL of Website |
---|---|---|
Digital elevation model | Hydrologic Response Units (HRU) | https://www.asf.alaska.edu |
Satellite images | Land use mapping and HRU | https://earthexplorer.usgs.gov/ |
Soil map and hydraulic Conductivity data | HRU and data parameterization | http://www.dps.ufv.br |
Geologic map | HRU and data parameterization | www.portaldageologia.com.br |
Climatic data | Data for JAMS J2000 hydrologic model | http://www.inmet.gov.br |
Stream flow data | Calibration/validation procedure | http://www.snirh.gov.br/hidroweb |
Administrative data | Additional information | http://www.car.gov.br |
Population data | Additional information | http://www.sidra.ibge.gov.br |
Land Use or Occupation | Albedo (%) | Superficial Resistance (s/m) | Leaf Area Index (Dimensionless) | Effective Growth (m) | Root Depth (cm) |
---|---|---|---|---|---|
Cultivated area | 20.0 | 70.0 | 0.6 | 1.1 | 20.0 |
Urbanized area | 16.4 | 70.0 | 0.01 | 0.0 | 0.0 |
Cerrado biome | 14.2 | 70.0 | 0.8 | 20.0 | 120.0 |
Water bodies | 4.0 | 70.0 | 0.0 | 0.0 | 0.0 |
Forest | 15.0 | 70.0 | 0.9 | 30.0 | 300.0 |
Bare land | 20.0 | 70.0 | 0.0 | 0.0 | 0.0 |
Reference(s) | [64,65] | [66] | [67] | [68] | [66] |
Soil Type | Depth (cm) | Minimum Permeability Coefficient (mm/d) | Air Capacity (mm) | Field Capacity (mm) |
---|---|---|---|---|
Red-yellow argisol | 170 | 1 | 40 | 600 |
Haplic cambisols | 230 | 1 | 37 | 1150 |
Red-yellow latossols | 250 | 1 | 38 | 1500 |
Tholic Litholic | 50 | 1 | 13 | 125 |
Reference | Hydrus 1D software (https://www.pc-progress.com) |
Lithologic Type | Maximum Storage Capacity in the Upper Aquifer (mm) | Maximum Storage Capacity in the Lower Aquifer (mm) | Storage Coefficient in the Upper Groundwater Reservoir (d) | Storage Coefficient in the Lower Groundwater Reservoir (d) |
---|---|---|---|---|
Orthogneiss | 50 | 900 | 13 | 365 |
Clastic sediments | 50 | 800 | 16 | 365 |
Limestone | 70 | 1000 | 17 | 365 |
Silstone | 60 | 900 | 14 | 365 |
Reference | [69] |
PBIAS (%) | NSE | Performance |
---|---|---|
0 a 10 | 0.75 a 1 | Very good |
10 a 15 | 0.65 a 0.75 | Good |
15 a 25 | 0.50 a 0.65 | Fair |
>25 | <0.50 | Inadequate |
Performance Indicator | Evaluation Period | |||
---|---|---|---|---|
Calibration | Validation | Whole Period | Performance (Whole Period) | |
PBIAS | −9.50 | −3.65 | 3.80 | Very good |
R2 | 0.58 | 0.67 | 0.66 | |
NSE | 0.58 | 0.67 | 0.64 | Fair/Good |
LNSE | 0.62 | 0.60 | 0.60 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso de Salis, H.H.; Monteiro da Costa, A.; Moreira Vianna, J.H.; Azeneth Schuler, M.; Künne, A.; Sanches Fernandes, L.F.; Leal Pacheco, F.A. Hydrologic Modeling for Sustainable Water Resources Management in Urbanized Karst Areas. Int. J. Environ. Res. Public Health 2019, 16, 2542. https://doi.org/10.3390/ijerph16142542
Cardoso de Salis HH, Monteiro da Costa A, Moreira Vianna JH, Azeneth Schuler M, Künne A, Sanches Fernandes LF, Leal Pacheco FA. Hydrologic Modeling for Sustainable Water Resources Management in Urbanized Karst Areas. International Journal of Environmental Research and Public Health. 2019; 16(14):2542. https://doi.org/10.3390/ijerph16142542
Chicago/Turabian StyleCardoso de Salis, Hugo Henrique, Adriana Monteiro da Costa, João Herbert Moreira Vianna, Marysol Azeneth Schuler, Annika Künne, Luís Filipe Sanches Fernandes, and Fernando António Leal Pacheco. 2019. "Hydrologic Modeling for Sustainable Water Resources Management in Urbanized Karst Areas" International Journal of Environmental Research and Public Health 16, no. 14: 2542. https://doi.org/10.3390/ijerph16142542
APA StyleCardoso de Salis, H. H., Monteiro da Costa, A., Moreira Vianna, J. H., Azeneth Schuler, M., Künne, A., Sanches Fernandes, L. F., & Leal Pacheco, F. A. (2019). Hydrologic Modeling for Sustainable Water Resources Management in Urbanized Karst Areas. International Journal of Environmental Research and Public Health, 16(14), 2542. https://doi.org/10.3390/ijerph16142542