Overview of Meta-Analyses: The Impact of Dietary Lifestyle on Stroke Risk
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Dairy Products
3.2. Alcohol Consumption
3.3. Monounsaturated Fatty Acids (MUFAs) and Polyunsaturated Fatty Acids (PUFAs)
3.4. Saturated Fatty Acids
3.5. Olive Oil
3.6. Vitamin E
3.7. Hazelnuts
3.8. Black and Green Tea
3.9. Sugary Drinks
3.10. Whole Grains
3.11. Fruit and Vegetables
3.12. Vitamin B Complex
3.13. Carbohydrate Intake
3.14. Soy
3.15. Fibers
3.16. Protein
3.17. Fish
3.18. Meat
3.19. Chocolate
3.20. Flavonoids
3.21. Vitamin C
3.22. Legumes
3.23. Eggs
3.24. Geographical Distribution of Primary Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Krishnamurthi, R.V.; Feigin, V.L.; Forouzanfar, M.H.; Mensha, G.A.; Connor, M.; Bennett, D.A.; Moran, A.E.; Sacco, R.L.; Anderson, L.M.; Truelsen, T.; et al. Global Burden of Diseases, Injuries, Risk Factors Study 2010 [GBD 2010]; GBD Stroke Experts Group.] Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990–2010: Findings from the Global Burden of Disease Study 2010. Lancet Glob. Health 2013, 1, e259–e281. [Google Scholar] [CrossRef]
- Olesen, J.; Gustavsson, A.; Svensson, M.; Wittchen, H.U.; Jönsso, B. CDBE 2010 study group European Brain Council. The economic cost of brain disorders in Europe. Eur. J. Neurol. 2012, 19, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Demaerschalk, B.M.; Hwang, H.M.; Leung, G. US cost burden of ischemic stroke: A systematic literature review. Am. J. Manag. Care 2010, 16, 525–533. [Google Scholar] [PubMed]
- Alwan, A. Global Status Report on Noncommunicable Diseases 2010; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Alexander, D.D.; Bylsma, L.C.; Vargas, A.J.; Cohen, S.S.; Doucette, A.; Mohamed, M.; Irvin, S.R.; Miller, P.E.; Watson, H.; Fryzek, J.P. Dairy consumption and CVD: A systematic review and meta-analysis. Br. J. Nutr. 2016, 11, 737–750. [Google Scholar] [CrossRef] [PubMed]
- Briggs, M.A.; Petersen, K.S.; Kris-Etherton, P.M. Saturated Fatty Acids and Cardiovascular Disease: Replacements for Saturated Fat to Reduce Cardiovascular Risk. Healthcare 2017, 5, e29. [Google Scholar] [CrossRef]
- Zhang, X.; Shu, L.; Si, C.; Yu, X.; Gao, W.; Liao, D.; Zhang, L.; Liu, X.; Zheng, P. Dietary Patterns and Risk of Stroke in Adults: A Systematic Review and Meta-analysis of Prospective Cohort Studies. J. Stroke Cerebrovasc. Dis. 2015, 24, 2173–2182. [Google Scholar] [CrossRef]
- Mullie, P.; Pizot, C.; Autier, P. Daily milk consumption and all-cause mortality, coronary heart disease and stroke: A systematic review and meta-analysis of observational cohort studies. BMC Public Health 2016, 16, 1236. [Google Scholar] [CrossRef]
- Pimpin, L.; Wu, J.H.; Haskelberg, H.; Del Gobbo, L.; Mozaffarian, D. Is Butter Back? A systematic review and meta-analysis of butter consumption and risk of cardiovascular disease, diabetes, and total mortality. PLoS ONE 2016, 11, e0158118. [Google Scholar] [CrossRef]
- Michaëlsson, K.; Wolk, A.; Langenskiold, S.; Basu, S.; Warensjo Lemming, E.; Melhus, H.; Byberg, L. Milk intake and risk of mortality and fractures in women and men: Cohort studies. BMJ 2014, 349, g6015. [Google Scholar] [CrossRef]
- Soedamah-Muthu, S.S.; Ding, E.L.; Al-Delaimy, W.K.; Hu, F.B.; Engberink, M.F.; Willett, W.C.; Geleijnse, J.M. Milk and dairy consumption and incidence of cardiovascular diseases and all-cause mortality: dose-response meta-analysis of prospective cohort studies. Am. J. Clin. Nutr. 2011, 93, 158–171. [Google Scholar] [CrossRef]
- Larsson, S.C.; Wallin, A.; Wolk, A.; Markus, H.S. Differing association of alcohol consumption with different stroke types: A systematic review and meta-analysis. BMC Med. 2016, 14, 178. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Solà, J. Cardiovascular risks and benefits of moderate and heavy alcohol consumption. Nat. Rev. Cardiol. 2015, 12, 576–587. [Google Scholar] [CrossRef] [PubMed]
- Stephan, L.S.; Almeida, E.D.; Markoski, M.M.; Garavaglia, J.; Marcadenti, A. Red Wine, Resveratrol and Atrial Fibrillation. Nutrients 2017, 30, 9. [Google Scholar] [CrossRef] [PubMed]
- De Gaetano, G.; Costanzo, S.; Di Castelnuovo, A.; Badimon, L.; Bejko, D.; Alkerwi, A.; Chiva-Blanch, G.; Estruch, R.; la Vecchia, C.; Panico, S.; et al. Effects of moderate beer consumption on health and disease: A consensus document. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 443–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, P.; Wang, J.; Shao, W. Monounsaturated fatty acid intake and stroke risk: A meta-analysis of prospective cohort studies. J. Stroke Cerebrovasc. Dis. 2016, 25, 1326–1334. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Orsini, N.; Wolk, A. Long-chain omega-3 polyunsaturated fatty acids and risk of stroke: A meta-analysis. Eur. J. Epidemiol. 2012, 27, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Pearson, T.A.; Wan, Y.; Hargrove, R.L.; Moriarty, K.; Fishell, V.; Etherton, T.D. High-monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. Am. J. Clin. Nutr. 1999, 70, 1009–1015. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality—A systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef]
- Lee-Kwan, S.E.; Moore, L.V.; Blanck, H.M.; Harris, D.M.; Galuska, D. Disparities in State-Specific Adult Fruit and Vegetable Consumption—United States 2015. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 1241–1247. [Google Scholar] [CrossRef]
- Chen, G.C.; Zhang, R.; Martínez-González, M.A.; Zhang, Z.L.; Bonaccio, M.; van Dam, R.M.; Qin, L.Q. Nut consumption in relation to all-cause and cause-specific mortality: A meta-analysis 18 prospective studies. Food Funct. 2017, 8, 3893–3905. [Google Scholar] [CrossRef]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: A systematic review and dose-response meta-analysis of prospective studies. BMC Med. 2016, 14, 207. [Google Scholar] [CrossRef] [PubMed]
- Del Gobbo, L.C.; Falk, M.C.; Feldman, R.; Lewis, K.; Mozaffarian, D. Effects of tree nuts on blood lipids, apolipoproteins, and blood pressure: Systematic review, meta-analysis, and dose-response of 61 controlled intervention trials. Am. J. Clin. Nutr. 2015, 102, 1347–1356. [Google Scholar] [CrossRef]
- Pereira, M.A.; Kartashov, A.I.; Ebbeling, C.B.; Van Horn, L.; Slattery, M.L.; Jacobs, D.R., Jr.; Ludwig, D.S. Fast-food habits, weight gain, and insulin resistance [the CARDIA study]: 15-year prospective analysis. Lancet. 2005, 365, 36–42. [Google Scholar] [CrossRef]
- Nomura, K.; Yamanouchi, T. The role of fructose-enriched diets in mechanisms of nonalcoholic fatty liver disease. J. Nutr. Biochem. 2012, 23, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Arab, L.; Li, U.W.; Elashoff, D. Green and black tea consumption and risk of stroke: A meta-analysis. Stroke 2009, 40, 1786–1792. [Google Scholar] [CrossRef]
- Tian, T.; Yang, K.Q.; Cui, J.G.; Zhou, L.L.; Zhou, X.L. Folic Acid Supplementation for Stroke Prevention in Patients with Cardiovascular Disease. Am. J. Med. Sci. 2017, 354, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.T.; Lee, M.; Hong, K.S.; Ovbiagele, B.; Saver, J.L. Efficacy of folic acid supplementation in cardiovascular disease prevention: An updated meta-analysis of randomized controlled trials. Eur. J. Intern. Med. 2012, 23, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.R., 3rd; Juraschek, S.; Pastor-Barriuso, R.; Bazzano, L.A.; Appel, L.J.; Guallar, E. Meta-analysis of folic acid supplementation trials on risk of cardiovascular disease and risk interaction with baseline homocysteine levels. Am. J. Cardiol. 2010, 106, 517–527. [Google Scholar] [CrossRef]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: Systematic review and dose-response analysis of prospective studies. BMJ 2016, 353, i2716. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. J. Clin. Epidemiol. 2009, 62, 1006–1012. [Google Scholar] [CrossRef]
- Shea, B.J.; Reeves, B.C.; Wells Thuku, M.; Hamel, C.; Moran, J.; Moher, D.; Tugwell, P.; Welch, V.; Kristjansson, E.; Henry, D.A. AMSTAR 2: A critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 2017, 358, j4008. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Sun, D. Consumption of Yogurt and the Incident Risk of Cardiovascular Disease: A Meta-Analysis of Nine Cohort Studies. Nutrients 2017, 9, 315. [Google Scholar] [CrossRef] [PubMed]
- Bolland, M.J.; Grey, A.; Avenell, A.; Gamble, G.D.; Reid, I.R. Calcium supplements with or without vitamin D and risk of cardiovascular events: Reanalysis of the Women’s Health Initiative limited access dataset and meta-analysis. BMJ 2011, 342, d2040. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, A.S.; Brown, T.J.; Brainard, J.S.; Biswas, P.; Thorpe, G.C.; Moore, H.J.; Deane, K.H.; AlAbdulghafoor, F.K.; Summerbell, C.D.; Worthington, H.V.; et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2018, 11, CD003177. [Google Scholar] [PubMed]
- Hooper, L.; Al-Khudairy, L.; Abdelhamid, A.S.; Rees, K.; Brainard, J.S.; Brown, T.J.; Ajabnoor, S.M.; O’Brien, A.T.; Winstanley, L.E.; Donaldson, D.H.; et al. Omega-6 fats for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2018, 11, CD011094. [Google Scholar] [PubMed]
- Abdelhamid, A.S.; Martin, N.; Bridges, C.; Brainard, J.S.; Wang, X.; Brown, T.J.; Hanson, S.; Jimoh, O.F.; Ajabnoor, S.M.; Deane, K.H.; et al. Polyunsaturated fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2018, 11, CD012345. [Google Scholar]
- Muto, M.; Ezaki, O. High Dietary Saturated Fat is Associated with a Low Risk of Intracerebral Hemorrhage and Ischemic Stroke in Japanese but not in Non-Japanese: A Review and Meta-Analysis of Prospective Cohort Studies. J. Atheroscler. Thromb. 2018, 25, 375–392. [Google Scholar] [CrossRef] [PubMed]
- Hooper, L.; Martin, N.; Abdelhamid, A.; Davey Smith, G. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst. Rev. 2015, 6, CD01173. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Dominguez, L.J.; Delgado-Rodríguez, M. Olive oil consumption and risk of CHD and/or stroke: A meta-analysis of case-control, cohort and intervention studies. Br. J. Nutr. 2014, 112, 248–259. [Google Scholar] [CrossRef]
- Bin, Q.; Hu, X.; Cao, Y.; Gao, F. The role of vitamin E (tocopherol) supplementation in the prevention of stroke. A meta-analysis of 13 randomised controlled trials. Thromb. Haemost. 2011, 105, 579–585. [Google Scholar] [CrossRef]
- Cheng, P.; Wang, L.; Ning, S.; Liu, Z.; Lin, H.; Chen, S.; Zhu, J. Vitamin E intake and risk of stroke: A meta-analysis. Br. J. Nutr. 2018, 120, 1181–1188. [Google Scholar] [CrossRef] [PubMed]
- Narain, A.; Kwok, C.S.; Mamas, M.A. Soft drinks and sweetened beverages and the risk of cardiovascular disease and mortality: A systematic review and meta-analysis. Int. J. Clin. Pract. 2016, 70, 791–805. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Wang, C.; Wang, S.; Cao, G.; Jin, C.; Yu, J.; Li, X.; Yan, J.; Wang, F.; Yu, W.; et al. Carbohydrate Intake, Glycemic Index, Glycemic Load, and Stroke: A Meta-analysis of Prospective Cohort Studies. Asia Pac. J. Public Health 2015, 27, 486–496. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Zhang, X.; Li, C.; Jiao, S.; Dong, W. Association between consumption of soy and risk of cardiovascular disease: A meta-analysis of observational studies. Eur. J. Prev. Cardiol. 2017, 24, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xu, G.; Liu, D.; Zhu, W.; Fan, X.; Liu, X. Dietary fiber consumption and risk of stroke. Eur. J. Epidemiol. 2013, 28, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.W.; Yang, Z.; Li, M.; Li, K.; Deng, Y.Q.; Tang, Z.Y. Association between dietary protein intake and risk of stroke: A meta-analysis of prospective studies. Int. J. Cardiol. 2016, 223, 548–551. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.Z.; Xu, J.Y.; Chen, G.C.; Ma, Y.X.; Qin, L.Q. Effects of fatty and lean fish intake on stroke risk: A meta-analysis of prospective cohort studies. Lipids Health Dis. 2018, 17, 264. [Google Scholar] [CrossRef]
- Xun, P.; Qin, B.; Song, Y.; Nakamura, Y.; Kurth, T.; Yaemsiri, S.; Djousse, L.; He, K. Fish consumption and risk of stroke and its subtypes: Accumulative evidence from a meta-analysis of prospective cohort studies. Eur. J. Clin. Nutr. 2012, 66, 1199–1207. [Google Scholar] [CrossRef]
- Kim, K.; Hyeon, J.; Lee, S.A.; Kwon, S.O.; Lee, H.; Keum, N.; Lee, J.K.; Park, S.M. Role of Total, Red, Processed, and White Meat Consumption in Stroke Incidence and Mortality: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. J. Am. Heart Assoc. 2017, 6, e005983. [Google Scholar] [CrossRef]
- Yuan, S.; Li, X.; Jin, Y.; Lu, J. Chocolate Consumption and Risk of Coronary Heart Disease, Stroke, and Diabetes: A Meta-Analysis of Prospective Studies. Nutrients 2017, 9, e688. [Google Scholar] [CrossRef]
- Tang, Z.; Li, M.; Zhang, X.; Hou, W. Dietary flavonoid intake and the risk of stroke: A dose-response meta-analysis of prospective cohort studies. BMJ Open 2016, 6, e008680. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.C.; Lu, D.B.; Pang, Z.; Liu, Q.F. Vitamin C intake, circulating vitamin C and risk of stroke: A meta-analysis of prospective studies. J. Am. Heart Assoc. 2013, 2, e000329. [Google Scholar] [CrossRef] [PubMed]
- Afshin, A.; Micha, R.; Khatibzadeh, S.; Mozaffarian, D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2014, 100, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.D.; Miller, P.E.; Vargas, A.J.; Weed, D.L.; Cohen, S.S. Meta-analysis of Egg Consumption and Risk of Coronary Heart Disease and Stroke. J. Am. Coll. Nutr. 2016, 35, 704–716. [Google Scholar] [CrossRef] [PubMed]
- Iacoviello, L.; Bonaccio, M.; Cairella, G.; Catani, M.V.; Costanzo, S.; D’Elia, L.; Giacco, R.; Rendina, D.; Sabino, P.; Savini, I.; et al. Diet and primary prevention of stroke: Systematic review and dietary recommendations by the ad hoc Working Group of the Italian Society of Human Nutrition. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 309–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uesugi, S.; Ishihara, J.; Iso, H.; Sawada, N.; Takachi, R.; Inoue, M.; Tsugane, S. Dietary intake of antioxidant vitamins and risk of stroke: The Japan Public Health Center-based Prospective Study. Eur. J. Clin. Nutr. 2017, 71, 1179–1185. [Google Scholar] [CrossRef]
- Tressera-Rimbau, A.; Arranz, S.; Eder, M.; Vallverdú-Queralt, A. Dietary Polyphenols in the Prevention of Stroke. Oxid. Med. Cell. Longev. 2017, 2017, 7467962. [Google Scholar] [CrossRef]
- Shirodaria, C.; Antoniades, C.; Lee, J.; Jackson, C.E.; Robson, M.D.; Francis, J.M.; Moat, S.J.; Ratnatunga, C.; Pillai, R.; Refsum, H.; et al. Global improvement of vascular function and redox state with low-dose folic acid: Implications for folate therapy in patients with coronary artery disease. Circulation 2007, 115, 2262–2270. [Google Scholar] [CrossRef] [PubMed]
- Sozen, E.; Demirel, T.; Ozer, N.K. Vitamin E: Regulatory Role in the cardiovascular system. IUBMB Life 2019, 71, 507–515. [Google Scholar] [CrossRef]
- Altobelli, E.; Rapacchietta, L.; Angeletti, P.M.; Barbante, L.; Profeta, F.V.; Fagnano, R. Breast cancer screening programmes across the who european region: Differences among countries based on national income level. Int. J. Environ. Res. Public Health 2017, 4, e452. [Google Scholar] [CrossRef]
- Altobelli, E.; Rapacchietta, L.; Marziliano, C.; Campagna, G.; Profeta, V.F.; Fagnano, R. Differences in colorectal cancer surveillance epidemiology and screening in the WHO European Region. Oncol. Lett. 2019, 17, 2531–2542. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Bazzano, L.A. The low-carbohydrate diet and cardiovascular risk factors: Evidence from epidemiologic studies. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 337–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullee, A.; Romaguera, D.; Pearson-Stuttard, J.; Viallon, V.; Stepien, M.; Freisling, H.; Fagherazzi, G.; Mancini, F.R.; Boutron-Ruault, M.C.; Kühn, T.; et al. Association Between Soft Drink Consumption and Mortality in 10 European Countries. JAMA Intern. Med. 2019. [Google Scholar] [CrossRef] [PubMed]
- Jochmann, N.; Lorenz, M.; Krosigk, A.V.; Martus, P.; Böhm, V.; Baumann, G.; Stangl, K.; Stangl, V. The efficacy of black tea in ameliorating endothelial function is equivalent to that of green tea. Br. J. Nutr. 2008, 99, 863–868. [Google Scholar] [CrossRef]
- Pandian, J.D.; Gall, S.L.; Kate, M.P.; Silva, G.S.; Akinyemi, R.O.; Ovbiagele, B.I.; Lavados, P.M.; Gandhi, D.B.C.; Thrift, A.G. Prevention of stroke: A global perspective. Lancet 2018, 392, 1269–1278. [Google Scholar] [CrossRef]
- Lake, I.R.; Hooper, L.; Abdelhamid, A.; Bentham, G.; Boxall, A.B.; Draper, A.; Fairweather-Tait, S.; Hulme, M.; Hunter, P.R.; Nichols, G.; et al. Climate change and food security: Health impacts in developed countries. Environ. Health Perspect. 2012, 120, 1520–1526. [Google Scholar] [CrossRef]
- Ray, D.K.; West, P.C.; Clark, M.; Gerber, J.S.; Prishchepov, A.V.; Chatterjee, S. Climate change has likely already affected global food production. PLoS ONE 2019, 14, e0217148. [Google Scholar] [CrossRef]
- Willett, W.C.; Stampfer, M.J. Current evidence on healthy eating. Annu. Rev. Public Health 2013, 34, 77–95. [Google Scholar] [CrossRef]
- O’Connor, L.E.; Kim, J.E.; Campbell, W.W. Total red meat intake of ≥0.5 servings/day does not negatively influence cardiovascular disease risk factors: A systemically searched meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2017, 105, 57–69. [Google Scholar] [CrossRef]
- Bellavia, A.; Stilling, F.; Wolk, A. High red meat intake and all-cause cardiovascular and cancer mortality: Is the risk modified by fruit and vegetable intake? Am. J. Clin. Nutr. 2016, 104, 1137–1143. [Google Scholar] [CrossRef]
- Yin, J.; Liao, S.X.; He, Y.; Wang, S.; Xia, G.H.; Liu, F.T.; Zhu, J.J.; You, C.; Chen, Q.; Zhou, L.; et al. Dysbiosis of Gut Microbiota with Reduced Trimethylamine-N-Oxide Level in Patients with Large-Artery Atherosclerotic Stroke or Transient Ischemic Attack. J. Am. Heart Assoc. 2015, 4, e002699. [Google Scholar] [CrossRef] [PubMed]
- Xia, G.H.; You, C.; Gao, X.X.; Zeng, X.L.; Zhu, J.J.; Xu, K.Y.; Tan, C.H.; Xu, R.T.; Wu, Q.H.; Zhou, H.W.; et al. Stroke Dysbiosis Index (SDI) in Gut Microbiome Are Associated with Brain Injury and Prognosis of Stroke. Front. Neurol. 2019, 10, 397. [Google Scholar] [CrossRef] [PubMed]
Author | Food or Beverage | Control Group | Literature Search Update | Number of Primary Studies | Type of Strokes * | Number of Studies for Evaluated Strokes | Population | Effect Size 95% CI | |
---|---|---|---|---|---|---|---|---|---|
No. Total | No. Events | ||||||||
Observational Studies | |||||||||
Alexander [5] | High milk intake | Low milk intake | 2016 | K = 31 | Ischemic or Hemorrhagic | 7 | - | - | 0.91 (0.83; 0.99) |
High milk intake | Low milk intake | Ischemic or Hemorrhagic (in men) | 4 | - | - | 1.04 (0.96; 1.14) | |||
High milk intake | Low milk intake | Ischemic or Hemorrhagic | 4 | - | - | 0.93 (0.81; 1.06) | |||
High milk intake | Low milk intake | Hemorrhagic | 3 | - | - | 0.93 (0.69; 1.25) | |||
High cheese intake | Low cheese intake | Ischemic or Hemorrhagic | 4 | - | - | 0.87 (0.77; 0.99) | |||
Zhang [7] | Western dietary pattern—high categories # | Western dietary pattern—low categories # | 2015 | K = 21 | Ischemic or Hemorrhagic | 8 | 143,798 | 2049 | 1.05 (0.82; 1.35) ** |
Healthy dietary pattern—high categories # | Healthy dietary pattern—low categories # | 14 | 318,813 | 3971 | 0.77 (0.64; 0.93) ** | ||||
Mullie [8] | 200 mL/day daily milk consumption | No milk consumption | 2016 | K = 19 | Ischemic or Hemorrhagic | 10 | 567,717 | 39,352 | 0.91 (0.82; 1.02) |
Ischemic or Hemorrhagic (in men) | 5 | - | - | 0.96 (0.86; 1.09) | |||||
Pimpin [9] | Butter intake <14 g/day | Butter intake >14 g/day | 2016 | K = 4 | Ischemic or Hemorrhagic | 3 | 173,853 | 5229 | 1.01 (0.98; 1.03) |
Larsson [12] | Light-moderate drinking | No drinkers | 2016 | K = 27 | Ischemic stroke | 8 | - | - | 0.87 (0.81; 0.92) |
Heavy drinking | No drinkers | 8 | - | - | 1.13 (0.95; 1.19) | ||||
Light-moderate drinking | Never drinkers | 8 | - | - | 0.87 (0.82; 0.91) | ||||
Heavy drinking | Never drinkers | 8 | - | - | 1.06 (0.95; 1.19) | ||||
Occasional drinking | Light-moderate drinkers | 8 | - | - | 0.98 (0.94; 1.04) | ||||
Heavy drinking | Occasional drinkers | 8 | - | - | 1.13 (1.03; 1.24) | ||||
Light-moderate drinking | No drinkers | Intracerebral hemorrhage | 5 | - | - | 0.91 (0.64; 1.29) | |||
Heavy drinking | No drinkers | 4 | - | - | 1.21 (0.87; 1.67) | ||||
Light-moderate drinking | Occasional drinkers | 4 | - | - | 1.04 (0.89; 1.21) | ||||
Heavy drinking | Occasional drinkers | 4 | - | - | 1.74 (1.45; 2.09) | ||||
Light-moderate drinking | No drinkers | Subarachnoid Hemorrhage events | 5 | - | - | 1.39 (1.00; 1.92) | |||
Heavy drinking | No drinkers | 3 | - | - | 1.43 (1.00; 2.05) | ||||
Light-moderate drinking | Occasional drinkers | 4 | - | - | 1.10 (0.84; 1.44) | ||||
Heavy drinking | Occasional drinkers | 4 | - | - | 1.62 (0.89; 2.29) | ||||
Cheng [16] | High monounsaturated fatty acids (MUFAs) intake | Low usage of MUFAs | 2016 | K = 10 | Ischemic or Hemorrhagic | 10 | 314,511 | 5827 | 0.86 (0.74; 1.00) |
Ischemic stroke | 8 | - | 0.92 (0.79; 1.08) | ||||||
Hemorrhagic stroke | 5 | - | - | 0.68 (0.49; 0.96) | |||||
Larsson [17] | High long-chain omega-3 polyunsaturated fatty acids (PUFAs) intake | Low intake of PUFA | 2012 | K = 10 | Ischemic or Hemorrhagic | 10 | 242,076 | 5238 | 0.90 (0.81; 1.10) |
Ischemic stroke | 5 | - | - | 0.82 (0.71; 0.94) | |||||
Hemorrhagic stroke | 5 | - | - | 0.80 (0.55; 1.15) | |||||
Martin-Gonzales [40] | Olive oil (>25 g) | Olive oil (<25 g) | 2014 | K = 2 | Ischemic or Hemorrhagic | 2 | - | - | 0.74 (0.60; 0.92) |
Cheng [41] | Vitamin E | - | 2018 | K = 9 | Ischemic or Hemorrhagic | 9 | - | - | 0.83 (0.73; 0.94) |
Aune [19] | High intake of fruit and vegetables | Low intake of fruit and vegetables | 2017 | K = 95 | Ischemic or Hemorrhagic | 8 | 226,910 | 10,560 | 0.79 (0.71; 0.88) |
High intake of fruit | Low intake of fruit | Ischemic or Hemorrhagic | 17 | 960,337 | 46,951 | 0.82 (0.77; 0.87) | |||
High intake vegetables | Low intake vegetables | Ischemic or Hemorrhagic | 13 | 427,124 | 14,519 | 0.87 (0.81; 0.95) | |||
High intake apples and pears | Low intake apples and pears | Ischemic or Hemorrhagic | 6 | - | - | 0.88 (0.81; 0.96) | |||
High intake berries | Low intake berries | Ischemic or Hemorrhagic | 5 | - | - | 0.98 (0.86; 1.12) | |||
High intake citrus fruits | Low intake citrus fruits | Ischemic or Hemorrhagic | 8 | - | - | 0.74 (0.65; 0.84) | |||
High intake citrus fruit juice | Low intake citrus fruit juice | Ischemic or Hemorrhagic | 2 | - | - | 0.90 (0.74; 1.10) | |||
High intake dried fruits | Low intake dried fruits | Ischemic or Hemorrhagic | 2 | - | - | 0.92 (0.74; 1.15) | |||
High intake fruits juice | Low intake fruit juice | Ischemic or Hemorrhagic | 2 | - | - | 0.67 (0.60; 0.76) | |||
High intake grapes | Low intake grapes | Ischemic or Hemorrhagic | 2 | - | - | 0.72 (0.47; 1.10) | |||
High intake allium vegetables | Low intake allium vegetables | Ischemic or Hemorrhagic | 2 | - | - | 0.89 (0.80; 1.00) | |||
High intake cruciferous vegetables | Low intake cruciferous vegetables | Ischemic or Hemorrhagic | 4 | - | - | 0.97 (0.78; 1.20) | |||
High intake green leafy vegetables | Low intake green leafy vegetables | Ischemic or Hemorrhagic | 4 | - | - | 0.88 (0.81; 0.95) | |||
High intake pickled vegetables | Low intake pickled vegetables | Ischemic or Hemorrhagic | 2 | - | - | 0.80 (0.73; 0.88) | |||
High intake potatoes | Low intake potatoes | Ischemic or Hemorrhagic | 4 | - | - | 0.94 (0.87; 1.01) | |||
High intake root vegetables | Low intake root vegetables | Ischemic or Hemorrhagic | 2 | - | - | 1.01 (0.89; 1.14) | |||
High intake tomatoes | Low intake tomatoes | Ischemic or Hemorrhagic | 3 | - | - | 0.95 (0.68; 1.31) | |||
High intake berries | Low intake berries | Ischemic | 3 | - | - | 0.95 (0.75; 1.21) | |||
High intake citrus fruits | Low intake citrus fruits | Ischemic | 7 | - | - | 0.78 (0.66; 0.92) | |||
High intake citrus fruit juice | Low intake citrus fruit juice | Ischemic | 2 | - | - | 0.65 (0.51; 0.84) | |||
High intake allium vegetables | Low intake allium vegetables | Ischemic | 2 | - | - | 0.90 (0.78; 1.03) | |||
High intake cruciferous vegetables | Low intake cruciferous vegetables | Ischemic | 5 | - | - | 0.82 (0.66; 1.01) | |||
High intake green leafy vegetables | Low intake green leafy vegetables | Ischemic | 4 | - | - | 0.88 (0.78; 0.99) | |||
High intake potatoes | Low intake potatoes | Ischemic | 5 | - | - | 0.97 (0.87; 1.08) | |||
High intake root vegetables | Low intake root vegetables | Ischemic | 3 | - | - | 0.93 (0.73; 1.18) | |||
High intake tomatoes | Low intake tomatoes | Ischemic | 2 | - | - | 0.80 (0.69; 0.92) | |||
High intake berries | Low intake berries | Hemorrhagic | 3 | - | - | 1.15 (0.89; 1.49) | |||
High intake citrus fruits | Low intake citrus fruits | Hemorrhagic | 3 | - | - | 0.74 (0.55; 1.01) | |||
High intake cruciferous vegetables | Low intake cruciferous vegetables | Hemorrhagic | 2 | - | - | 0.83 (0.33; 2.12) | |||
High intake potatoes | Low intake potatoes | Hemorrhagic stroke | 3 | - | - | 1.06 (0.83; 1.36) | |||
High intake root vegetables | Low intake root vegetables | Hemorrhagic stroke | 2 | - | - | 1.05 (0.76; 1.44) | |||
Chen [21] | All nuts high consumption | All nuts low consumption | 2017 | K = 16 | Ischemic or Hemorrhagic | 12 | 449,293 | 4398 | 0.82 (0.73; 0.91) |
Nut plus peanut butter high consumption | Nut plus peanut butter low consumption | 3 | 104,531 | 924 | 0.84 (0.70; 1.01) | ||||
Peanuts high consumption | Peanuts low consumption | 5 | 265,252 | 7025 | 0.76 (0.69; 0.82) | ||||
Tree nuts high consumption | Tree nuts low consumption | 3 | 130,987 | 6394 | 0.79 (0.68; 0.92) | ||||
Aune [30] | High intake of whole grains or specific types of grains | Low intake of whole grains or specific types of grains | 2016 | K = 15 | Ischemic or Hemorrhagic | 5 | - | - | 0.87 (0.72; 1.05) |
High intake whole grain bread | Low intake whole grain bread | 2 | - | - | 0.88 (0.75; 1.03) | ||||
High intake of whole grain breakfast cereals | Low intake of whole grain breakfast cereals | 2 | - | - | 0.99 (0.53; 1.86) | ||||
High intake of refined grain | Low intake of refined grain | 4 | - | - | 0.95 (0.78; 1.14) | ||||
High intake total rice | Low intake total rice | 4 | - | - | 1.02 (0.94; 1.11) | ||||
Wu [33] | High yogurt intake | Low yogurt intake | 2017 | K = 7 | Ischemic or Hemorrhagic | 7 | - | - | 1.02 (0.92; 1.13) |
Muto [38] | High saturated fatty acid intake | Low saturated fatty acid intake | 2018 | K = 16 | Ischemic | 11 | - | - | 0.88 (0.81; 0.96) |
Narain [43] | High intake sugar-sweetened beverages | Low intake sugar-sweetened beverages | 2016 | K = 7 | Ischemic or Hemorrhagic | 3 | 236,061 | - | 1.10 (0.97; 1.25) |
High intake sugar-sweetened beverages | Low intake sugar-sweetened beverages | Ischemic stroke (in men) | 3 | - | - | 1.01 (0.74; 1.37) | |||
High intake sugar-sweetened beverages | Low intake sugar-sweetened beverages | Ischemic stroke (in women) | 3 | - | - | 1.33 (1.07; 1.66) | |||
High intake sugar-sweetened beverages | Low intake sugar-sweetened beverages | Hemorrhagic stroke (in men) | 3 | - | - | 0.87 (0.68; 1.12) | |||
High intake sugar-sweetened beverages | Low intake sugar-sweetened beverages | Hemorrhagic stroke (in women) | 3 | - | - | 0.83 (0.62; 1.10) | |||
Cai [44] | Glycemic index | - | 2014 | K = 7 | Ischemic or Hemorrhagic | 7 | - | - | 1.10 (0.99; 1.21) |
Glycemic load | 1.19 (1.05; 1.36) | ||||||||
Carbohydrate intake | 1.12 (0.93; 1.35) | ||||||||
Yan [45] | High soy consumption | Low soy consumption | 2016 | K = 11 | Ischemic or Hemorrhagic | 11 | - | - | 0.82 (0.68; 0.99) |
Zhang [46] | High fiber intake | Low fiber intake | 2013 | K = 11 | Ischemic or Hemorrhagic | 11 | 325,627 | - | 0.83 (0.74; 0.93) |
Ischemic | 8 | - | - | 0.83 (0.74; 0.93) | |||||
Hemorrhagic | 5 | - | - | 0.87 (0.74; 1.05) | |||||
Zhang [47] | Protein intake | - | 2016 | K = 12 | Ischemic or Hemorrhagic | 12 | - | - | 0.98 (0.89; 1.07) |
Ischemic | 8 | 0.94 (0.80; 1.10) | |||||||
Hemorrhagic | 4 | 1.05 (0.97; 1.14) | |||||||
Animal protein | - | Ischemic or Hemorrhagic | 8 | 0.94 (0.75; 1.17) | |||||
Vegetable protein | - | Ischemic or Hemorrhagic | 8 | 0.90 (0.82; 0.99) | |||||
Qin [48] | Lean fish | Fatty fish | 2018 | K = 5 | Ischemic or Hemorrhagic | 5 | - | - | 0.88 (0.74; 1.04) |
High lean fish intake | Low lean fish intake | 2018 | K = 5 | Ischemic or Hemorrhagic | 5 | - | - | 0.81 (0.67; 0.99) | |
Xun [49] | High fish intake | Low fish intake | 2012 | K = 16 | Ischemic or Hemorrhagic | 16 | - | - | 0.91 (0.85; 0.98) * |
Kim [50] | High total meat intake | Low total meat intake | 2016 | K= 7 | Ischemic or Hemorrhagic | 6 | - | - | 1.18 (1.09; 1.28) |
High red meat intake | Low red meat intake | 7 | - | - | 1.11 (1.03; 1.20) | ||||
High processed meat intake | Low processed meat intake | 8 | - | - | 1.17 (1.08; 1.25) | ||||
High white meat intake | Low white meat intake | 4 | - | - | 0.87 (0.78; 0.96) | ||||
Yuan [51] | High chocolate intake | Low chocolate intake | 2017 | K = 8 | Ischemic or Hemorrhagic | 8 | - | - | 0.84 (0.78; 0.90) |
Tang [52] | High flavonoids intake | Low flavonoids intake | 2016 | K = 11 | Ischemic or Hemorrhagic | 11 | - | 0.89 (0.82; 0.97) | |
Chen [53] | High vitamin C intake | Low vitamin C intake | 2011 | K = 11 | Ischemic or Hemorrhagic | 11 | - | - | 0.81 (0.74; 0.90) |
Ischemic | 4 | 0.77 (0.64; 0.92) | |||||||
Hemorrhagic | 2 | - | - | 1.07 (0.38; 3.00) | |||||
Afshin [54] | Legumes 100 g/week | No consumption | 2014 | K = 6 | Ischemic | 3 | - | - | 1.07 (0.77; 1.50), |
Hemorrhagic | 4 | - | - | 1.23 (0.91; 1.66) | |||||
Alexander [55] | 1 egg/day | <2 eggs/week | 2016 | K = 7 | Ischemic or Hemorrhagic | 7 | - | - | 0.88 (0.81; 0.97) |
RCT | |||||||||
Bolland [34] | High Ca from dairy products | Low Ca from dairy products | 2011 | K = 8 | Ischemic or Hemorrhagic | 5 | - | - | 0.69 (0.60; 0.81) |
Calcium supplement 500 mg and D vitamin | Placebo | Ischemic or Hemorrhagic | 3 | 20,090 | 477 | 1.20 (1.00; 1.43) | |||
Tian [27] | Intervention regimen folic acid (FA) ## only | No supplementation | 2017 | K = 11 | Ischemic or Hemorrhagic | 11 | 21,295 | 657 | 0.79 (0.68; 0.92) |
Intervention regimen FA + vitamin B | No supplementation | 27,486 | 1589 | 0.91 (0.82; 1.00) | |||||
Arab [26] | Tea 3 cups | Tea 1 cup | 2009 | K = 9 | Ischemic or Hemorrhagic | 9 | - | - | 0.77 0.71; 0.85 |
Abdelhamid [35] | High long-chain omega-3 polyunsaturated fatty acids (PUFAs) intake | Low PUFAs intake | 2018 | K = 32 | Ischemic or Hemorrhagic | 28 | 89,358 | 1818 | 1.06 (0.96–1.16) |
High alpha linoleic acid intake | Low alpha linoleic acid intake | Ischemic or Hemorrhagic | 4 | 19,327 | 51 | 1.15 (0.66; 2.01) | |||
Hooper [36] | Low omega-6 | High omega-6 intake | 2018 | K = 4 | Ischemic or Hemorrhagic | 4 | 3730 | 54 | 1.36 (0.45; 4.11) |
Abdelhamid [37] | High polyunsaturated fatty acid intake | Low polyunsaturated fatty acid intake | 2018 | K = 11 | Ischemic or Hemorrhagic | 11 | 14,724 | 165 | 1.06 (0.96; 1.96) |
Hooper [39] | Low saturated fatty acid diet | Low saturated fatty acid diet | 2015 | K = 8 | Ischemic or Hemorrhagic | 8 | 50,952 | 1125 | 1.00 (0.89; 1.12) |
Bin [42] | Vitamin E | - | 2011 | K = 13 | Ischemic or Hemorrhagic | 13 | 166,282 | - | 1.01 (0.96; 1.07) |
Ischemic | - | - | - | 1.01 (0.94; 1.09) | |||||
Hemorrhagic | - | - | - | 1.12 (0.94; 1.33) |
Total n = 386 | Australia n = 6 (1.5%) | Canada n = 4 (1%) | China-Singapore-Korea n = 22 (5.7%) | Europe n = 162 (42%) | Japan n = 60 (15.5%) | USA n = 130 (33.67%) | Latin America n = 1 (0.25%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | n | % | n | % | n | % | n | % | |
Eating habits | ||||||||||||||
Healthy diet | 4 | 19 | 5 | 3.1 | 6 | 10 | 1 | 0.77 | ||||||
Carbohydrates | 4 | 2.4 | 6 | 4.6 | ||||||||||
Beverages | ||||||||||||||
Alcohol | 2 | 9 | 10 | 6.2 | 7 | 11.6 | 7 | 5.3 | ||||||
Tea | 1 | 17 | 1 | 9 | 3 | 1.8 | 3 | 5 | 7 | 5.3 | ||||
Soft drinks | 1 | 9 | 1 | 0.6 | 1 | 1.6 | 3 | 2.3 | ||||||
Nutrients | 0 | 0 | ||||||||||||
Omega-3 | 1 | 17 | 1 | 0.15 | 1 | 4 | 4 | 2.5 | 3 | 5 | 4 | 3.0 | 1 | 100 |
Folic acid | 3 | 0.75 | 1 | 4 | 9 | 5.5 | 1 | 1.6 | 1 | 0.7 | ||||
Monounsaturated fatty acids | 1 | 17 | 3 | 1.8 | 2 | 3.3 | 4 | 3.1 | ||||||
Polyunsaturated fatty acids | 3 | 1.8 | 2 | 1.5 | ||||||||||
Omega-6 | 2 | 1.2 | 1 | 0.7 | ||||||||||
Flavonoids | 1 | 4 | 6 | 3.7 | 4 | 3.0 | ||||||||
Vitamin E | 1 | 4 | 11 | 6.8 | 3 | 5 | 6 | 4.6 | ||||||
Vitamin C | 1 | 4 | 6 | 3.7 | 3 | 2.3 | ||||||||
Calcium/vitamin D | 2 | 1.2 | 1 | 0.7 | ||||||||||
Food | 0 | |||||||||||||
Dried fruits | 2 | 34 | 1 | 4 | 3 | 1.8 | 0 | 2 | 1.5 | |||||
Saturated fatty acids | 2 | 1.2 | 5 | 8.3 | 2 | 1.5 | ||||||||
Butter | 3 | 1.8 | 0 | 5 | 3.8 | |||||||||
Meat | 4 | 2.5 | 0 | 1 | 0.7 | |||||||||
Cereals | 1 | 4 | 8 | 4.9 | 3 | 5 | 1 | 0.7 | ||||||
Chocolate | 5 | 3.1 | 1 | 1.6 | 4 | 3.1 | ||||||||
Fibers | 1 | 14 | 3 | 1.8 | 2 | 3.3 | 14 | 10.7 | ||||||
Fruits and vegetables | 3 | 22 | 13.6 | 7 | 11.6 | 11 | 8.5 | |||||||
Milk | 6 | 3.7 | 2 | 3.3 | 5 | 3.9 | ||||||||
Milk and derivatives | 5 | 3.1 | 3 | 5 | 2 | 1.5 | ||||||||
Legumes | 2 | 1.2 | 2 | 3.3 | 8 | 6.1 | ||||||||
Olive oil | 2 | 1.2 | 0 | |||||||||||
Fish | 1 | 4 | 12 | 7.4 | 3 | 5 | 6 | 4.6 | ||||||
Protein | 1 | 4 | 2 | 1.2 | 3 | 5 | 2 | 1.5 | ||||||
Soy | 1 | 4 | 2 | 1.2 | 2 | 3.3 | 5 | 3.8 | ||||||
Yogurt | 7 | 4.3 | 0 | 13 | 10 | |||||||||
Eggs | 5 | 3.1 | 1 | 1.6 | 2 | 1.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altobelli, E.; Angeletti, P.M.; Rapacchietta, L.; Petrocelli, R. Overview of Meta-Analyses: The Impact of Dietary Lifestyle on Stroke Risk. Int. J. Environ. Res. Public Health 2019, 16, 3582. https://doi.org/10.3390/ijerph16193582
Altobelli E, Angeletti PM, Rapacchietta L, Petrocelli R. Overview of Meta-Analyses: The Impact of Dietary Lifestyle on Stroke Risk. International Journal of Environmental Research and Public Health. 2019; 16(19):3582. https://doi.org/10.3390/ijerph16193582
Chicago/Turabian StyleAltobelli, Emma, Paolo Matteo Angeletti, Leonardo Rapacchietta, and Reimondo Petrocelli. 2019. "Overview of Meta-Analyses: The Impact of Dietary Lifestyle on Stroke Risk" International Journal of Environmental Research and Public Health 16, no. 19: 3582. https://doi.org/10.3390/ijerph16193582
APA StyleAltobelli, E., Angeletti, P. M., Rapacchietta, L., & Petrocelli, R. (2019). Overview of Meta-Analyses: The Impact of Dietary Lifestyle on Stroke Risk. International Journal of Environmental Research and Public Health, 16(19), 3582. https://doi.org/10.3390/ijerph16193582