Challenges to Implementing an Environmental Flow Regime in the Luvuvhu River Catchment, South Africa
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Flow Data and Trend Analyses
2.3. Literature Search and Analysis
3. Results
3.1. Stream Flow Changes
3.2. Possible Impacts on Aquatic Organisms Resulting from Changing Flow Regimes
3.3. Challenges Facing the Implementation of Environmental Flows
3.3.1. Absence of Catchment Management Agencies (CMA), Water User Associations, and Water Boards
3.3.2. Lack of Understanding of Environmental Flow Benefits
3.3.3. Limited Financial Budget, Legal Position and Technical Hydrological Resources
3.3.4. Lack of Capacity
3.3.5. Conflict of Interest
4. Discussion
4.1. Declining Stream Flow and Aquatic Organisms
4.2. Sustainable Catchment Management Prospects for the LRC
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bunn, S.E.; Arthington, H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manag. 2002, 30, 492–507. [Google Scholar] [CrossRef]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The natural flow regime: A paradigm for river conservation and restoration. BioScience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Nilsson, C.; Renöfält, B.M. Linking flow regime and water quality in rivers: A challenge to adaptive catchment management. Ecol. Soc. 2008, 13, 18. [Google Scholar] [CrossRef]
- Ahn, J.M.; Kwon, H.G.; Yang, D.S.; Kim, Y.S. Assessing environmental flows of coordinated operation of dams and weirs in the Geum River basin under climate change scenarios. Sci. Total Environ. 2018, 643, 912–925. [Google Scholar] [CrossRef] [PubMed]
- Al–Jawad, J.Y.; Alsaffar, H.M.; Bertram, D.; Kalin, R.M. Optimum socio–environmental flows approach for reservoir operation strategy using many–objectives evolutionary optimization algorithm. Sci. Total Environ. 2019, 651, 1877–1891. [Google Scholar] [CrossRef]
- Tharme, R.E. A Global Perspective on Environmental Flow assessment: Emerging Trends in The Development and Application of Environmental Flow Methodologies for Rivers. River Res. Appl. 2003, 19, 397–441. [Google Scholar] [CrossRef]
- Arthington, A.H.; Stuart, E.; Bunn, N.; Poff, L.; Naiman, R.J. The challenge of providing environmental flow rules to sustain river ecosystems. Ecol. Appl. 2006, 16, 1311–1318. [Google Scholar] [CrossRef]
- Kusangaya, S.; Warburton, M.L.; Archer van Garderen, E.; Jewitt, G.P.W. Impacts of climate change on water resources in southern Africa: A review. Phys. Chem. Earth 2013, 67, 47–54. [Google Scholar] [CrossRef]
- Richter, B.D.; Baumgartner, J.V.; Wigington, R.; Braun, D.P. How much water does a river need? Freshw. Biol. 1997, 37, 231–249. [Google Scholar] [CrossRef] [Green Version]
- Richter, B.D. Re-thinking environmental flows: From allocations and reserves to sustainability boundaries. River Res. Appl. 2009, 26, 1052–1063. [Google Scholar] [CrossRef]
- Poff, N.L.; Richter, B.D.; Arthington, A.H.; Bunn, S.E.; Naiman, R.J.; Kendy, E.; Acreman, M.; Apse, C.; Bledsoe, B.P.; Freeman, M.C.; et al. The ecological limits of hydrologic alteration (ELOHA): A new framework for developing regional environmental flow standards. Freshw. Biol. 2010, 55, 147–170. [Google Scholar] [CrossRef]
- Poff, N.L.; Zimmerman, J.K.H. Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flows. Freshw. Biol. 2010, 55, 194–205. [Google Scholar] [CrossRef]
- Arthington, A.H.; Kennen, J.G.; Stein, E.D.; Webb, J.A. Recent advances in environmental flows science and water management–Innovation in the Anthropocene. Freshw. Biol. 2018, 63, 1022–1034. [Google Scholar] [CrossRef]
- Rivers-Moore, N.A.; Dallas, H.F.; Morris, C. Towards setting environmental water temperature guidelines: A South African example. J. Environ. Manag. 2013, 128, 380–392. [Google Scholar] [CrossRef] [PubMed]
- Van Niekerk, L.; Taljaard, S.; Adams, J.B.; Lamberth, S.J.; Huizinga, P.; Turpie, J.K.; Wooldridge, T.H. An environmental flow determination method for integrating multiple-scale ecohydrological and complex ecosystem processes in estuaries. Sci. Total Environ. 2019, 656, 482–494. [Google Scholar] [CrossRef] [PubMed]
- Poff, N.L. Beyond the natural flow regime? Broadening the hydro-ecological foundation to meet environmental flows challenges in a non-stationary world. Freshw. Biol. 2018, 63, 1011–1021. [Google Scholar] [CrossRef]
- Republic of South Africa. National Water Act; Act No. 36 of 1998. Gov. Gaz. 1998, 398, 19182. [Google Scholar]
- Webb, J.A.; Watts, R.J.; Allan, C.; Conallin, J.C. Adaptive management of environmental flows. Environ. Manag. 2018, 61, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Salmaso, F.; Quadroni, S.; Gentili, G.; Crosa, G. Thermal regime of a highly regulated Italian river (Ticino River) and implications for aquatic communities. J. Limnol. 2017, 76. [Google Scholar] [CrossRef]
- Kleynhans, C.J. A qualitative procedure for the assessment of the habitat integrity status of the Luvuvhu River (Limpopo system, South Africa). J. Aquat. Ecosyst. Heal. 1996, 5, 41–54. [Google Scholar] [CrossRef]
- Odiyo, J.O.; Makungo, R.; Nkuna, T.R. Long–term changes and variability in rainfall and streamflow in Luvuvhu River catchment, South Africa. S. Afr. J. Sci. 2015, 111, 1–9. [Google Scholar] [CrossRef]
- Ramulifho, P.A.; Foord, S.H.; Roux, H.; Rivers-Moore, N.A. Modeling stream flow trend using daily and sub-daily flow: Evidence linking decrease in flow to seasonality and water abstraction in rapidly developing arid region of southern Africa. J. Hydrol. 2019. Under review. [Google Scholar]
- Jewitt, G.P.; Garratt, G.A. Hydrological Modelling in the Luvuvhu Catchment; School of Bioresources Engineering and Environmental Hydrology, University of Natal: Pietermaritzburg, South Africa, 2004. [Google Scholar]
- Foord, S.H.; Fouché, P.S.O. Response of instream animal communities to a short–term extreme event and to longer–term cumulative impacts in a strategic water resource area, South Africa. Afr. J. Aquat. Sci. 2005, 41, 29–40. [Google Scholar] [CrossRef]
- Angliss, M.; Ashton, P.; Cook, C.; Deacon, A.; Foord, S.; Fouche, P.; Henning, D.; Kleynhans, N.; Rodgers, S.; Roux, D.; et al. State of the Rivers Report: Letaba and Luvuvhu River Systems; WRC Report NO. TT 165/01; Water Research Commission: Pretoria, South Africa, 2001. [Google Scholar]
- Department of Water Affairs and Forestry (DWAF). Development of a Reconciliation Strategy for the Luvuvhu and Letaba Water Supply System: Literature Review; Report No. P WMA 02/B810/00/1412/2; DWAF: Pretoria, South Africa, 2012. [Google Scholar]
- Heath, R.G.M.; Classen, M. An Overview of the Pesticide and Metal Levels Present in Populations of the Larger Indigenous Fish Species of Selected South African Rivers; WRC Report No 428/1/99; Water Research Commission: Pretoria, South Africa, 1990. [Google Scholar]
- Hope, R.A.; Jewitt, G.P.; Gowing, J.W. Linking the hydrological cycle and rural livelihoods: A case study in the Luvuvhu catchment, South Africa. Phys. Chem. Earth 2004, 29, 1209–1217. [Google Scholar] [CrossRef]
- Brown, R.R.; Farrelly, M.A. Delivering sustainable urban water management: A review of the hurdles we face. Water Sci. Technol. 2009, 59, 5. [Google Scholar] [CrossRef]
- Novotny, E.V.; Sfefan, H.G. Stream flow in Minnesota: Indicator of climate change. J. Hydrol. 2007, 334, 319–333. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. Available online: http://www.R-project.org/ (accessed on 15 June 2019).
- Pollard, S.; Du Toit, D.; Biggs, H. River management under transformation: The emergence of strategic adaptive management of river systems in the Kruger National Park. Koedoe 2011, 53, 1011. [Google Scholar] [CrossRef]
- Mwenge, K.J.; Meissner, R.; Engelbrecht, F.A. Implementing integrated catchment management in the upper Limpopo River basin: A situational assessment. Phys. Chem. Earth 2016, 93, 104–118. [Google Scholar] [CrossRef]
- Department of Water Affairs and Forestry (DWAF). White Paper on National Water Policy; Department of Water Affairs and Forestry: Pretoria, South Africa, 1997. [Google Scholar]
- Department of Water Affairs and Forestry (DWAF). Guidelines for the Development of Catchment Management Strategies: Towards Equity, Efficiency and Sustainability in Water Resources Management; Department of Water Affairs and Forestry: Pretoria, South Africa, 2007. [Google Scholar]
- Department of Water Affairs & Forestry. Guide 1 in the CMA /WUA Series: Establishing a CMA; Department of Water Affairs and Forestry: Pretoria, South Africa, 2001. [Google Scholar]
- King, J.M.; Brown, C.A.; Paxton, B.R.; February, R.J. Development of DRIFT: A Scenario–Based Methodology for Environmental Flow Assessments; WRC Report No. 1159/1/04; Water Research Commission: Pretoria, South Africa, 2004. [Google Scholar]
- Mekong River Commission (MRC). The Organizational Structure of River Basin Organizations: Lessons Learned and Recommendations for the Mekong River Commission; Hertie School of governance: Berlin, Germany, 2010. [Google Scholar]
- Hayes, D.S.; Brändle, J.M.; Seliger, C.; Zeiringer, B.; Ferreira, T.; Schmutz, S. Advancing towards functional environmental flows for temperate floodplain rivers. Sci. Total Environ. 2018, 633, 1089–1104. [Google Scholar] [CrossRef]
- Stamou, A.; Polydera, A.; Papadonikolaki, G.; Martínez-Capel, F.; Muñoz-Mas, R.; Papadaki, C.; Zogaris, S.; Bui, M.D.; Rutschmann, P.; Dimitriou, E. Determination of environmental flows in rivers using an integrated hydrological-hydrodynamic-habitat modelling approach. J. Environ. Manag. 2018, 209, 273–285. [Google Scholar] [CrossRef]
- Koma, S.B. The state of local government in South Africa: Issues, trends and option. J. Public Adm. 2010, 45, 111–120. [Google Scholar]
- Acreman, M.C. Environmental flows—Basics for novices. WIREs Water 2016, 3, 622–628. [Google Scholar] [CrossRef]
- Meador, M.R.; Carlisle, D.M. Relations between altered streamflow variability and fish assemblages in eastern USA streams. River Res. Appl. 2012, 28, 1359–1368. [Google Scholar] [CrossRef]
- Brantley, S.T.; Miniat, C.F.; Elliott, K.J.; Laseter, S.H.; Vose, J.M. Changes to southern Appalachian water yield and stormflow after loss of a foundation species. Ecohydrology 2015, 8, 518–528. [Google Scholar] [CrossRef]
- Carlisle, D.M.; Nelson, S.M.; Eng, K. Macroinvertebrate community condition associated with the severity of streamflow alteration. River Res. Appl. 2014, 30, 29–39. [Google Scholar] [CrossRef]
- Ström, L.; Jansson, R.; Nilsson, C. Projected changes in plant species richness and extent of riparian vegetation belts as a result of climate-driven hydrological change along the Vindel River in Sweden. Freshw. Biol. 2012, 57, 49–60. [Google Scholar] [CrossRef]
- McManamay, R.A.; Frimpong, E.A. Hydrologic filtering of fish life history strategies across the United States: Implications for stream flow alteration. Ecol. Appl. 2015, 25, 243–263. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, J.D.; Kemp, P.S.; Kennedy, G.J.A.; Ladle, M.; Milner, N.J. Habitat requirements of Atlantic salmon and brown trout in rivers and streams. Fish. Res. 2003, 62, 143–170. [Google Scholar] [CrossRef]
- Holzapfel, P.; Leitner, P.; Habersack, H.; Graf, W.; Hauer, C. Evaluation of hydropeaking impacts on the food web in alpine streams based on modelling of fish-and macroinvertebrate habitats. Sci. Total Environ. 2016, 575, 1489–1502. [Google Scholar] [CrossRef]
- Bejarano, M.D.; Sordo–Ward, A.; Alonso, C.; Nilsson, C. Characterizing effects of hydropower plants on sub–daily flow regimes. J. Hydrol. 2017, 550, 186–200. [Google Scholar] [CrossRef]
- Richter, B.D.; Baumgartner, J.V.; Powell, J.; Braun, D.P. A method for assessing hydrologic alteration within ecosystems. Conserv. Biol. 1996, 10, 1163–1174. [Google Scholar] [CrossRef]
- Taylor, M.K.; Cooke, S.J. Meta-analyses of the effects of river flow on fish movement and activity. Environ. Rev. 2012, 20, 211–219. [Google Scholar] [CrossRef] [Green Version]
- Saltveit, S.J.; Halleraker, J.H.; Arnekleiv, J.V.; Harby, A. Field experiments on stranding in juvenile Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) during rapid flow decreases caused by hydropeaking. Regul. Rivers Res. Manag. 2001, 17, 609–622. [Google Scholar] [CrossRef]
- Baldwin, A.H.; Egnotovich, M.S.; Clarke, E. Hydrologic change and vegetation of tidal freshwater marshes: Field, greenhouse, and seed-bank experiments. Wetlands 2001, 21, 519–531. [Google Scholar] [CrossRef]
- Timusk, E.R.; Smokorowski, K.E.; Jones, N.E. An experimental test of subhourly changes in macroinvertebrate drift density associated with hydropeaking in a regulated river. J. Freshw. Ecol. 2016, 31, 555–570. [Google Scholar] [CrossRef]
- MacFadyen, S.; Zambatis, N.; Astrid, J. Van Teeffelenb, A.; Huid, C. Long-term rainfall regression surfaces for the Kruger National Park, South Africa: A spatio-temporal review of patterns from 1981 to 2015. Int. J. Clim. 2018, 38, 2506–2519. [Google Scholar] [CrossRef]
- Global Nature Fund (GNF). Environmental Flow: Overview of some European Standards and Recommendations for the Lower Jordan River; Reference number ENPI/2011/269–355; Global Nature Fund: Radolfzell, Germany, 2013. [Google Scholar]
- Quinteiro, P.; Rafael, S.; Villanueva–Rey, P.; Ridoutt, B.; Lopes, M.; Arroja, L.; Dias, A.C. A characterization model to address the environmental impact of green water flows for water scarcity footprints. Sci. Total Environ. 2018, 626, 1210–1218. [Google Scholar] [CrossRef] [PubMed]
- Dallas, H.F.; Rivers-Moore, N. Ecological consequences of global climate change for freshwater ecosystems in South Africa. S. Afr. J. Sci. 2014, 110, 1–11. [Google Scholar] [CrossRef]
- Dyson, M.; Bergkamp, G.; Scanlon, J. Flow—The Essential of Environmental Flows; IUCN: Gland, Switzerland, 2003. [Google Scholar]
- Acreman, M.C.; Dunbar, M.J. Defining environmental flow requirements—A review. Hydrol. Earth Syst. Sci. 2004, 8, 861–876. [Google Scholar] [CrossRef]
- Sabzi, H.Z.; Rezapour, S.; Fovargue, R.; Moreno, H.; Neeson, T.M. Strategic allocation of water conservation incentives to balance environmental flows and societal outcomes. Ecol. Eng. 2019, 127, 160–169. [Google Scholar] [CrossRef]
- Irlich, U.M.; Potgieter, L.; Stafford, L.; Gaertner, M. Recommendations for municipalities to become compliant with national legislation on biological invasions. Bothalia 2017, 47, a2156. [Google Scholar] [CrossRef]
- King, J.M.; Tharme, R.E.; De Villiers, M.S. Environmental Flow Assessments for Rivers: Manual for the Building Block Methodology; WRC Report No TT 354/08; Water Research Commission: Pretoria, South Africa, 2008. [Google Scholar]
Flow Station | Location | River | Lat (°S) | Long (°E) | Upstream Dam | Period | Period (Years) | Data Completeness (%) | Catchment Area (km²) |
---|---|---|---|---|---|---|---|---|---|
A9H012 | Mhinga | Luvuvhu | −22.86 | 30.88 | Nandoni | 1987–2019 | 32 | 95.4 | 1758 |
A9H013 | Kruger | Mutale | −22.43 | 31.07 | None | 1988–2019 | 31 | 75.7 | 1776 |
A9H025 | Matsika | Mutshundudi | −22.85 | 30.68 | Thathe | 1996–2017 | 23 | 78.0 | 387 |
Station | Y (Intercept) | Slope | Standard Errors | p Value |
---|---|---|---|---|
Mhinga | 6.33 | −1.413 × 10−5 | 4.476 × 10−5 | 0.750 |
Kruger | 3.59 | −6.185×10−5 | 2.556 × 10−5 | 0.016 * |
Matsika | 7.25 | −3.281×10−4 | 2.945 × 10−5 | <0.001 ** |
Changes in Flow Regime | Fishes | Macroinvertebrate |
---|---|---|
Magnitude | ||
Frequency |
| |
Duration |
| |
Timing | ||
Rate of Change |
|
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramulifho, P.; Ndou, E.; Thifhulufhelwi, R.; Dalu, T. Challenges to Implementing an Environmental Flow Regime in the Luvuvhu River Catchment, South Africa. Int. J. Environ. Res. Public Health 2019, 16, 3694. https://doi.org/10.3390/ijerph16193694
Ramulifho P, Ndou E, Thifhulufhelwi R, Dalu T. Challenges to Implementing an Environmental Flow Regime in the Luvuvhu River Catchment, South Africa. International Journal of Environmental Research and Public Health. 2019; 16(19):3694. https://doi.org/10.3390/ijerph16193694
Chicago/Turabian StyleRamulifho, Pfananani, Esther Ndou, Reuben Thifhulufhelwi, and Tatenda Dalu. 2019. "Challenges to Implementing an Environmental Flow Regime in the Luvuvhu River Catchment, South Africa" International Journal of Environmental Research and Public Health 16, no. 19: 3694. https://doi.org/10.3390/ijerph16193694
APA StyleRamulifho, P., Ndou, E., Thifhulufhelwi, R., & Dalu, T. (2019). Challenges to Implementing an Environmental Flow Regime in the Luvuvhu River Catchment, South Africa. International Journal of Environmental Research and Public Health, 16(19), 3694. https://doi.org/10.3390/ijerph16193694