Influence of Selective Conditions on Various Composite Sorbents for Enhanced Removal of Copper (II) Ions from Aqueous Environments
Abstract
:1. Introduction
2. Methodology
3. Occurrence of Copper in Environmental Media
4. Toxicological Effects of Copper II Ion
5. Conventional Methods of Removing Cu II ions
6. Polymer-Based Adsorbents
7. Polymer Nano-Composite Based Adsorbent
Techniques for Preparing Polymer Nano-Composite Adsorbent for Copper (II) Removal
8. Result and Discussion
8.1. Optimum Contact Time
8.2. Optimum Initial Concentration
8.3. Optimum pH
9. Conclusions
10. Future Researches
Author Contributions
Funding
Conflicts of Interest
References
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.J.; Georgiadis, G.; Mariarias, B.; Mayes, M.A. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Alvarez, P.J.J.; Li, Q. Applications of nanotechnology in water and wastewater treatment. Water Resour. 2013, 47, 3931–3946. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Al-Amer, A.M.; Laoui, T.; Al-Marri, M.J.; Nasser, M.S.; Khraisheh, M.; Ali, M. Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Sep. Purif. Technol. 2016, 157, 141–161. [Google Scholar]
- Srivastava, N.K.; Majumder, C.B. Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J. Hazard. Mater. 2008, 151, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Barakat, M.A. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 2011, 4, 361–377. [Google Scholar] [CrossRef]
- Aitun, T.; Pehlivan, E. Removal of copper II ion from aqueous solution by walnut, Hazelnut and Almond shells. Clean 2007, 35, 601–606. [Google Scholar]
- World Health Organization. IPCS Environmental Health Criteria 200: Copper; WHO: Geneva, Switzerland, 1998. [Google Scholar]
- Carolin, C.F.; Kumar, P.S.; Saravanan, A.; Joshiba, G.J.; Naushad, M. Efficient Techniques for the removal of toxic heavy metals from the aquatic environment: A review. J. Environ. Chem. Eng. 2017, 5, 2782–2799. [Google Scholar] [CrossRef]
- Awual, M.R.; Ismael, M.; Khaleque, M.A.; Yaita, T. Ultra-trace copper (II) detection and removal from wastewater using novel meso-adsorbent. J. Ind. Eng. Chem. 2014, 20, 2332–2340. [Google Scholar] [CrossRef]
- Ekmekyapar, F.; Aslan, A.; Bayhan, A.; Çakıcı, A. Biosorption of copper (II) by non- Living lichen biomass of Cladonia rangiformis Hoffm. J. Hazard. Mater. 2006, 137, 293–298. [Google Scholar] [CrossRef]
- Bello, O.S.; Ojedokun, A.T. An overview of low-cost Adsorbent or copper II ions removal. J. Biotech. Biomater. 2015, 5, 163–177. [Google Scholar]
- Ali, S.B.; Jaouali, I.; Souissi, S.N.; Ouederni, A. Characterization and Adsorption capacity of raw pomegranate peel biosorbent for copper removal. J. Clean. Prod. 2017, 142, 3809–3821. [Google Scholar]
- Jaishnkar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.; Beeregowala, K. Toxicity mechanism and health effect of some metals. Interdiscip. Toxicol. 2014, 7, 60–62. [Google Scholar] [CrossRef] [PubMed]
- Aydın, H.; Bulut, Y.; Yerlikaya, C. Removal of Copper (II) from Aqueous Solution by Adsorption onto Low-Cost Adsorbents. J. Environ. Manag. 2008, 87, 137–145. [Google Scholar]
- Pugazhendhi, A.; Ranganathan, K.; Kaliannan, T. Biosorptive removal of copper (II) by Bacillus cereus isolated from contaminated soil of the electroplating industry in India. Water Air Soil Pollut. 2018, 229, 1–9. [Google Scholar] [CrossRef]
- Georgopoulos, P.G.; Tan, H.C.; Wang, S.W.; Vyas, V.M.; Georgopoulos, I.G.; Yang, Y.C.; Lioy, P.J. A Framework and Data Sources for the Assessment of Exposures to Copper. Technical Report Prepared for the International Copper Association (Draft); International Copper Association: Washington, DC, USA, 2002; Available online: http://www.CERM.org/copper (accessed on 23 December 2018).
- Pais, I.; Benton Jones, J., Jr. The Handbook of Trace Elements; St. Lucie Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Aguado, J.; Arsuaga, J.M.; Arencibia, A.; Lindo, M.; Gascon, V. Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. J. Hazard. Mater. 2009, 163, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 329–344. [Google Scholar] [CrossRef]
- Camacho, J.R.; Armienta, M.A. Natural Chromium contamination of groundwater at Leon Valeey Mexico. J. Geochem. Explor. 2000, 68, 167–181. [Google Scholar] [CrossRef]
- Ball, J.W.; Izbick, J.A. Occurrence of hexavalent chromium in groundwater in the western Mojave Desert. Calif. Appl. Geochem. 2004, 19, 1123–1135. [Google Scholar] [CrossRef]
- Georgopoulos, A.R.G.; Yonone-Lioy, M.J.; Opiekun, R.E.; Lioy, P.J. Environmental copper: Its dynamics and human exposure issues. J. Toxicol. Environ. Health Crit. Rev. 2001, 4, 341–394. [Google Scholar] [CrossRef]
- Hansell, A.L.; Horwel, C.J.; Oppenheimer, C. The health hazard of volcanoes and geothermal areas. Occup. Environ. Med. 2006, 63, 149–156. [Google Scholar] [CrossRef]
- Saravanan, D.; Sudha, P.N. Batch Adsorption Studies for the removal of copper from wastewater using Natural Biopolymer. Int. J. Chem. Technol. Res. 2014, 6, 3496–3508. [Google Scholar]
- Singh, R.P.; Agrawal, M. Potential benefits and risks of land application of sewage sludge. Waste Manag. 2006, 28, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, V.; De Araujo, A.S.F.; Vaish, B.; Bartelt-Hunt, S.; Singh, P.; Singh, R.P. Biological response of using municipal solid waste compost in agriculture as fertilizer supplement. Rev. Environ. Sci. Biol. 2016, 15, 677–696. [Google Scholar] [CrossRef]
- Srivastava, V.; Ismail, S.A.; Singh, P.; Singh, R.P. Urban solid waste management in the developing world with emphasis on India: Challenges and opportunities. Rev. Environ. Sci. Biol. 2015, 14, 317–337. [Google Scholar] [CrossRef]
- Sharma, B.; Sarkar, A.; Singh, P.; Singh, R.P. Agricultural utilization of biosolids: A review on potential effects on soil and plant grown. Waste Manag. 2017, 64, 117–132. [Google Scholar] [CrossRef]
- Majumdar, S.S.; Das, S.K.; Saha, T.; Panda, G.C.; Bandyopadhyoy, T.; Guha, A.K. Adsorption behaviour of copper ions on Mucor rouxii biomass through microscopic and FTIR analysis. Colloids Surf. Biointerfaces 2008, 63, 145. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Pollut. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Marrugo-Negrete, J.; Pinedo-Hernández, J.; Díez, S. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environ. Res. 2017, 154, 380–388. [Google Scholar] [CrossRef]
- Tanner, M.S.; Leone, A.; Mercer, J.B.F. Copper Transport and Its Disorder; Plenum Press: New York, NY, USA, 1999; pp. 127–137. [Google Scholar]
- Zahra, A.; Hashmi, M.Z.; Malik, R.N.; Ahmed, Z. Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah—Feeding tributary of the Rawal Lake Reservoir, Pakistan. Sci. Total Environ. 2014, 470–471, 925–933. [Google Scholar] [CrossRef]
- Singh, U.K.; Kumar, B. Pathways of heavy metals contamination and associated human health risk in Ajay River basin, India. Chemosphere 2017, 174, 183–199. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okiemen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. 2011, 2011. [Google Scholar] [CrossRef]
- Yruela, I. Copper in Plants. Braz. J. Plant Physiol. 2005, 17, 145–156. [Google Scholar] [CrossRef]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism on plants under stressful conditions. J. Bot. 2012, 2012, 1–26. [Google Scholar] [CrossRef]
- Wani, A.A.; Shikbar-Bar, M.; Khan, K.A. Acute toxicity of copper sulphate to African catfish (Clarias gariepinus). GERF Bull. Biosci. 2013, 4, 14–18. [Google Scholar]
- Adil, A.; Wani Junaid Malik, S.M. Determination of lethal toxicity of copper to Clarias gariepinus. IJARSE 2018, 4, 1011–1018. [Google Scholar]
- Ezeonyejiaku, C.D.; Obiakar, M.O.; Ezenwelu, C.O. Toxicity of copper sulphate and behavioural Locomotor Response of Tilapia (Orechromis Nitloticus) catfish (Clarias gariepinus) species. Online J. Anim. Feed Res. 2011, 1, 130–134. [Google Scholar]
- Craig, P.M.; Wood, C.M.; McClelland, G.B. Water Chemistry alters gene expression and physiological end points of chronic water borne copper exposure in Zebrafish, Danio rerio. Environ Sci. Technol. 2010, 44, 2156–2162. [Google Scholar] [CrossRef]
- Tierney, K.B.; Baldwin, D.H.; Hara, T.J.; Ross, P.S.; Scholz, N.L.; Kennedy, C.J. Olfactory toxicity in fishes. Aquatic Toxicol. 2010, 96, 2–26. [Google Scholar] [CrossRef]
- Gaetke, L.M.; Chow, C.K. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 2003, 189, 147–163. [Google Scholar] [CrossRef]
- Uriu-Adams, J.Y.; Keen, C.L. Copper, oxidative stress, and human health. Mol. Aspects Med. 2005, 26, 268–298. [Google Scholar] [CrossRef]
- Babel, S.; Kurniawan, T.A. Low-cost adsorbents for heavy metals uptake from contaminated water: A review. J. Hazard. Mater. 2003, 97, 219–243. [Google Scholar] [CrossRef]
- Gunatilade, S.K. Methods of removing Heavy Metals from Industrial wastewater. J. Multidiscip. Eng. Sci. Stud. 2015, 1, 12–18. [Google Scholar]
- Arbabi, M.; Golshani, N. Removal of copper ions Cu (II) from industrial wastewater. Int. J. Epidemiol. Res. 2016, 3, 283–293. [Google Scholar]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.Y.; Lee, J.U.; Moon, S.H.; Kim, K.W. Competitive adsorption characteristic of Co2+, Ni2+, and Cr3+, by IRN-77 cation exchange resin in synthesized wastewater. Chemosphere 2004, 56, 141–147. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Chan, G.Y.S.; Lo, W.H.; Babel, S. Physico-chemical treatment technique for wastewater laden with heavy metals. Chem. Eng. 2006, 118, 83–98. [Google Scholar] [CrossRef]
- Mohammadi, T.; Mohebb, M.; Sarzadeh, M.; Razmi, A. Modelling of metal ion removal from wastewater by electrodialysis. Sep. Purif. Technol. 2005, 41, 73–82. [Google Scholar] [CrossRef]
- Aklil, A.; Mouflihb, M.; Sebti, S. Removal of heavy metal ions from water using Calcined phosphate as new adsorbent. Hazard Mater. 2004, A112, 183–190. [Google Scholar] [CrossRef]
- Ahluwalia, S.; Goyal, D. Removal of heavy metals by waste tea leaves from aqueous solution. Eng. Life Sci. 2005, 5, 158–162. [Google Scholar] [CrossRef]
- Lazarević, S.; Janković-Častvan, I.; Radovanović, Ž.; Potkonjak, B.; Janaćković, Đ.; Petrović, R. Sorption of Cu2+ and Co2+ ions from aqueous solutions onto sepiolite: An equilibrium, kinetic and thermodynamic study. J. Serb. Chem. Soc. 2011, 76, 101–112. [Google Scholar] [CrossRef]
- Sud, D.; Mahajan, G.; Kaur, M. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—A review. Bioresour. Technol. 2008, 99, 6017–6027. [Google Scholar] [CrossRef] [PubMed]
- Wan Ngah, W.; Hanafiah, M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresour. Technol. 2008, 99, 3935–3948. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.S.-L.; Joseph, C.G.; How, S.E. Biosorption of lead contaminated wastewater using cattails (Typha angustifolia) leaves: Kinetic studies. J. Serb. Chem. Soc. 2011, 76, 1037–1047. [Google Scholar] [CrossRef]
- Bhattacharyya, K.G.; Gupta, S.S. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Adv. Colloid Interface Sci. 2008, 140, 114–131. [Google Scholar] [CrossRef] [PubMed]
- Lemos, V.A.; Teixeira, L.S.G.; Bezerra, M.A.; Costa, A.C.S.; Castro, J.T.; Cardoso, L.A.M.; Jesus, D.S.; Santos, E.S.; Baliza, P.X.; Santos, L.N. New materials for solid-phase extraction of trace elements. Appl. Spectros. Rev. 2008, 43, 303–334. [Google Scholar] [CrossRef]
- Abdel-Halim, E.S.; Al-Deyab, S.S. Removal of heavy metals from their Aqueous solutions through adsorption onto natural polymers. Carbohydr. Polym. 2011, 84, 454–458. [Google Scholar] [CrossRef]
- Li, X.G.; Feng, H.; Huang, M.R. Strong Adsorbability of Mercury Ions on Aniline Sulfoniasidine Copolymer Nanosorbents. Chem. Eur. J. 2009, 15, 4573–4581. [Google Scholar] [CrossRef]
- Huang, M.R.; Lu, H.J.; Li, X.G. Synthesis and strong Heavy-Metal Ion Sorption of Copolymer Microparticles from Phenylenediamine and its Sulfonate. J. Mater. Chem. 2009, 22, 17685–17699. [Google Scholar] [CrossRef]
- Zumriye, A.; Isoglu, A.I. Removal of copper II ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp. Process Biochem. 2005, 40, 3031–3034. [Google Scholar]
- Basci, N.; Kocadagistan, E.; Kocadagistan, B. Sorption of copper II from aqueous solution by wheat shell. Desali 2004, 164, 135–140. [Google Scholar] [CrossRef]
- Krishanani, K.K.; Mang, X.; Chistodoulatos, C.; Boddou, V.M. Bisorption mechanism of nine different heavy metals onto biomatrix from rice husk. J. Hazard Mater. 2008, 53, 1222–1234. [Google Scholar] [CrossRef] [PubMed]
- Grimm, A.; Zanzi, R.; Bjornbom, E.; Cukarman, A.L. Comparison of different types of biomass for copper biosrption. Biores. Technol. 2008, 99, 2559–2565. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhai, J.; Zhang, W.; Wang, M.; Zhou, J. Kinetic studies of adsorption of Pb (II), Cr (III) and Cu (II) from aqueous solution by sawdust and modified peanut husk. J. Hazard Mater. 2007, 141, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Reddy, B.R.; Mirghaffari, N.; Gaballah, I. Removal and recycling of copper from aqueous solutions using treated Indian barks. Resour. Conserv. Recycl. 1997, 2, 227–245. [Google Scholar] [CrossRef]
- Ozer, A.; Ozer, D.; Ozer, A. The adsorption of copper (II) ions on to dehydrated wheat bran (DWB): Determination of the equilibrium and thermodynamic parameters. Process Biochem. 2004, 39, 2183–2191. [Google Scholar] [CrossRef]
- Nasernejad, B.; Zadeh, T.E.; Pour, B.B.; Bygi, M.E.; Zamani, A. Comparison for biosorption modeling of heavy metals (Cr (III), Cu(II), Zn(II)) adsorption from wastewater by carrot residues. Process Biochem. 2005, 40, 1319–1322. [Google Scholar] [CrossRef]
- Ibrahim, A.G.; Saleh, S.A.; Elsharma, E.M.; Metually, E.; Siyam, T. Chitosan and Nikel ion from their solution. Int. J. Biol. Macromol. 2019, 121, 1287–1294. [Google Scholar] [CrossRef]
- Zhang, K.; Shi, J. Adsorptive removal of copper ions from aqueous solution using cross linked magnetic chitosan beads Separation and science engineering. Chin. Chem. Eng. 2009, 17, 960–966. [Google Scholar]
- Mende, M.; Schwarz, D.; Schwarz, S. Chitosan—A Natural Adsorbent for copper ions. In Proceedings of the World Congress on Civil Structural and Environmental Engineering CSEE’ 2016, Prague, Czech Republic, 30–31 May 2016. [Google Scholar]
- Ghazy, S.E.; Ragab, A.H. Removal of copper from water samples by Powered Limestone. Indian J. Chem. Technol. 2007, 14, 507–514. [Google Scholar]
- Das, B.; Mondal, N.K.; Bhamik, R.; Roy, P.; Pal, C.; Das, C.R. Removal of Copper from aqueous solution using Alluvial soil of indian origin Equilibrum, Kinetic and thermodynamic Study. J. Mater. Environ. Sci. 2013, 4, 392–408. [Google Scholar]
- Al-Ashah, S.; Banat, F. Adsorption of Zn and Cu ion by the solid waste of the olive oil Industry. Adsorpt. Sci. Technol. 2001, 19, 117. [Google Scholar] [CrossRef] [Green Version]
- Satiban, M.; Klasnja, M.; SkrbiÄ, B. Modified softwood sawdust as adsorbent of heavy metal ions from water. J. Hazard Mater. 2006, 136, 266–271. [Google Scholar]
- Bajpai, S.K.; Jain, A. Removal of copper II from aqueous solution using spent leaves (STL) as a potential sorbent. SA J. Radiol. 2010, 36, 221–228. [Google Scholar]
- Mahmoodi, N.M.; Najafi, F.; Neshat, A. Poly (amidoamine-co-acrylic acid) copolymer: Synthesis, characterization and dye removal ability. Ind. Crops Produc. 2013, 42, 119–125. [Google Scholar] [CrossRef]
- Pan, B.; Qiu, H.; Pan, B.; Nie, G.; Xiao, L.; Lv, L.; Zhang, W.; Zhang, Q.; Shourong, Z. Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe(III) oxides: Behavior and XPS study. Water Res. 2010, 44, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Ge, F.; Li, M.; Ye, H. Effective removal of heavy metal ions Cd2+, Zn 2+, Pb 2+, Cu 2+ from aqueous solution by polymer-modified magnetic Nanoparticles. J. Hazard. Mater. 2012, 211, 366–372. [Google Scholar] [CrossRef]
- Dong, Q.; Liu, J.S.; Song, L.; Shao, G. Novel zwitterionic inorganic-organic hybrids: Synthesis of hybrid adsorbents and their applications for Cu2þ removal. J. Hazard. Mater. 2011, 186, 1335–1342. [Google Scholar] [CrossRef]
- Scampini, Z.G.; Aguiar, A.P.D.; Aguiar, M.R.M.P.; Maria, L.C.D.S. Oxime groups introduction in copolymer networks based on acrolein. Mater. Lett. 2004, 58, 3933–3938. [Google Scholar] [CrossRef]
- Dassanayake, R.S.; Acharya, S.; Abidi, N. Biopolymer-Based materials from polysaccharides properties, processing, characterization and sorption application. In Advanced Sorption Process Applications; Intechopen: London, UK, 2018. [Google Scholar]
- Kong, A.; Ji, Y.; Ma, H.; Song, Y.; He, B.; Li, J. A novel route for the removal of Cu(II) and Ni (II) ions via homogenous adsorption by chitosan solution. J. Clean. Prod. 2018, 19, 801–808. [Google Scholar] [CrossRef]
- Samadi, N.; Ansari, R.; Khodavirdelo, B. Removal of copper ions from aqueous solutions using polymer derivations of poly(styrene-alt-maleic anhydride. Egypt. J. Pet. 2017, 26, 375–389. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Chen, H.; Lin, K.; Chen, B.; Chiou, C. Application of Magnetic particles modified with amino group to remove copper ions from aqueous solution. J. Environ. Sci. 2011, 23, 44–50. [Google Scholar] [CrossRef]
- Sharma, G.; Pathania, D.; Naushad, M. Preparation, characterization, and ion Exchange Behavior of nanocomposite polyaniline zirconium (IV) selenotungs to phosphate for the separation of toxic metal ions. Ionics 2015, 21, 1045–1055. [Google Scholar] [CrossRef]
- Liu, C.; Liang, X.; Liu, J.; Yuan, W. Desorption of copper ions from the polyamine Functionalized adsorbents: Behaviour and Mechanism. Adsorpt. Sci. Technol. 2015, 34, 455–468. [Google Scholar] [CrossRef]
- Popuri, S.R.; Vijaya, Y.; Boddu, V.M.; Abburi, K. Adsorptive removal of copper and Nickel ions from water using chitosan-coated PVC beads. Bioresour. Technol. 2009, 100, 194–199. [Google Scholar] [CrossRef]
- Houari, B.; Louhibi, S.; Tizaoui, K.; Boukli-hacene, L.; Benguella, B.; Roisnel, T.; Dorcet, V. New synthetic material-removing heavy metals from aqueous solution and wastewater. Arab. Chem. 2016, in press. [Google Scholar] [CrossRef]
- Rahman, N.; Sato, N.; Yoishioka, S.; Sugiyama, M.; Okebe, H.; Hara, K. Selective Cu (II) adsorption from aqueous solution including Cu (II), Co (II)and Ni(II) by modified Acrylic Acid grafted PET (polyethylene terephthalate film). Polym. Sci. 2013, 2013, 798–806. [Google Scholar]
- Celik, A.; Demirbas, A. Removal and heavy metal ions from aqueous solution via Adsorption onto modified lignin from pulping waste. Energy Source 2016, 27, 1167–1177. [Google Scholar] [CrossRef]
- Moradi, O.; Mirza, B.; Norouzi, M.; Fakhri, A. Removal of Co (II), Cu (II) and Pb (II) ions by polymer based 2-hydroxyethyl methacrylate: Thermodynamics and desorption studies. J. Environ. Health Sci. Eng. 2012, 9, 31–33. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Shapter, J.G.; Popelka-Filcoff, R.; Bennett, J.W.; Ellis, A.V. Copper removal using bio inspired polydopamine coated natural zeolites. J. Hazard. Mat. 2014, 273, 174–182. [Google Scholar] [CrossRef]
- O’ConnellD, W.; Birkinshaw, C.; O’Dwyer, T.F. A chelating cellulose Adsorbent for the removal of Cu (II) ion from aqoues solution. J. Appl. Polym. Sci. 2006, 99, 2888–2897. [Google Scholar] [CrossRef]
- Sanchez, C.; Julián, B.; Belleville, P.; Popall, M. Applications of hybrid organic-Inorganic nanocomposites. J. Mater. Chem. 2005, 15, 3559–3592. [Google Scholar] [CrossRef]
- Zhang, Q.; Pan, B.; Chen, X.; Zhang, W.; Pan, B.; Zhang, Q.; Lv, L.; Zhao, X. Preparation of polymer supported hydrated ferric oxide based on Donnan membrane effect and its application for arsenic removal. Sci. China Ser. B Chem. 2008, 51, 379–385. [Google Scholar] [CrossRef]
- Ansari, R.; Delavar, A.F. Application of poly 3-methyl thiophene for removal of silver ion from aqueous solutions. J. Appl. Polym. Sci. 2009, 113, 2293–2300. [Google Scholar] [CrossRef]
- Lofrano, G.; Carotenuto, M.; Libralato, G.; Domingos, R.F.; Markus, A.; Dini Gautam, L.R.; Baldantoni, D.; Rossi, M.; Sharma, S.K.; Chattopadhyaya, M.C.; et al. Polymer functionalized nanocomposites for metals removal from water and wastewater: An overview. Water Res. 2016, 92, 22–37. [Google Scholar] [CrossRef] [PubMed]
- Amin, M. Methods for preparation of nano-composites for outdoor insulation applications. Rev. Adv. Mater. Sci. 2013, 34, 173–184. [Google Scholar]
- Zhao, X.; Lv, L.; Pan, B.; Zhang, W. Polymer-supported nanocomposites for environmental application: A review. Chem. Eng. J. 2013, 170, 381–394. [Google Scholar] [CrossRef]
- Burger, C.; Hsiao, B.S.; Chu, B. Nanofibrous materials and their applications. Annu. Rev. Mater. Res. 2006, 36, 333–368. [Google Scholar] [CrossRef]
- Sawicki, K.M.; Gouma, P. Electrospun composite nanofibers for functional applications. J. Nanopart. Res. 2006, 8, 769–781. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, M.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003, 63, 2223–2253. [Google Scholar] [CrossRef]
- Aliabadi, M.; Irani, M.; Ismaeili, J.; Piri, H.; Parnian, M.J. Electrospun Nanofiber membrane of PEO/Chitosan for the adsorption of Copper, Nikel Cadmium, lead ions from aqueous solution. Chem. Eng. J. 2013, 220, 237–243. [Google Scholar] [CrossRef]
- Mittal, V. Polymer layered silicate nanocomposites: A review. Materials 2009, 2, 992–1057. [Google Scholar] [CrossRef] [Green Version]
- Alexandre, M.; Dubois, P. Polymer-layered silicate nanocomposites: Preparation, properties, and uses of a new class of materials. Mater. Sci. Eng. 2000, 28, 1–63. [Google Scholar] [CrossRef]
- Nobahar, S.; Parvini, M.; Eisazadeh, H. Removal of copper ions from aqueous solutions using polypyrrole and its nanocomposite. J. Heat Mass Transfer Res. 2014, 1, 101–106. [Google Scholar]
- Aluigi, A.; Tonetti, C.; Vineis, C.; Tonin, C.; Mazzuchetti, G. Adsorption of copper (II) ions by keratin (PA6) blend nanofibers. Eur. Polym. J. 2011, 47, 1756–1764. [Google Scholar] [CrossRef]
- Tu, H.; Haung, M.; Yi, Y.; Li, Z.; Zhan, Y.; Chen, J.; Wu, Y.; Shi, X.; Deng, H.; Du, Y. Chitosan-rectorite nanospheres immobilized on polystyrene fibrous material via alternate electrospinning/electrospraying techniques for copper ions adsorption. Appl. Surf. Sci. 2017, 426, 545–553. [Google Scholar] [CrossRef]
- Mahapatra, A.; Mishra, B.G.; Hota, G. Electrospun Fe2O3-Al2O3 nanocomposite fibers as an efficient adsorbent for removal of heavy metal ions from aqueous solution. J. Hazard. Mater. 2013, 258–259, 116–123. [Google Scholar] [CrossRef]
- Heiba, H.F.; Taha, A.A.; Mostafa, A.F.; Mohamed, L.A.; Fahmy, M.A. Synthesis and characterization of CMC/MMT nanocomposite for Cu (II) sequestration in wastewater treatment. Korean J. Chem. Eng. 2018, 35, 1844–1853. [Google Scholar] [CrossRef]
- Cai, Z.; Song, X.; Zhang, Q.; Zhai, T. Electrospun polyindole nanofibers as a nano adsorbent for heavy metals ions adsorption for wastewater treatment. Fibres Polym. 2017, 18, 502–513. [Google Scholar] [CrossRef]
- Mohamadnezhad, G.; Moshiri, P.; Dinari, M.; Steinger, F. In situ synthesis of nanocomposite materials based on modified mesoporous silicaMCM-41and Methyl methacrylate for copper adsorption from aqueous. Appl. Surf. Sci. 2017, 426, 545–553. [Google Scholar]
- Dinari, M.; Mohammadnezhad, G.; Soltani, R. Fabrication of poly (methylmethacrylate)/Silica Kit-6 nanocomposite via in situ polymerization approach and their application for the removal of copper (II) ions from aqueous solution. RSC Adv. 2016, 6, 11419–11429. [Google Scholar] [CrossRef]
- Mohammadnezhad, G.; Soltani, R.; Abad, S.; Dinaro, M. A novel porous nanocomposite of animated Silica MCM-41and Nylon-6: Isotherm, Kinetic and thermodynamic studies on adsorption of Cu (II) and Cd (II). J. Appl. Polym. Sci. 2017, 134, 45383. [Google Scholar] [CrossRef]
- Mohammadnezhad, G.; Dinari, M.; Soltani, R. The preparation of Modified boehmite/PMMA nanocomposite by in-situ polymerization and assessment of their capability for Copper removal. N. J. Chem. 2016, 40, 3612–3621. [Google Scholar] [CrossRef]
- Kampalanonwat, P.; Supaphol, P. Preparation of hydrolyzed Electrospun Polyacrylonitrile Fiber mats as chelating substances: A case study of copper (II) ions. Ind. Eng. Chem. Res. 2011, 50, 11912–11921. [Google Scholar] [CrossRef]
- Yang, G.X.; Jiang, H. Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water Res. 2014, 48, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Kenawy, I.M.; Hafez, M.A.H.; Ismail, M.A.; Hashem, M.A. Adsorption of Cu(II), Cd(II), Hg(II), Pb(II) and Zn(II) from aqueous single metal solutions by guanyl-modified cellulose. Int. J. Biol. Macromol. 2018, 107, 1538–1549. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Liao, B.; Lin, L.; Qiu, W.; Song, Z. Adsorption of Cu(II) and Cd(II) from aqueous solution by ferromanganese binary oxide -biochar composites. Sci. Total Environ. 2018, 615, 115–122. [Google Scholar] [CrossRef]
- Dang, V.B.H.; Doan, H.D.; Dang-Vu, T.; Lohi, A. Equilibrium and kinetics of biosorption of cadmium (II) and copper (II) ions by wheat straw. Bioresour. Technol. 2009, 100, 211–219. [Google Scholar] [CrossRef]
- Saifuddin, M.; Kumaran, P. Removal of heavy metal from industrial wastewater chitosan coated oil palm shell charcoal. Electron. J. Biotechn. 2005, 8, 43–53. [Google Scholar]
- Rosales, E.; Ferreira, L.; Sanromán, M.A.; Tavares, T.; Pazos, M. Enhanced selective metal adsorption on optimised agroforestry waste mixtures. Bioresour. Technol. 2015, 182, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Plohl, O.; Finšgar, M.; Gyergyek, S.; Ajdnik, U.; Ban, I.; Fras Zemljič, L. Efficient Copper Removal from an Aqueous Environment using a Novel and Hybrid Nanoadsorbent Based on Derived-Polyethyleneimine Linked to Silica Magnetic Nanocomposites. Nanomaterial 2019, 9, 209. [Google Scholar] [CrossRef] [Green Version]
- Rezvani-Boroujeni, A.; Javanbakht, M.; Karimi, M.; Akbari-Adergani, B. Adsorption properties of thiol-functionalized silica nanoparticles prepared for application in poly (ether sulfone) nanocomposite membranes. J. Text. Polym. 2017, 5, 37–47. [Google Scholar]
- Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust. J. Hazard. Mater. 2009, 170, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Rashidi, F.; Sarabi, R.S.; Ghasemi, Z.; Seif, A. Kinetic, equilibrium and thermodynamic studies for the removal of lead (II) and copper (II) ions from aqueous solutions by nanocrystalline TiO2. Superlattices Microstruct. 2010, 48, 577–591. [Google Scholar] [CrossRef]
- Yu, B.; Xu, J.; Liu, J.H.; Yang, S.T.; Luo, J.; Zhou, Q.; Wan, J.; Liao, R.; Wang, H.; Liu, Y. Adsorption behavior of copper ions on graphene oxide–chitosan aerogel. J. Environ. Chem. Eng. 2013, 1, 1044–1050. [Google Scholar] [CrossRef]
- Cataldo, S.; Gianguzza, A.; Pettignano, A.; Piazzese, D.; Sammartano, S. Complex formation of copper(II) and cadmium(II) with pectin and polygalacturonic acid in aqueous solution. An ISE-H+ and ISE-Me2+ electrochemical study. Int. J. Electrochem. Sci. 2012, 7, 6722–6737. [Google Scholar]
Environmental Media | Concentration | Unit | |
---|---|---|---|
Soil | Total content in soil | 2–100 | µg/g |
Soluble content in soil | <1 | µg/g | |
Atmosphere | Aerosol | 1 × 10−7–3.82 × 10−4 | µg/L |
Hydrosphere | Fresh water | 8 × 10−5 | µg/L |
Sea water | 0.01–2.8 | µg/L | |
Biota | Plant | 1–110 | µg/g |
Animal | 2.4 | µg/g |
Element | Copper (mg/L) |
---|---|
PC in water | 0.1 |
PC in wastewater discharge into the public sewage | 1.0 |
PC in wastewater discharge into surface water | 0.1 |
Methods | Advantages | Disadvantages | Reference |
---|---|---|---|
Ion exchange | Treatment even at low concentration, fast kinetics | Expensive, interference of composite ion and regeneration | [49] |
Coagulation-Flocculation and Sedimentation (CFS) | Simplicity and low cost. | Low density with bulky sludge | [47] |
Membrane Technology | High efficiency and small footprint | Increased energy, intense disposal and maintenance difficulty | [47] |
Electrolysis | Ease of operation, No requirement for chemical use | Expensive | [47] |
Chemical Precipitation | High percentage removal, simplicity of operation | Bulky hydroxide and colloidal particles, Expensive | [47,50] |
Membrane Filtration | High efficiency, low energy requirement, a small space due to high packing density, low driving force | High operational cost due to membrane fouling | [50] |
Electrodialysis | Treatment of highly concentrated wastewater, high separation selectivity | Membrane replacement and corrosion process, high energy consumption | [51] |
Microbial treatment | Ecofriendly | Scaling up, slow, difficult to standardise | [45] |
Adsorption | High capacity, fast operation, simple, high metal binding | Low selectivity, regeneration is expensive | [45,52] |
Type of Adsorbent | Maximum Adsorption Capacity (mg/g) | References |
---|---|---|
Agricultural waste | ||
Dried sugar beet pulp | 28.5 | [63] |
Wheatshell | 8.26 | [64] |
Rice husk modified with NaOH | 10.9 | [65] |
Moss | 11.2 | [66] |
Peanut husk | 10.15 | [67] |
Mango | 42.60 | [68] |
Soyabean hull | 154.9 | [69] |
Carrot Residue | 32.74 | [70] |
Chitosan | ||
Chitosan-g-maleic acid | 312.4 | [71] |
Cross linked Magnetic Chitosan | 78.13 | [72] |
Chitosan | 150 | [73] |
Montmorillonite | ||
Powdered Limestone | 0.29 | [74] |
Anuvilia Soil | 0.63 | [75] |
Industrial solid waste | ||
Olive oil waste | 16 | [76] |
Saw Dust fir tree | 12 | [77] |
Tea industry waste | 8.64 | [78] |
Adsorbent | Functional Group | Adsorption Capacity (mg/g) | Contact Time (min) | pH | Temp (K) | Initial Conc. (mg/L) | Reference |
---|---|---|---|---|---|---|---|
Amine functionalized silica magnetite | -NH2 | 10.41 | 1440 | 6.5 | 298 | 150 | [87] |
Chitin biopolymer | -NH2 | 13–15 | 480 | 5 | 298 | 100 | [22] |
Grafted cassava starch with 5-chloromethyl-8-hydroxyquinoline (CMQ) | -OH | 25.75 | 90 | 6 | - | 50 | [88] |
Polyamine-immobilised trimethylaniline | -C=O | 1.47 | - | 5 | - | - | [89] |
Chitosan coated with polyvinyl chloride | -NH2, -OH | 87.9 | 210 | 5 | 100 | [90] | |
(E)-2-[(1H-Imidazolyl) methylene]-hydrazinecarbo thioamide ligand (EIMH) | -NH2 | 0.05 | 20 | 6 | - | - | [91] |
Modified acrylic acid grafted polyethylene terephthalate (PET) film | -OH | 55.6 | 60 | 4 | 298 | 2000 | [92] |
Modified Lignin from pulping waste | -COO- | 20 | 240 | 4 | 330 | - | [93] |
Polyhydroxyethylmethacrylate (PHEMA-HEMA) | - | 31.45 | 120 | 6 | 330 | 10 | [94] |
Pristine zeolite | - | 14.95 | 1240 | 55 | - | 100 | [95] |
Regenerated cellulose | - | 70 | 30 | 7 | - | 300 | [96] |
Nano Materials | Polymer Materials | Method of Preparation | Adsorbent | pH | Contact Time (min) | Temp (K) | Initial Conc (mg/L) | Adsorption Capacity (mg/g) | Reference |
---|---|---|---|---|---|---|---|---|---|
Keratin | Polyamide 6 | Electrospinning | Keratin/PA6 | 5.8 | 1240 | - | 35 | 103.5 | [110] |
Chitosan | Polystyrene | Electrospinning | Polystyrene chitosan rectories | 5.5 | 15 | 293 | 50 | 134 | [111] |
Fibres | Fe2O3-Al2O3 | Electrospinning | Electrospun/Fe2O3 | 5.5 | 60 | 298 | 30 | 4.98 | [112] |
CMC | Montmorillonite | Electrospinning | CMC/MMTNC | 5 | 40 | - | 5 | 5.34 | [113] |
Nano Fibers | Polyindole | Electrospinning | Electrospun Polyindole | 6 | 15 | 293 | 100 | 121.95 | [114] |
MCM-41 | PMMA | In-situ Polymerization | MCM-41/PMMA | 4 | 140 | 298 | 10 | 41.5 | [115] |
Silica Kit 6 | PMMA | In-situ Polymerization | PMMA/SilicaKit6 | 5.5 | 90 | 293 | 10 | 9.03 | [116] |
Amine Modified MCM-41 | Nylon 6 | In situ Polymerization | Amine-modified MCM-41/nylon 6 | 6 | 75 | 293 | 50 | 35.8 | [117] |
Thiol Boehmite | PMMA | In situ Polymerization | Boehmite/PMMA | 4 | 20 | - | 10 | 9.43 | [118] |
Nano Fibres | Polyacrylonitrile | Electrospinning | Hydrolysed Electrospun Polyarylonitrile | 5.0 | 300 | - | - | 31.3 | [119] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adeeyo, R.O.; Edokpayi, J.N.; Bello, O.S.; Adeeyo, A.O.; Odiyo, J.O. Influence of Selective Conditions on Various Composite Sorbents for Enhanced Removal of Copper (II) Ions from Aqueous Environments. Int. J. Environ. Res. Public Health 2019, 16, 4596. https://doi.org/10.3390/ijerph16234596
Adeeyo RO, Edokpayi JN, Bello OS, Adeeyo AO, Odiyo JO. Influence of Selective Conditions on Various Composite Sorbents for Enhanced Removal of Copper (II) Ions from Aqueous Environments. International Journal of Environmental Research and Public Health. 2019; 16(23):4596. https://doi.org/10.3390/ijerph16234596
Chicago/Turabian StyleAdeeyo, Rebecca O., Joshua N. Edokpayi, Olugbenga S. Bello, Adeyemi O. Adeeyo, and John O. Odiyo. 2019. "Influence of Selective Conditions on Various Composite Sorbents for Enhanced Removal of Copper (II) Ions from Aqueous Environments" International Journal of Environmental Research and Public Health 16, no. 23: 4596. https://doi.org/10.3390/ijerph16234596
APA StyleAdeeyo, R. O., Edokpayi, J. N., Bello, O. S., Adeeyo, A. O., & Odiyo, J. O. (2019). Influence of Selective Conditions on Various Composite Sorbents for Enhanced Removal of Copper (II) Ions from Aqueous Environments. International Journal of Environmental Research and Public Health, 16(23), 4596. https://doi.org/10.3390/ijerph16234596