Development of a Hydrologic and Water Allocation Model to Assess Water Availability in the Sabor River Basin (Portugal)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Identification of Irrigable Crops
2.3. Conceptual Framework
2.4. SWAT Hydrological Model and Calibration
2.5. MIKE HYDRO Basin Model
2.6. The MIKE HYDRO Basin Model Input and Output Data
2.7. Historical View and Evolutionary Scenarios
3. Results
3.1. Calibration and Validation of the Streamflow
3.2. Irrigation Demand
3.3. Historical View and Evolutionary Scenarios of Domestic Consumption and Irrigation
3.4. Spatial Distribution of Water Allocation
4. Discussion
4.1. Historical View of Water Allocation
4.2. Evolutionary Scenarios
4.3. Spatial Distribution
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- GMAFDR—Gabinete do Ministro da Agricultura das Florestas e do Desenvolvimento Rural. Governo Apresenta Programa Nacional de Regadios. Available online: https://www.portugal.gov.pt/download-ficheiros/ficheiro.aspx?v=33d58ebb-767c-48e9-953c-c6318fc1c69a (accessed on 29 March 2019).
- APA—Agência Portuguesa do Ambiente. Plano de Gestão da Região Hidrográfica do Douro—RH3 Relatório de Base, Parte 2—Caracterização e Diagnóstico da Região Hidrográfica; Agência Portuguesa do Ambiente: Lisbon, Portugal, 2016; pp. 1–213.
- INE—Instituto Nacional de Estatística. Recenseamento Agrícola 2009: Dados definitivos. In Destaque—Informação à Comunicação Social; Instituto Nacional de Estatística: Lisbon, Portugal, 2011; pp. 1–13. [Google Scholar]
- INE—Instituto Nacional de Estatística. Recenseamento Agrícola 2009—Análise dos Principais Resultados; Instituto Nacional de Estatística: Lisbon, Portugal, 2011; pp. 1–62. ISBN 978-989-25-0108-6.
- INE—Instituto Nacional de Estatística. Recenseamento Geral Agrícola 1989—Resultados Definitivos—Dados Gerais; Instituto Nacional de Estatística: Lisbon, Portugal, 1992; pp. 1–204. ISBN 972-673081-3.
- INE—Instituto Nacional de Estatística. Recenseamento Geral da Agricultura 1999—Análise de Resultados; Instituto Nacional de Estatística: Lisbon, Portugal, 2001; pp. 1–128. ISBN 978-989-25-0108-6.
- Kumar, A.; Singh, R.; Jena, P.P.; Chatterjee, C.; Mishra, A. Identification of the best multi-model combination for simulating river discharge. J. Hydrol. 2015, 525, 313–325. [Google Scholar] [CrossRef]
- Rocha, J.; Roebeling, P.; Rial-Rivas, M.E. Assessing the impacts of sustainable agricultural practices for water quality improvements in the Vouga catchment (Portugal) using the SWAT model. Sci. Total Environ. 2015, 536, 48–58. [Google Scholar] [CrossRef] [PubMed]
- DHI. MIKE HYDRO Basin User Guide 2017; DHI: Hørsholm, Denmark, 2017; pp. 1–216. [Google Scholar]
- Doulgeris, C.; Georgiou, P.; Papadimos, D.; Papamichail, D. Water allocation under deficit irrigation using MIKE BASIN model for the mitigation of climate change. Irrig. Sci. 2015, 33, 469–482. [Google Scholar] [CrossRef]
- SNIRH-Sistema Nacional de Informação de Recursos Hídricos. Available online: http://snirh.apambiente.pt/ (accessed on 29 November 2018).
- Shakesby, R.A. Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth-Sci. Rev. 2011, 105, 71–100. [Google Scholar] [CrossRef]
- Nunes, A.N.; de Almeida, A.C.; Coelho, C.O.A. Impacts of land use and cover type on runoff and soil erosion in a marginal area of Portugal. Appl. Geogr. 2011, 31, 687–699. [Google Scholar] [CrossRef]
- DGT Directorate-General of Territory. Available online: http://www.dgterritorio.pt/ (accessed on 28 November 2018).
- Agroconsultores—Engenharia de Recursos Agrários. Coba—Consultores de Engenharia e Ambiente Carta de solos, Carta do Uso Actual da Terra e Carta de Aptidão da Terra do Nordeste de Portugal; Universidade de Trás-os-Montes e Alto Douro: Vila Real, Portugal, 1991; pp. 1–311. [Google Scholar]
- EEA—European Environmental Agency. Corine Land Cover. Available online: https://www.eea.europa.eu/publications/COR0-landcover (accessed on 20 June 2018).
- INE—Instituto Nacional de Estatística. O Uso da Água na Agricultura; Instituto Nacional de Estatística: Lisbon, Portugal, 2011; pp. 1–95. ISBN 978-989-25-0145-1.
- INE—Instituto Nacional de Estatística. Estrutura da Origem da Água de Rega: Recenseamento Agrícola 2009; Direção-Geral de Agricultura e Desenvolvimento Rural: Lisbon, Portugal, 2011; p. 1.
- INE Instituto Nacional de Estatística. Available online: https://www.ine.pt (accessed on 21 September 2018).
- PORDATA—Data Base of Contemporary Portugal. Available online: https://www.pordata.pt/ (accessed on 20 September 2018).
- COS. Carta de Uso e Ocupação do Solo de Portugal Continental para 2007 (COS 2007); Direção Geral do Território: Lisbon, Portugal, 2010; pp. 1–87.
- EEA. Corine Land Cover technical guide: Addendum 2000; EEA—European Environmental Agency: Copenhagen, Denmark, 2000; pp. 1–105. [Google Scholar]
- Neitsch, S.; Arnold, J.; Kiniry, J. Soil and Water Assessment Tool: Theoretical Documentation, Version 2009; Texas A&M University System: College Station, TX, USA, 2011; pp. 1–647. [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Van der Weijden, C.H. Weathering of plagioclase across variable flow and solute transport regimes. J. Hydrol. 2012, 420–421, 46–58. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Szocs, T. “Dedolomitization reactions” driven by anthropogenic activity on loessy sediments, SW Hungary. Appl. Geochem. 2006, 21, 614–631. [Google Scholar] [CrossRef]
- Pacheco, F.A.L. Application of Correspondence Analysis in the Assessment of Groundwater Chemistry. Math. Geol. 1998, 30, 129–161. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Landim, P.M.B. Two-Way Regionalized Classification of Multivariate Datasets and its Application to the Assessment of Hydrodynamic Dispersion. Math. Geol. 2005, 37, 393–417. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, F.A.L.; Sousa Oliveira, A.; Van Der Weijden, A.J.; Van Der Weijden, C.H. Weathering, biomass production and groundwater chemistry in an area of dominant anthropogenic influence, the Chaves-Vila Pouca de Aguiar region, north of Portugal. Water Air Soil Pollut. 1999, 115, 481–512. [Google Scholar] [CrossRef]
- Pacheco, F.A.L. Finding the number of natural clusters in groundwater data sets using the concept of equivalence class. Comput. Geosci. 1998, 24, 7–15. [Google Scholar] [CrossRef]
- Valera, C.A.; Pissarra, T.C.T.; Martins Filho, M.V.; Valle Junior, R.F.; Sanches Fernandes, L.F.; Pacheco, F.A.L. A legal framework with scientific basis for applying the ‘polluter pays principle’ to soil conservation in rural watersheds in Brazil. Land Use Policy 2017, 66, 61–71. [Google Scholar] [CrossRef]
- Hughes, S.J.; Cabecinha, E.; Andrade dos Santos, J.C.; Mendes Andrade, C.M.; Mendes Lopes, D.M.; da Fonseca Trindade, H.M.; dos Santos Cabral, J.A.F.A.; dos Santos, M.G.S.; Lourenço, J.M.M.; Marques Aranha, J.T.; et al. A predictive modelling tool for assessing climate, land use and hydrological change on reservoir physicochemical and biological properties. Area 2012, 44, 432–442. [Google Scholar] [CrossRef]
- Modesto Gonzalez Pereira, M.J.; Sanches Fernandes, L.F.; Barros Macário, E.M.; Gaspar, S.M.; Pinto, J.G. Climate Change Impacts in the Design of Drainage Systems: Case Study of Portugal. J. Irrig. Drain. Eng. 2015, 141, 05014009. [Google Scholar] [CrossRef] [Green Version]
- Siqueira, H.E.; Pissarra, T.C.T.; do Valle Junior, R.F.; Fernandes, L.F.S.; Pacheco, F.A.L. A multi criteria analog model for assessing the vulnerability of rural catchments to road spills of hazardous substances. Environ. Impact Assess. Rev. 2017, 64, 26–36. [Google Scholar] [CrossRef] [Green Version]
- SNIRH—National System of Water Resources Information. Available online: https://www.shirh.pt/ (accessed on 20 September 2018).
- Santos, R.; Fernandes, L.; Cortes, R.; Pacheco, F. Hydrologic impacts of land use changes in the Sabor River Basin: A historical view and future perspectives. Water 2019. (submitted). [Google Scholar]
- Abbaspour, K.C. SWATCUP Manual Calibration and Uncertainty Programs; Eawag—Swiss Federal Institute of Aquatic Science and Technology: Dübendorf, Switzerland, 2015; pp. 1–100. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Valle Junior, R.F.; Varandas, S.G.P.; Sanches Fernandes, L.F.; Pacheco, F.A.L. Multi Criteria Analysis for the monitoring of aquifer vulnerability: A scientific tool in environmental policy. Environ. Sci. Policy 2015, 48, 250–264. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.R.L.; Sanches Fernandes, L.F.; Cortes, R.M.V.; Pacheco, F.A.L. Assessing anthropogenic impacts on riverine ecosystems using nested partial least squares regression. Sci. Total Environ. 2017, 583, 466–477. [Google Scholar] [CrossRef]
- Sanches Fernandes, L.F.; Pacheco, F.A.L.; Cortes, R.M.V.; Jesus, J.J.B.; Varandas, S.G.P.; Santos, R.M.B. Integrative assessment of river damming impacts on aquatic fauna in a Portuguese reservoir. Sci. Total Environ. 2017, 601–602, 1108–1118. [Google Scholar]
- Fonseca, A.R.; Sanches Fernandes, L.F.; Fontainhas-Fernandes, A.; Monteiro, S.M.; Pacheco, F.A.L. From catchment to fish: Impact of anthropogenic pressures on gill histopathology. Sci. Total Environ. 2016, 550, 972–986. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, A.R.; Sanches Fernandes, L.F.; Fontainhas-Fernandes, A.; Monteiro, S.M.; Pacheco, F.A.L. The impact of freshwater metal concentrations on the severity of histopathological changes in fish gills: A statistical perspective. Sci. Total Environ. 2017, 599–600, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Reshmi, T.V.; Christiansen, A.B.; Badiger, S.; Barton, D.N. Hydrology and Water Allocation in Malaprabha; Norwegian Institute for Water Research: Oslo, Norway, 2008; pp. 1–70. ISBN 9788257754303. [Google Scholar]
- Santos, R.M.B.; Sanches Fernandes, L.F.; Moura, J.P.; Pereira, M.G.; Pacheco, F.A.L. The impact of climate change, human interference, scale and modeling uncertainties on the estimation of aquifer properties and river flow components. J. Hydrol. 2014, 519, 1297–1314. [Google Scholar] [CrossRef]
- Yu, Y.; Disse, M.; Yu, R.; Yu, G.; Sun, L.; Huttner, P.; Rumbaur, C. Large-scale hydrological modeling and decision-making for agricultural water consumption and allocation in the main stem Tarim River, China. Water 2015, 7, 2821–2839. [Google Scholar] [CrossRef]
- Fernandes, L.F.S.; Marques, M.J.; Oliveira, P.C.; Moura, J.P. Decision support systems in water resources in the demarcated region of Douro—case study in Pinhão river basin, Portugal. Water Environ. J. 2014, 28, 350–357. [Google Scholar] [CrossRef]
- Pereira, M.G.; Fernandes, L.S.; Carvalho, S.; Santos, R.B.; Caramelo, L.; Alencoão, A. Modelling the impacts of wildfires on runoff at the river basin ecological scale in a changing Mediterranean environment. Environ. Earth Sci. 2016, 75, 1–14. [Google Scholar] [CrossRef]
- Santos, R.M.B.; Sanches Fernandes, L.F.; Varandas, S.G.P.; Pereira, M.G.; Sousa, R.; Teixeira, A.; Lopes-Lima, M.; Cortes, R.M.V.; Pacheco, F.A.L. Impacts of climate change and land-use scenarios on Margaritifera margaritifera, an environmental indicator and endangered species. Sci. Total Environ. 2015, 511, 477–488. [Google Scholar] [CrossRef]
- Álvarez, X.; Valero, E.; Santos, R.M.B.; Varandas, S.G.P.; Sanches Fernandes, L.F.; Pacheco, F.A.L. Anthropogenic nutrients and eutrophication in multiple land use watersheds: Best management practices and policies for the protection of water resources. Land Use Policy 2017, 69, 1–11. [Google Scholar] [CrossRef]
- Sanches Fernandes, L.F.; Santos, C.M.M.; Pereira, A.P.; Moura, J.P. Climate change impacts on nitrogen in a hydrographical basin in the northeast of Portugal. Indian J. Med. Res. 2012, 25, 556–568. [Google Scholar]
- Santos, R.M.B.; Sanches Fernandes, L.F.; Pereira, M.G.; Cortes, R.M.V.; Pacheco, F.A.L. A framework model for investigating the export of phosphorus to surface waters in forested watersheds: Implications to management. Sci. Total Environ. 2015, 536, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Sanches Fernandes, L.F.; Santos, C.M.M.; Perreira, A.P.; Moura, J.P. Model of management and decision support systems in the distribution of water for consumption. Eur. J. Environ. Civ. Eng. 2011, 15, 411–426. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Martin, S. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO—Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- INE—Instituto Nacional de Estatística. Dotações de Rega de Referência—Região Interior Norte e Centro; Direção-Geral de Agricultura e Desenvolvimento Rural: Lisbon, Portugal, 2017; pp. 1–3.
- INE—Instituto Nacional de Estatística. Projeção de População Residente 2012–2060; Instituto Nacional de Estatística: Lisbon, Portugal, 2014; pp. 1–18.
- Caetano, M.; Igreja, C.; Marcelino, F. Especificações Técnicas da Carta de Uso e Ocupação do Solo de Portugal Continental Para 1995, 2007, 2010 e 2015; Direção-Geral do Território: Lisbon, Portugal, 2018; pp. 1–103. [Google Scholar]
- Ronco, P.; Zennaro, F.; Torresan, S.; Critto, A.; Santini, M.; Trabucco, A.; Zollo, A.L.; Galluccio, G.; Marcomini, A. A risk assessment framework for irrigated agriculture under climate change. Adv. Water Resour. 2017, 110, 562–578. [Google Scholar] [CrossRef]
- Cortes, R.; Peredo, A.; Terêncio, D.; Sanches Fernandes, L.; Moura, J.; Jesus, J.; Magalhães, M.; Ferreira, P.; Pacheco, F. Undamming the Douro River Catchment: A Stepwise Approach for Prioritizing Dam Removal. Water 2019, 11, 693. [Google Scholar] [CrossRef]
Municipality | Resident Population in 1960 | Resident Population in 2011 | VP 1960–2011 (%) | Population Density in 1960 (inhabitants·km−2) | Population Density in 2011 (inhabitants·km−2) | DWCPC 1995–2009 (L·day−1) |
---|---|---|---|---|---|---|
Alfândega da Fé | 9659 | 5104 | −47 | 30 | 16 | 43 |
Bragança | 37,556 | 35,341 | −6 | 32 | 30 | 44 |
Carrazeda de Ansiães | 14,326 | 6373 | −56 | 51 | 23 | 45 |
Freixo de Espada à Cinta | 7252 | 3780 | −48 | 30 | 15 | 55 |
Macedo de Cavaleiros | 26,219 | 15,776 | −40 | 38 | 23 | 47 |
Miranda do Douro | 18,952 | 7482 | −61 | 39 | 15 | 39 |
Mogadouro | 19,626 | 9542 | −51 | 26 | 13 | 74 |
Torre de Moncorvo | 18,765 | 8572 | −54 | 35 | 16 | 54 |
Vila Flor | 11,829 | 6697 | −43 | 45 | 25 | 43 |
Vimioso | 12,763 | 4669 | −63 | 27 | 10 | 55 |
Total | 176,947 | 103,336 | −42 | 34 | 20 | 50 |
Crop | Irrigable Area (km2) | Irrigated Area (%) | Irrigated Area (km2) |
---|---|---|---|
Maize | 28.5 | 90 | 25.7 |
Potato | 28.5 | 80 | 22.8 |
Vineyards | 43.4 | 7 | 3.04 |
Olive groves | 321.8 | 7 | 22.5 |
Fruit trees | 130.8 | 70 | 91.5 |
Forages | 1.8 | 5 | 0.09 |
Horticulture | 31.9 | 50 | 15.9 |
Total | 586.7 | - | 181.5 |
Data Type | Description | Source |
---|---|---|
Topography | Digital Elevation Model (10 m) | Directorate-General of Territory http://www.dgterritorio.pt/ |
Land use | Corine Land Cover 1990, 2000 and 2006 (1:100,000) | European Environment Agency http://www.eea.europa.eu/ |
Soil type | Soil map of Trás-os-Montes and Alto Douro (1:100,000) | Directorate-General of Territory http://scrif.igeo.pt/ |
Meteorology | Daily precipitation, maximum and minimum temperatures, solar radiation, relative humidity, and wind speed | National System of Water Resources Information https://snirh.apambiente.pt/ |
Hydrography | Daily streamflow between 1957 and 2008 | National System of Water Resources Information https://snirh.apambiente.pt/ |
Resident population | Number of inhabitants per year and per municipality between 1960 and 2008 | Statistics Portugal https://www.ine.pt/ |
Water consumption | Domestic water consumption per municipality (L·day−1·inabitant−1) for the years 1995, 2001, 2006, 2008 and 2009 | Data base of Portugal https://www.pordata.pt/ |
COS2007 | Land use and land cover of 2007 | Directorate-General of Territory http://www.dgterritorio.pt/ |
COS2015 | Land use and land cover of 2015 | Directorate-General of Territory http://www.dgterritorio.pt/ |
FAO 56 | FAO-56 Dual Crop Coefficient method. Tables of chapters 6, 7 and 8 | Food and Agriculture Organization of the United Nations http://www.fao.org/home/en/ |
Projection of the resident population | Projection of number of inhabitants for 2060 | Statistics of Portugal https://www.ine.pt/ |
Projection of the irrigable area of olive groves | Projection of the irrigable area of olive groves for 2060 based on increased between COS2007 and COS2015 | Directorate-General of Territory http://www.dgterritorio.pt/ |
Parameters | Maize | Potato | Vineyards | Olive Groves | Fruit Trees | Forages | Horticulture |
---|---|---|---|---|---|---|---|
Crop stages (days) | |||||||
Initial | 30 | 30 | 30 | 30 | 35 | 10 | 23 |
Development | 40 | 35 | 60 | 90 | 60 | 20 | 33 |
Middle | 50 | 50 | 40 | 60 | 110 | 144 | 39 |
Late | 30 | 30 | 80 | 90 | 61 | 23 | 21 |
Sowing date | 1-Apr | 1-Apr | 21-Feb | 1-Mar | 1-Mar | 15-Oct | 1-Apr |
Kcb | |||||||
Kcb initial | 0.15 | 0.15 | 0.15 | 0.55 | 0.47 | 0.3 | 0.15 |
Kcb middle | 1.15 | 1.1 | 0.65 | 0.65 | 0.76 | 0.7 | 1.02 |
Kcb late | 0.33 | 0.65 | 0.4 | 0.65 | 0.64 | 0.7 | 0.72 |
Maximum height (m) | 2 | 0.6 | 1.75 | 4 | 3.67 | 0.31 | 0.45 |
Root depth | |||||||
Initial (m) | 0.3 | 0.3 | 1 | 1 | 1 | 0.3 | 0.25 |
Middle (m) | 1 | 0.4 | 1.5 | 1.45 | 1.45 | 0.65 | 0.56 |
Depletion fraction (p) | 0.55 | 0.35 | 0.45 | 0.65 | 0.51 | 0.54 | 0.42 |
Measure | Calibration | Acceptable Ranges | Validation | Acceptable Ranges |
---|---|---|---|---|
R2 | 0.63 | >0.5 acceptable [38] | 0.80 | >0.75 very good [38] |
RSR | 0.62 | Satisfactory [38] | 0.63 | Satisfactory [38] |
NS | 0.62 | Satisfactory [38] | 0.61 | Satisfactory [38] |
PBIAS | 2.7% | Very good [38] | −24% | Satisfactory [38] |
Irrigated Crops | Sabor River Basin | DGARD | INE | ||
---|---|---|---|---|---|
Irrigation Demand (m3∙ha−1) | Sprinkler, Micro-Sprinkler and Cannon (m3∙ha−1) | Drip (m3∙ha−1) | Groundwater (m3∙ha−1) | Irrigation (m3∙ha−1) | |
Maize | 5308 | 9163 | 7546 | 6177 | |
Potato | 5335 | 5484 | 4712 | 7385 | |
Vineyards | 2436 | 2281 | 2147 | 2302 | |
Olive groves | 2783 | 2919 | 2748 | 2259 | |
Fruit trees | 5620 | 6482 | 6100 | 5817 | |
Forages | 3475 | 5115 | 4213 | 8823 | |
Horticulture | 4496 | 5404 | 4514 | 5574 |
Historical View/Scenarios | Total Water Demand (103 m3) | Used Water (103 m3) | Water Demand Deficit | |
---|---|---|---|---|
(103 m3) | % | |||
Historical view from 1960 to 2008 | 1372.27 | 950.47 | 421.8 | 31 |
The scenario of increase of irrigated area | 1372.27 | 866.42 | 505.62 | 37 |
Scenario of projection to 2060 | 1044.5 | 659.33 | 385.15 | 37 |
Irrigated Crops | Area (km2) | Irrigation Demand (106 m3) | Applied Irrigation (106 m3) | Irrigation Deficit | |
---|---|---|---|---|---|
(106 m3) | % | ||||
Historical view from 1960 to 2008 | |||||
Maize | 25.7 | 14.08 | 4.14 | 9.94 | 67.2 |
Potato | 22.8 | 12.77 | 3.7 | 9.06 | 67.8 |
Vineyards | 3 | 0.75 | 0.3 | 0.45 | 56.6 |
Olive groves | 22.5 | 6.18 | 2.34 | 3.84 | 57.2 |
Fruit trees | 91.5 | 53.68 | 16.09 | 37.59 | 65.1 |
Forages | 0.1 | 0.03 | 0.02 | 0.01 | 50.5 |
Horticulture | 15.9 | 6.64 | 2.13 | 4.51 | 64.5 |
Total | 181.6 | 94.13 | 28.71 | 65.41 | 69.5 |
The scenario of increase of irrigated area | |||||
Maize | 28.5 | 17.7 | 3.98 | 13.72 | 77.5 |
Potato | 28.5 | 18.1 | 4 | 14.12 | 77.9 |
Vineyards | 43 | 11 | 2.7 | 8.27 | 75.4 |
Olive groves | 322 | 91.22 | 21.93 | 69.29 | 76 |
Fruit trees | 131 | 81.33 | 17.78 | 63.55 | 78.1 |
Forages | 1.8 | 0.64 | 0.28 | 0.35 | 55.4 |
Horticulture | 32 | 17.26 | 4.05 | 13.22 | 76.6 |
Total | 586.8 | 237.2 | 54.71 | 182.5 | 76.9 |
The scenario of projection to 2060 | |||||
Maize | 25.7 | 15.38 | 3.74 | 11.63 | 77.6 |
Potato | 22.8 | 13.97 | 3.34 | 10.63 | 78.1 |
Vineyards | 3 | 0.77 | 0.20 | 0.57 | 69.8 |
Olive groves | 494 | 140.08 | 33.10 | 106.98 | 70.6 |
Fruit trees | 91.5 | 56.74 | 12.67 | 44.07 | 76 |
Forages | 0.1 | 0.03 | 0.01 | 0.02 | 56.8 |
Horticulture | 15.9 | 8.34 | 2.11 | 6.23 | 75.8 |
Total | 653 | 235.3 | 55.2 | 180 | 76.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bessa Santos, R.M.; Sanches Fernandes, L.F.; Vitor Cortes, R.M.; Leal Pacheco, F.A. Development of a Hydrologic and Water Allocation Model to Assess Water Availability in the Sabor River Basin (Portugal). Int. J. Environ. Res. Public Health 2019, 16, 2419. https://doi.org/10.3390/ijerph16132419
Bessa Santos RM, Sanches Fernandes LF, Vitor Cortes RM, Leal Pacheco FA. Development of a Hydrologic and Water Allocation Model to Assess Water Availability in the Sabor River Basin (Portugal). International Journal of Environmental Research and Public Health. 2019; 16(13):2419. https://doi.org/10.3390/ijerph16132419
Chicago/Turabian StyleBessa Santos, Regina Maria, Luís Filipe Sanches Fernandes, Rui Manuel Vitor Cortes, and Fernando António Leal Pacheco. 2019. "Development of a Hydrologic and Water Allocation Model to Assess Water Availability in the Sabor River Basin (Portugal)" International Journal of Environmental Research and Public Health 16, no. 13: 2419. https://doi.org/10.3390/ijerph16132419
APA StyleBessa Santos, R. M., Sanches Fernandes, L. F., Vitor Cortes, R. M., & Leal Pacheco, F. A. (2019). Development of a Hydrologic and Water Allocation Model to Assess Water Availability in the Sabor River Basin (Portugal). International Journal of Environmental Research and Public Health, 16(13), 2419. https://doi.org/10.3390/ijerph16132419