Epidemiological Characteristics and Spatiotemporal Analysis of Mumps from 2004 to 2018 in Chongqing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Management
2.3. Spatial Autocorrelation Analysis
2.4. Scan Statistics
2.5. Statistical Software
3. Results
3.1. Epidemiological Characteristics
3.2. Incidence Maps
3.3. Spatial Autocorrelation Analysis
3.4. Spatial Cluster Analysis
3.5. Temporal and Space–Time Cluster Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Foy, H.; Cooney, M.; Hall, C.; Bor, E.; Maletzky, A. Isolation of mumps virus from children with acute lower respiratory tract disease. Am. J. Epidemiol. 1971, 94, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Philip, R.; Reinhard, K.; Lackman, D. Observations on a mumps epidemic in a virgin population. Am. J. Hyg. 1959, 69, 91–111. [Google Scholar] [PubMed]
- Hviid, A.; Rubin, S.; Mühlemann, K. Mumps. Lancet 2008, 371, 932–944. [Google Scholar] [CrossRef]
- Galazka, A.M.; Robertson, S.E.; Kraigher, A. Mumps and mumps vaccine: A global review. Bull. World Health Organ. 1999, 77, 3–14. [Google Scholar] [PubMed]
- Marshall, H.S.; Plotkin, S. The changing epidemiology of mumps in a high vaccination era. Lancet Infect. Dis. 2019, 19, 118–119. [Google Scholar] [CrossRef]
- Immunization Coverage. Available online: https://www.who.int/news-room/fact-sheets/detail/immunization-coverage (accessed on 16 July 2018).
- Fields, V.S.; Safi, H.; Waters, C.; Dillaha, J.; Capelle, L.; Riklon, S.; Wheeler, J.G.; Haselow, D.T. Mumps in a highly vaccinated Marshallese community in Arkansas, USA: An outbreak report. Lancet Infect. Dis. 2019, 19, 185–192. [Google Scholar] [CrossRef]
- Vygen, S.; Fischer, A.; Meurice, L.; Mounchetrou Njoya, I.; Gregoris, M.; Ndiaye, B.; Ghenassia, A.; Poujol, I.; Stahl, J.P.; Antona, D.; et al. Waning immunity against mumps in vaccinated young adults, France 2013. Eurosurveillance 2016, 21, 30156. [Google Scholar] [CrossRef]
- Aasheim, E.T.; Inns, T.; Trindall, A.; Emmett, L.; Brown, K.E.; Williams, C.J.; Reacher, M. Outbreak of mumps in a school setting, United Kingdom, 2013. Hum. Vaccines Immunother. 2014, 10, 2446–2449. [Google Scholar] [CrossRef] [Green Version]
- Westphal, D.W.; Eastwood, A.; Levy, A.; Davies, J.; Huppatz, C.; Gilles, M.; Lyttle, H.; Williams, S.A.; Dowse, G.K. A protracted mumps outbreak in Western Australia despite high vaccine coverage: A population-based surveillance study. Lancet Infect. Dis. 2019, 19, 177–184. [Google Scholar] [CrossRef]
- Cardemil, C.V.; Dahl, R.M.; James, L.; Wannemuehler, K.; Gary, H.E.; Shah, M.; Marin, M.; Riley, J.; Feikin, D.R.; Patel, M.; et al. Effectiveness of a Third Dose of MMR Vaccine for Mumps Outbreak Control. N. Engl. J. Med. 2017, 377, 947–956. [Google Scholar] [CrossRef]
- Albertson, J.P.; Clegg, W.J.; Reid, H.D.; Arbise, B.S.; Pryde, J.; Vaid, A.; Thompson-Brown, R.; Echols, F. Mumps Outbreak at a University and Recommendation for a Third Dose of Measles-Mumps-Rubella Vaccine—Illinois, 2015–2016. Morb. Mortal. Wkly. Rep. 2016, 65, 731–734. [Google Scholar] [CrossRef] [PubMed]
- Lewnard, J.A.; Grad, Y.H. Vaccine waning and mumps re-emergence in the United States. Sci. Transl. Med. 2018, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marin, M.; Marlow, M.; Moore, K.L.; Patel, M. Recommendation of the Advisory Committee on Immunization Practices for Use of a Third Dose of Mumps Virus–Containing Vaccine in Persons at Increased Risk for Mumps During an Outbreak. Morb. Mortal. Wkly. Rep. 2018, 67, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Mumps Reported Cases by Country. Available online: http://apps.who.int/gho/data/view.main.1540_53?lang=en (accessed on 19 July 2018).
- Shaw, N.; McGuire, S. Understanding the use of geographical information systems (GIS) in health informatics research: A review. J. Innov. Health Inform. 2017, 24, 940. [Google Scholar] [CrossRef] [PubMed]
- O’Dwyer, L.A.; Burton, D.L. Potential meets reality: GIS and public health research in Australia. Aust. N. Z. J. Public Health 1998, 22, 819–823. [Google Scholar] [CrossRef]
- Carroll, L.N.; Au, A.P.; Detwiler, L.T.; Fu, T.C.; Painter, I.S.; Abernethy, N.F. Visualization and analytics tools for infectious disease epidemiology: A systematic review. J. Biomed. Inform. 2014, 51, 287–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, B.; Liu, J.; Fu, Y.; Zhang, B.; Mao, Y. Spatio-Temporal Epidemiology of Viral Hepatitis in China (2003–2015): Implications for Prevention and Control Policies. Int. J. Environ. Res. Public Health 2018, 15, 661. [Google Scholar] [CrossRef]
- Dangisso, M.H.; Datiko, D.G.; Lindtjorn, B. Spatio-temporal analysis of smear-positive tuberculosis in the Sidama Zone, southern Ethiopia. PLoS ONE 2015, 10, e0126369. [Google Scholar] [CrossRef]
- Soto-Calle, V.; Rosas-Aguirre, A.; Llanos-Cuentas, A.; Abatih, E.; DeDeken, R.; Rodriguez, H.; Rosanas-Urgell, A.; Gamboa, D.; Umberto, D.; Erhart, A.; et al. Spatio-temporal analysis of malaria incidence in the Peruvian Amazon Region between 2002 and 2013. Sci. Rep. 2017, 7, 40350. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Liu, W.; Ma, W.; Shi, Y.; Wu, Y.; Li, Y.; Liang, S.; Zhu, Y.; Zhou, M. Spatiotemporal epidemiology of scarlet fever in Jiangsu Province, China, 2005–2015. BMC Infect. Dis. 2017, 17, 596. [Google Scholar] [CrossRef]
- Gui, J.; Liu, Z.; Zhang, T.; Hua, Q.; Jiang, Z.; Chen, B.; Gu, H.; Lv, H.; Dong, C. Epidemiological Characteristics and Spatial-Temporal Clusters of Hand, Foot, and Mouth Disease in Zhejiang Province, China, 2008–2012. PLoS ONE 2015, 10, e0139109. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Cheng, S.; Luo, C.; Rutherford, S.; Cao, J.; Xu, Q.; Liu, X.; Liu, Y.; Xue, F.; Xu, Q.; et al. Epidemiological Characteristics and Spatial-Temporal Clusters of Mumps in Shandong Province, China, 2005–2014. Sci. Rep. 2017, 7, 46328. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Yang, R.; Wei, Y.; Yu, D.; Zhai, W.; Cai, J.; Long, B.; Chen, S.; Tang, J.; Zhong, G.; et al. Spatial, temporal, and spatiotemporal analysis of mumps in Guangxi Province, China, 2005–2016. BMC Infect. Dis. 2018, 18, 360. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Meng, L.; Gou, F.; Wei, K.; Yang, X.; Liu, X. Spatial temporal distribution of mumps in Gansu, 2009–2013. Zhonghua Liu Xing Bing Xue Za Zhi 2015, 36, 1258–1262. [Google Scholar] [PubMed]
- Wang, L.; Wang, Y.; Jin, S.; Wu, Z.; Chin, D.P.; Koplan, J.P.; Wilson, M.E. Emergence and control of infectious diseases in China. Lancet 2008, 372, 1598–1605. [Google Scholar] [CrossRef]
- Bureau of Disease Control and Prevention. Available online: http://www.nhc.gov.cn/jkj/s3577/201511/f5d2ab9a5e104481939981c92cb18a54.shtml (accessed on 29 October 2015).
- Luc, A. Local Indicators of Spatial Association—LISA. Geogr. Anal. 2010, 27, 93–115. [Google Scholar]
- Ord, J.K.; Getis, A. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geogr. Anal. 2010, 27, 286–306. [Google Scholar] [CrossRef]
- Tango, T.; Takahashi, K. A flexibly shaped spatial scan statistic for detecting clusters. Int. J. Health Geogr. 2005, 4, 1–15. [Google Scholar] [CrossRef]
- Anselin, L.; Mccann, M. OpenGeoDa, open source software for the exploration and visualization of geospatial data. Proceedings of Acm Sigspatial International Symposium on Advances in Geographic Information Systems, Seattle, WA, USA, 4–6 November 2009; pp. 550–551. [Google Scholar]
- Jiang, R.J.; Yin, Q.Z.; Xu, M.J.; Zhao, Z.M.; Deng, Y.; Che, Y.C. Epidemiological characteristics of mumps in mainland China from 2004 to 2018 and key population for prevention and control. Zhongguo Dang Dai Er Ke Za Zhi 2019, 21, 441–444. [Google Scholar]
- Li, D.; Chen, Z.F.; Yang, X.H.; Pan, W.Y.; Wang, Q.; Zhang, S.H.; Zheng, N.X.; Huang, L.F.; Zhou, Y. Epidemiological and pathogenic characteristics of mumps in Fujian province, 2005–2017. Zhonghua Liu Xing Bing Xue Za Zhi 2018, 39, 1356–1361. [Google Scholar] [CrossRef]
- Mokdad, A.H.; Gagnier, M.C.; Colson, K.E.; Dansereau, E.; Zúñiga-Brenes, P.; Ríos-Zertuche, D.; Haakenstad, A.; Johanns, C.K.; Palmisano, E.B.; Hernandez, B.; et al. Missed Opportunities for Measles, Mumps, and Rubella (MMR) Immunization in Mesoamerica: Potential Impact on Coverage and Days at Risk. PLoS ONE 2015, 10, e0139680. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Hu, Y.; Zhang, G.; Zheng, J.; Li, L.; An, Z. Meta-analysis of vaccine effectiveness of mumps-containing vaccine under different immunization srategies in China. Vaccine 2014, 32, 4806–4812. [Google Scholar] [CrossRef] [PubMed]
- Barskey, A.E.; Glasser, J.W.; LeBaron, C.W. Mumps resurgences in the United States: A historical perspective on unexpected elements. Vaccine 2009, 27, 6186–6195. [Google Scholar] [CrossRef] [PubMed]
- Sane, J.; Gouma, S.; Koopmans, M.; De Melker, H.; Swaan, C.; Van Binnendijk, R.; Hahne, S. Epidemic of mumps among vaccinated persons, The Netherlands, 2009–2012. Emerg. Infect. Dis. 2014, 20, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Yang, Z.; Ding, H.; Zhang, X.; Dong, Z.; Hu, W.; Liu, X.; Wang, M.; Hu, G.; Fu, C. The relationship between meteorological factors and mumps incidence in Guangzhou, China, 2005–2012. Hum. Vaccines Immunother. 2014, 10, 2421–2432. [Google Scholar] [CrossRef] [PubMed]
- Muenchhoff, M.; Goulder, P.J. Sex differences in pediatric infectious diseases. J. Infect. Dis. 2014, 209 (Suppl. 3), S120–S126. [Google Scholar] [CrossRef]
- Van Lunzen, J.; Altfeld, M. Sex differences in infectious diseases-common but neglected. J. Infect. Dis. 2014, 209 (Suppl. 3), S79–S80. [Google Scholar] [CrossRef]
- Hu, W.; Li, Y.; Han, W.; Xue, L.; Zhang, W.; Ma, W.; Bi, P. Meteorological factors and the incidence of mumps in Fujian Province, China, 2005–2013: Non-linear effects. Sci. Total Environ. 2018, 619–620, 1286–1298. [Google Scholar] [CrossRef]
- Ho, Y.C.; Su, B.H.; Su, H.J.; Chang, H.L.; Lin, C.Y.; Chen, H.; Chen, K.T. The association between the incidence of mumps and meteorological parameters in Taiwan. Hum. Vaccines Immunother. 2015, 11, 1406–1412. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Lin, H.; Liang, Y.; Zhang, T.; Luo, C.; Jiang, Z.; Xu, Q.; Xue, F.; Liu, Y.; Li, X. The short-term association between meteorological factors and mumps in Jining, China. Sci. Total Environ. 2016, 568, 1069–1075. [Google Scholar] [CrossRef]
- Gram, L.; Soremekun, S.; Ten Asbroek, A.; Manu, A.; O’Leary, M.; Hill, Z.; Danso, S.; Amenga-Etego, S.; Owusu-Agyei, S.; Kirkwood, B.R. Socio-economic determinants and inequities in coverage and timeliness of early childhood immunisation in rural Ghana. Trop. Med. Int. Health 2014, 19, 802–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Wang, Y.; Chen, Y.; Li, Q. Determinants of inequality in the up-to-date fully immunization coverage among children aged 24–35 months: Evidence from Zhejiang province, East China. Hum. Vaccines Immunother. 2017, 13, 1902–1907. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Pickle, L.W.; Das, B. Evaluating spatial methods for investigating global clustering and cluster detection of cancer cases. Stat. Med. 2008, 27, 5111–5142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Year | Moran’s I | Z-Score | p-Value | Mean | SD |
---|---|---|---|---|---|
2004 | 0.4511 | 4.2581 | 0.001 | −0.0247 | 0.1117 |
2005 | −0.1398 | −1.117 | 0.134 | −0.0227 | 0.1048 |
2006 | 0.0564 | 0.7658 | 0.206 | −0.0244 | 0.1055 |
2007 | 0.1763 | 1.979 | 0.045 | −0.029 | 0.1037 |
2008 | −0.0838 | −0.5153 | 0.315 | −0.0301 | 0.1042 |
2009 | 0.0868 | 1.0407 | 0.142 | −0.0279 | 0.1102 |
2010 | 0.0508 | 0.6996 | 0.235 | −0.0265 | 0.1105 |
2011 | 0.1251 | 1.5539 | 0.063 | −0.0337 | 0.1022 |
2012 | −0.0225 | 0.049 | 0.436 | −0.0271 | 0.0945 |
2013 | 0.093 | 1.0947 | 0.129 | −0.0271 | 0.1096 |
2014 | −0.0498 | −0.2262 | 0.426 | −0.0248 | 0.1108 |
2015 | 0.2124 | 2.4075 | 0.02 | −0.0273 | 0.0995 |
2016 | −0.0888 | −0.6509 | 0.271 | −0.0223 | 0.1023 |
2017 | 0.0376 | 0.6416 | 0.252 | −0.0328 | 0.1096 |
2018 | −0.0359 | −0.0229 | 0.464 | −0.0335 | 0.1053 |
Year | Cluster Type | Counties (n) | Radius (km) | Observed Cases | Expected Cases | LLR | RR | p-Value |
---|---|---|---|---|---|---|---|---|
2004 | Most likely | 8 | 31.61 | 5076 | 1894.39 | 2381.57 | 3.90 | <0.001 |
2005 | Most likely | 4 | 47.62 | 2609 | 1295.83 | 600.37 | 2.31 | <0.001 |
2006 | Most likely | 2 | 48.38 | 1083 | 327.65 | 587.66 | 3.77 | <0.001 |
2007 | Most likely | 3 | 29.78 | 1152 | 367.10 | 604.56 | 3.79 | <0.001 |
Secondary | 1 | 0 | 350 | 140.23 | 115.04 | 2.61 | <0.001 | |
2008 | Most likely | 1 | 0 | 1158 | 370.77 | 567.79 | 3.43 | <0.001 |
Secondary | 1 | 0 | 702 | 262.61 | 261.85 | 2.81 | <0.001 | |
2009 | Most likely | 1 | 0 | 1760 | 688.26 | 622.52 | 2.77 | <0.001 |
Secondary | 3 | 47.23 | 2306 | 1176.00 | 471.10 | 2.14 | <0.001 | |
2010 | Most likely | 8 | 48.38 | 4338 | 2561.94 | 647.21 | 1.99 | <0.001 |
2011 | Most likely | 6 | 61.20 | 5575 | 3130.64 | 1001.61 | 2.16 | <0.001 |
2012 | Most likely | 1 | 0 | 1111 | 229.92 | 899.31 | 5.18 | <0.001 |
Secondary | 2 | 43.74 | 1123 | 457.40 | 360.55 | 2.59 | <0.001 | |
2013 | Most likely | 5 | 92.87 | 4216 | 2055.66 | 1092.64 | 2.54 | <0.001 |
2014 | Most likely | 4 | 62.99 | 2147 | 1321.45 | 264.41 | 1.83 | <0.001 |
Secondary | 5 | 24.54 | 1833 | 1121.74 | 223.30 | 1.80 | <0.001 | |
2015 | Most likely | 6 | 41.12 | 4513 | 1878.25 | 1739.22 | 3.36 | <0.001 |
2016 | Most likely | 1 | 0 | 658 | 184.63 | 378.95 | 3.82 | <0.001 |
Secondary | 1 | 0 | 362 | 83.80 | 256.92 | 4.49 | <0.001 | |
2017 | Most likely | 6 | 41.12 | 2599 | 1612.95 | 323.31 | 1.86 | <0.001 |
Secondary | 2 | 45.44 | 1402 | 746.98 | 254.58 | 2.04 | <0.001 | |
2018 | Most likely | 1 | 0 | 629 | 261.38 | 195.58 | 2.55 | <0.001 |
Secondary | 4 | 31.61 | 1466 | 904.21 | 175.21 | 1.80 | <0.001 |
Cluster Type | Time Frame | Counties (n) | Radius (km) | Observed Cases | Expected Cases | LLR | RR | p-Value |
---|---|---|---|---|---|---|---|---|
Most likely | April–July 2011 | 6 | 61.20 | 3819 | 644.86 | 3650.61 | 6.04 | <0.001 |
Secondary | May 2010 to July 2013 | 5 | 31.83 | 9866 | 4148.18 | 2936.65 | 2.47 | <0.001 |
Second Secondary | April–July 2009 | 5 | 66.04 | 3249 | 689.46 | 2497.72 | 4.79 | <0.001 |
Third Secondary | April–July 2012 | 2 | 43.74 | 821 | 121.36 | 871.45 | 6.79 | <0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Zhao, H.; Ou, R.; Xiang, H.; Hu, L.; Jing, D.; Sharma, M.; Ye, M. Epidemiological Characteristics and Spatiotemporal Analysis of Mumps from 2004 to 2018 in Chongqing, China. Int. J. Environ. Res. Public Health 2019, 16, 3052. https://doi.org/10.3390/ijerph16173052
Zhu H, Zhao H, Ou R, Xiang H, Hu L, Jing D, Sharma M, Ye M. Epidemiological Characteristics and Spatiotemporal Analysis of Mumps from 2004 to 2018 in Chongqing, China. International Journal of Environmental Research and Public Health. 2019; 16(17):3052. https://doi.org/10.3390/ijerph16173052
Chicago/Turabian StyleZhu, Hua, Han Zhao, Rong Ou, Haiyan Xiang, Ling Hu, Dan Jing, Manoj Sharma, and Mengliang Ye. 2019. "Epidemiological Characteristics and Spatiotemporal Analysis of Mumps from 2004 to 2018 in Chongqing, China" International Journal of Environmental Research and Public Health 16, no. 17: 3052. https://doi.org/10.3390/ijerph16173052
APA StyleZhu, H., Zhao, H., Ou, R., Xiang, H., Hu, L., Jing, D., Sharma, M., & Ye, M. (2019). Epidemiological Characteristics and Spatiotemporal Analysis of Mumps from 2004 to 2018 in Chongqing, China. International Journal of Environmental Research and Public Health, 16(17), 3052. https://doi.org/10.3390/ijerph16173052