Assessing the Impact of Land-Use Planning on the Atmospheric Environment through Predicting the Spatial Variability of Airborne Pollutants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Compiling the Land-Use-Based Air Emissions Inventory
2.2. Calculating the Annual Airborne Pollutant Concentration
2.3. Assessing the LUP Impact on the Atmosphere
3. Case Study: Lianyungang, Eastern China
3.1. Study Area and Data
3.2. Land-Use-Based Emission Inventory of Airborne Pollutants
3.2.1. Classifying the Emission Sources
3.2.2. Inventorying the Land-Use-Based Emissions
3.2.3. Predicting the Emission Inventory Based on Land-Use Planning
3.3. Calculating the Annual Airborne Pollutant Concentration
3.4. Assessing the LUP Impact on the Atmosphere
4. Results
5. Discussion
5.1. Land-Use-Based Atmospheric Emission Inventories
5.2. Spatial Characteristics of Airborne Pollutant Concentration
5.3. Evaluating the Environmental Friendliness of LUP
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix
Acronym | Full Form | Description | Reference(s) |
---|---|---|---|
LUP | Land-use planning | The process for the spatio-temporal arrangement and allocation of land recourses in accordance with the principles of sustainable land-use. | T. Tang, Zhu, & Xu, (2007) [7]; Z. Tang, Bright, & Brody, (2009) [8] |
SEA | Strategic Environmental Assessment | The process for evaluating the environmental consequences of proposed policy, plan or programme (PPP) and its alternatives in order to ensure they are fully considered and appropriately addressed at the earliest suitable stage of the decision-making process. | Chen et al., (2014) [44] |
LUPEA | Land-use planning environmental impact assessment | The application of SEA in LUP is known as LUPEA. It is a process for assessing the environmental impact of LUP including before, during and after the implementation. | Chen, Yang, Chen, & Li, (2015) [9]; Chen et al., (2014) [44] |
LAPMD | Long-term air pollution multi-source dispersion model | A model to spatially estimate the annual concentration of atmospheric pollutants, it was established based on the Gaussian diffusion model. | Chen, Yang, & Kang, (2012) [26] |
References
- Wu, S.; Mickley, L.J.; Kaplan, J.O.; Jacob, D.J. Impacts of changes in land use and land cover on atmospheric chemistry and air quality over the 21st century. Atmos. Chem. Phys. Discuss. 2011, 11, 15469–15495. [Google Scholar] [CrossRef]
- Murphy, L.U.; O’Sullivan, A.; Cochrane, T.A. Quantifying the spatial variability of airborne pollutants to stormwater runoff in different land-use catchments. Water. Air. Soil Pollut. 2014, 225, 2016. [Google Scholar] [CrossRef]
- Heald, C.L.; Spracklen, D.V. Land use change impacts on air quality and climate. Chem. Rev. 2015, 115, 4476–4496. [Google Scholar] [CrossRef]
- Shahraki, N.; Turkay, M. Analysis of interaction among land use, transportation network and air pollution using stochastic nonlinear programming. Int. J. Environ. Sci. Technol. 2014, 11, 2201–2216. [Google Scholar] [CrossRef] [Green Version]
- Chester, M.V.; Nahlik, M.J.; Fraser, A.M.; Kimball, M.A.; Garikapati, V.M. Integrating life-cycle environmental and economic assessment with transportation and land use planning. Environ. Sci. Technol. 2013, 47, 12020–12028. [Google Scholar] [CrossRef]
- Chen, L.L.; Li, L.; Yang, X.; Zheng, J.; Chen, L.L.; Shen, Z.; Kervyn, M. A worst-case scenario based methodology to assess the environmental impact of land use planning. Habitat Int. 2017, 67, 148–163. [Google Scholar] [CrossRef]
- Tang, T.; Zhu, T.; Xu, H. Integrating environment into land-use planning through strategic environmental assessment in China: Towards legal frameworks and operational procedures. Environ. Impact Assess. Rev. 2007, 27, 243–265. [Google Scholar]
- Tang, Z.; Bright, E.; Brody, S. Evaluating California local land use plan’s environmental impact reports. Environ. Impact Assess. Rev. 2009, 29, 96–106. [Google Scholar] [CrossRef]
- Chen, L.; Yang, X.; Chen, L.; Li, L. Impact assessment of land use planning driving forces on environment. Environ. Impact Assess. Rev. 2015, 55, 126–135. [Google Scholar] [CrossRef]
- Zhou, Y.; Cheng, S.; Li, J.; Lang, J.; Li, L.; Chen, D. A new statistical modeling and optimization framework for establishing high-resolution PM10 emission inventory—II. Integrated air quality simulation and optimization for performance improvement. Atmos. Environ. 2012, 60, 623–631. [Google Scholar] [CrossRef]
- Zhao, H.; Tong, D.Q.; Gao, C.; Wang, G. Effect of dramatic land use change on gaseous pollutant emissions from biomass burning in Northeastern China. Atmos. Res. 2015, 153, 429–436. [Google Scholar] [CrossRef]
- Kota, S.H.; Zhang, H.; Chen, G.; Schade, G.W.; Ying, Q. Evaluation of on-road vehicle CO and NOx national emission inventories using an urban-scale source-oriented air quality model. Atmos. Environ. 2014, 85, 99–108. [Google Scholar] [CrossRef]
- Napelenok, S.L.; Foley, K.M.; Kang, D.; Mathur, R.; Pierce, T.; Rao, S.T. Dynamic evaluation of regional air quality model’s response to emission reductions in the presence of uncertain emission inventories. Atmos. Environ. 2011, 45, 4091–4098. [Google Scholar] [CrossRef]
- Sadavarte, P.; Venkataraman, C. Trends in multi-pollutant emissions from a technology-linked inventory for India: I. Industry and transport sectors. Atmos. Environ. 2014, 99, 353–364. [Google Scholar] [CrossRef]
- Pandey, A.; Sadavarte, P.; Rao, A.B.; Venkataraman, C. Trends in multi-pollutant emissions from a technology-linked inventory for India: II. Residential, agricultural and informal industry sectors. Atmos. Environ. 2014, 99, 341–352. [Google Scholar] [CrossRef]
- Varela, Z.; Aboal, J.R.; Carballeira, A.; Real, C.; Fernández, J.A. Use of a moss biomonitoring method to compile emission inventories for small-scale industries. J. Hazard. Mater. 2014, 275, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Pope, A.; Ndoh, T.; Chappell, L. Analysis of Multi-Pollutant Emissions Inventories for Key Industrial Sectors. Available online: https://www3.epa.gov/ttnchie1/conference/ei18/session9/pope_pres.pdf (accessed on 9 January 2019).
- Dons, E.; Van Poppel, M.; Kochan, B.; Wets, G.; Int Panis, L. Modeling temporal and spatial variability of traffic-related air pollution: Hourly land use regression models for black carbon. Atmos. Environ. 2013, 74, 237–246. [Google Scholar] [CrossRef]
- Beelen, R.; Voogt, M.; Duyzer, J.; Zandveld, P.; Hoek, G. Comparison of the performances of land use regression modelling and dispersion modelling in estimating small-scale variations in long-term air pollution concentrations in a Dutch urban area. Atmos. Environ. 2010, 44, 4614–4621. [Google Scholar] [CrossRef]
- Montagne, D.; Hoek, G.; Nieuwenhuijsen, M.; Lanki, T.; Pennanen, A.; Portella, M.; Meliefste, K.; Eeftens, M.; Yli-Tuomi, T.; Cirach, M.; et al. Agreement of land use regression models with personal exposure measurements of particulate matter and nitrogen oxides air pollution. Environ. Sci. Technol. 2013, 47, 8523–8531. [Google Scholar] [CrossRef]
- Hoek, G.; Beelen, R.; de Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P.; Briggs, D. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 2008, 42, 7561–7578. [Google Scholar] [CrossRef]
- Mölter, A.; Lindley, S.; de Vocht, F.; Simpson, A.; Agius, R. Modelling air pollution for epidemiologic research—Part II: Predicting temporal variation through land use regression. Sci. Total Environ. 2010, 409, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.C.; Carvalho, A.; Gelpi, I.; Barreiro, M.; Borrego, C.; Miranda, A.I.; Pérez-Muñuzuri, V. Influence of topography and land use on pollutants dispersion in the Atlantic coast of Iberian Peninsula. Atmos. Environ. 2006, 40, 3969–3982. [Google Scholar] [CrossRef]
- Corburn, J. Urban land use, air toxics and public health: Assessing hazardous exposures at the neighborhood scale. Environ. Impact Assess. Rev. 2007, 27, 145–160. [Google Scholar] [CrossRef]
- Berchet, A.; Zink, K.; Muller, C.; Oettl, D.; Brunner, J.; Emmenegger, L.; Brunner, D. A cost-effective method for simulating city-wide air flow and pollutant dispersion at building resolving scale. Atmos. Environ. 2017, 158, 181–196. [Google Scholar] [CrossRef]
- Chen, L.; Yang, X.; Kang, J. A case study of land use planning environmental assessment based on the air pollution analysis. In Advances in Computational Environment Science; Springer: Berlin/Heidelberg, Germany, 2012; pp. 319–328. [Google Scholar]
- Xing, Y.; Brimblecombe, P. Dispersion of traffic derived air pollutants into urban parks. Sci. Total Environ. 2018, 622–623, 576–583. [Google Scholar] [CrossRef]
- Wang, L.; Li, P.; Yu, S.; Mehmood, K.; Li, Z.; Chang, S.; Liu, W.; Rosenfeld, D.; Flagan, R.C.; Seinfeld, J.H. Predicted impact of thermal power generation emission control measures in the Beijing-Tianjin-Hebei region on air pollution over Beijing, China. Sci. Rep. 2018, 8, 934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.X.; Shao, M.; Zhang, Y.H.; Zeng, L.M.; He, L.Y.; Zhu, B.; Wei, Y.J.; Zhu, X.L. Source profiles of particulate organic matters emitted from cereal straw burnings. J. Environ. Sci. 2007, 19, 167–175. [Google Scholar] [CrossRef]
- Li, L.J.; Wang, Y.; Zhang, Q.; Li, J.X.; Yang, X.G.; Jin, J. Wheat straw burning and its associated impacts on Beijing air quality. Sci. China, Ser. D Earth Sci. 2008, 51, 403–414. [Google Scholar] [CrossRef]
- Kong, S.; Bai, Z.; Lu, B. Comparative analysis on emission factors of carbonaceous components in PM2.5 and PM10 from domestic fuels combustion. China Environ. Sci. 2014, 34, 2749–2756. [Google Scholar]
- Zhu, J.; Wang, T.; Deng, J.; Jiang, A.; Liu, D. An emission inventory of air pollutants from crop residue burning in Yangtze River Delta Region and its application in simulation of a heavy haze weather process. Acta Sci. Circumstantiae 2012, 32, 3045–3055. [Google Scholar]
- He, L.; Hu, J.; Xie, S.; Song, J.; Zu, L. CH4 and N2O emission inventory for motor vehicles in China in 2010. Res. Environ. Sci. 2014, 27, 28–35. [Google Scholar]
- Cai, H.; Xie, S. Determination of emission factors from motor vehicles under different emission standards in China. Acta Sci. Nat. Univ. Pekin. 2010, 46, 319–326. [Google Scholar]
- Breivik, K.; Sweetman, A.; Pacyna, J.M.; Jones, K.C. Towards a global historical emission inventory for selected PCB congeners—A mass balance approach: 2. Emissions. Sci. Total Environ. 2002, 290, 199–224. [Google Scholar] [CrossRef]
- Zhang, H.; Ye, X.; Cheng, T.; Chen, J.; Yang, X.; Wang, L.; Zhang, R. A laboratory study of agricultural crop residue combustion in China: Emission factors and emission inventory. Atmos. Environ. 2008, 42, 8432–8441. [Google Scholar] [CrossRef]
- Yang, X.; Li, L.; Chen, L.; Chen, L.; Shen, Z. Improving ASTER GDEM Accuracy Using Land Use-Based Linear Regression Methods: A Case Study of Lianyungang, East China. ISPRS Int. J. Geo-Inf. 2018, 7, 145. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, Y.; Zhang, K.; Dong, W.; Lv, B.; Bai, Y. Daily Estimation of Ground-Level PM2.5 Concentrations over Beijing Using 3 km Resolution MODIS AOD. Environ. Sci. Technol. 2015, 49, 12280–12288. [Google Scholar] [CrossRef]
- Huang, G.; Cheng, T.; Zhang, R.; Tao, J.; Leng, C.; Zhang, Y.; Zha, S.; Zhang, D.; Li, X.; Xu, C. Optical properties and chemical composition of PM2.5 in Shanghai in the spring of 2012. Particuology 2014, 13, 52–59. [Google Scholar] [CrossRef]
- De Hoogh, K.; Héritier, H.; Stafoggia, M.; Künzli, N.; Kloog, I. Modelling daily PM2.5 concentrations at high spatio-temporal resolution across Switzerland. Environ. Pollut. 2018, 233, 1147–1154. [Google Scholar] [CrossRef]
- Wang, E. PM2.5 Will Be Monitored in All City-Level Regions as of 2015. Available online: http://business.sohu.com/20141231/n407436335.shtml (accessed on 20 December 2015).
- Zhao, C.X.; Wang, Y.Q.; Wang, Y.J.; Zhang, H.L.; Zhao, B.Q. Temporal and spatial distribution of PM2.5 and PM10 pollution status and the correlation of particulate matters and meteorological factors during winter and spring in Beijing. Huan Jing Ke Xue 2014, 35, 418–427. [Google Scholar]
- Pan, Y.; Li, N.; Zheng, J.; Yin, S.; Li, C.; Yang, J.; Zhong, L.; Chen, D.; Deng, S. Emission inventory and characteristics of anthropogenic air pollutant sources in Guangdong Province. Acta Sci. Circumstantiae 2015, 35, 2655–2669. [Google Scholar]
- Chen, L.; Yang, X.; Chen, L.; Potter, R.; Li, Y. A state-impact-state methodology for assessing environmental impact in land use planning. Environ. Impact Assess. Rev. 2014, 46, 1–12. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection of the People’s Republic of China; State Administration for Market Regulation. Ambient Air Quality Standard in China (GB 3095-2012). Available online: http://img.jingbian.gov.cn/upload/CMSjingbian/201806/201806210853050.pdf (accessed on 9 January 2019).
- Statistics Department of Lianyungang. 2011 Statistical Yearbook of Lianyungang. Available online: http://www.lyg.gov.cn/zglygzfmhwz/tjnj/content/993f4531-2093-4df0-8df7-f422b62d1395.html (accessed on 9 January 2019).
- Lo, J.C.F.; Lau, A.K.H.; Fung, J.C.H.; Chen, F. Investigation of enhanced cross-city transport and trapping of air pollutants by coastal and urban land-sea breeze circulations. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Indumati, S.; Oza, R.B.; Mayya, Y.S.; Puranik, V.D.; Kushwaha, H.S. Dispersion of pollutants over land-water-land interface: Study using CALPUFF model. Atmos. Environ. 2009, 43, 473–478. [Google Scholar] [CrossRef]
- Lam, J.S.L.; Lau, A.K.H.; Fung, J.C.H. Application of refined land-use categories for high resolution mesoscale atmospheric modelling. Bound.-Layer Meteorol. 2006, 119, 263–288. [Google Scholar] [CrossRef]
- Polkowska, Ż.; Górecki, T.; Namieśnik, J. Determination of atmospheric pollutants in wet deposition. Environ. Rev. 2011, 19, 185–213. [Google Scholar] [CrossRef]
- Lee, B.S.; Chiou, C.B. The use of CFC-12, CFC-11 and CH3CCl3to trace terrestrial airborne pollutant transport by land-sea breezes. Atmos. Environ. 2007, 41, 3360–3372. [Google Scholar] [CrossRef]
- Kahyaoǧlu-Koračin, J.; Bassett, S.D.; Mouat, D.A.; Gertler, A.W. Application of a scenario-based modeling system to evaluate the air quality impacts of future growth. Atmos. Environ. 2009, 43, 1021–1028. [Google Scholar] [CrossRef]
- Zheng, S.; Zhou, X.; Singh, R.P.; Wu, Y.; Ye, Y.; Wu, C. The spatiotemporal distribution of air pollutants and their relationship with land-use patterns in Hangzhou City, China. Atmosphere 2017, 8, 110. [Google Scholar] [CrossRef]
- Liang, S.; Lei, J.; Zhang, A. Temporal and spatial distribution of PM2.5 concentration in Beijing-Tianjin-Hebei region and its correlation with PM10 and five air quality indicators. Jiangsu Sci. Technol. Inf. 2018, 35, 40–45. [Google Scholar]
- Li, Y.; Chen, Q.; Zhao, H.; Wang, L.; Tao, R. Variations in PM10, PM2.5and PM1.0 in an urban area of the Sichuan basin and their relation to meteorological factors. Atmosphere 2015, 6, 150–163. [Google Scholar] [CrossRef]
- Gehrig, R.; Buchmann, B. Characterising seasonal variations and spatial distribution of ambient PM10 and PM2.5 concentrations based on long-term Swiss monitoring data. Atmos. Environ. 2003, 37, 2571–2580. [Google Scholar] [CrossRef]
- Koçak, M.; Mihalopoulos, N.; Tutsak, E.; Theodosi, C.; Zarmpas, P.; Kalegeri, P. PM10 and PM2.5 composition over the Central Black Sea: Origin and seasonal variability. Environ. Sci. Pollut. Res. 2015, 22, 18076–18092. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection of the People’s Republic of China. Limits and Measurement Methods for Exhaust Pollutants from Compression Ignition and Gas Fuelled Positive Ignition Engines of Vehicles (III IV V) (GB 17691-2005); China Environmental Science Press: Beijing, China, 2005.
- Židoniene, S.; Kruopiene, J. Life Cycle Assessment in environmental impact assessments of industrial projects: Towards the improvement. J. Clean. Prod. 2015, 106, 533–540. [Google Scholar] [CrossRef]
- Roes, A.L.; Patel, M.K. Environmental assessment of a sugar cane bagasse food tray produced by roots biopack-results of a shortcut-life cycle assessment. J. Biobased Mater. Bioenergy 2011, 5, 140–152. [Google Scholar] [CrossRef]
- Lilic, N.; Cvjetic, A.; Knezevic, D.; Milisavljevic, V.; Pantelic, U.; Lilic, N.; Cvjetic, A.; Knezevic, D.; Milisavljevic, V.; Pantelic, U. Dust and Noise Environmental Impact Assessment and Control in Serbian Mining Practice. Minerals 2018, 8, 34. [Google Scholar] [CrossRef]
- Tsegas, G.; Moussiopoulos, N.; Barmpas, F.; Akylas, V.; Douros, I. An integrated numerical methodology for describing multiscale interactions on atmospheric flow and pollutant dispersion in the urban atmospheric boundary layer. J. Wind Eng. Ind. Aerodyn. 2015, 144, 191–201. [Google Scholar] [CrossRef]
- Pokhrel, R.; Lee, H. Estimation of air pollution from the {OGVs} and its dispersion in a coastal area. Ocean Eng. 2015, 101, 275–284. [Google Scholar] [CrossRef]
- Jiang, W.; Hu, F.; Wang, W. A non-hydrostatic dispersion modeling system and its application to air pollution assessments over coastal complex terrain. J. Wind Eng. Ind. Aerodyn. 2000, 87, 15–43. [Google Scholar] [CrossRef]
Year | Emission Source Types | Emission Factor of SO2 (kg/ton) | Emission of SO2 | DesulfuriZation Rate | Emission Factor of PM10 (kg/ton) | Emission of PM10 | ||
---|---|---|---|---|---|---|---|---|
(ton) | (%) | (ton) | (%) | |||||
2010 | Key plot | - | 26,036.38 | 74.1 | 0.6 | 2.97 | 5864.63 | 23.21 |
Urban residential | - | 8026.77 | 22.85 | 0 | 0.15 | 42.81 | 0.17 | |
Rural residential | 0.4 | 478.5 | 1.36 | - | 3.74 | 4476.55 | 17.72 | |
Agricultural land | 0.4 | 593.8 | 1.69 | - | 10 | 14,884 | 58.9 | |
Total | 35,135.45 | 100 | 25,267.99 | 100 | ||||
2020 | Key plot | - | 17,746.32 | 63.82 | 0.6 | 2.97 | 3997.31 | 41.42 |
Urban residential | - | 9565.23 | 34.4 | 0 | 0.15 | 51.02 | 0.53 | |
Rural residential | 0.4 | 430.65 | 1.55 | - | 3.74 | 4028.9 | 41.74 | |
Agricultural land | 0.4 | 62.8 | 0.23 | - | 10 | 1574.25 | 16.31 | |
Total | 27,805 | 100 | 9651.48 | 100 |
Year | Vehicle Types | Emission Factor of SO2 (kg/ton) | Emission of SO2 | Emission Factor of PM10 (kg/ton) | Emission of PM10 | ||
---|---|---|---|---|---|---|---|
(ton) | (%) | (ton) | (%) | ||||
2010 | 1. passenger vehicle | ||||||
Large vehicle | 0.05 | 786.52 | 5.08 | 0.02 | 314.61 | 3.57 | |
Medium vehicle | 0.01 | 153.69 | 0.99 | 0.02 | 307.37 | 3.49 | |
Small car | 0.01 | 2118.24 | 13.68 | 0.02 | 4236.48 | 48.11 | |
Mini vehicle | 0.01 | 98.59 | 0.64 | 0.02 | 197.19 | 2.24 | |
2. truck | |||||||
Heavy truck | 0.10 | 8918.00 | 57.61 | 0.02 | 1783.60 | 20.26 | |
Medium truck | 0.05 | 1305.68 | 8.43 | 0.02 | 522.27 | 5.93 | |
Light truck | 0.01 | 375.40 | 2.43 | 0.02 | 750.80 | 8.53 | |
Mini truck | 0.01 | 2.18 | 0.01 | 0.02 | 4.36 | 0.05 | |
3. tricar | 0.05 | 1721.37 | 11.12 | 0.02 | 688.55 | 7.82 | |
Total | 15,479.67 | 100 | 0.02 | 8805.24 | 100 | ||
2020 | 1. passenger vehicle | ||||||
Large vehicle | 0.030 | 490.79 | 4.29 | 0.012 | 196.32 | 2.16 | |
Medium vehicle | 0.006 | 95.90 | 0.84 | 0.012 | 191.80 | 2.12 | |
Small car | 0.006 | 3029.09 | 26.46 | 0.012 | 6058.17 | 66.81 | |
Mini vehicle | 0.006 | 140.99 | 1.23 | 0.012 | 281.98 | 3.11 | |
2. truck | |||||||
Heavy truck | 0.060 | 5564.83 | 48.62 | 0.012 | 1112.97 | 12.27 | |
Medium truck | 0.030 | 814.74 | 7.12 | 0.012 | 325.90 | 3.59 | |
Light truck | 0.006 | 234.25 | 2.05 | 0.012 | 468.50 | 5.17 | |
Mini truck | 0.006 | 1.36 | 0.01 | 0.012 | 2.72 | 0.03 | |
3. tricar | 0.030 | 1074.13 | 9.38 | 0.012 | 429.65 | 4.74 | |
Total | 11,446.08 | 100 | 0.012 | 9068.01 | 100 |
Value (Unit: mg/m3) | Area | Value (Unit: mg/m3) | Area | ||||||
---|---|---|---|---|---|---|---|---|---|
PM10 in 2010 | PM10 in 2020 | SO2 in 2010 | SO2 in 2020 | ||||||
<0.005 | 16,630.5 | 99.48% | 16,678.51 | 99.77% | <0.005 | 16,341.66 | 97.75% | 16,301.61 | 97.51% |
0.005–0.02 | 73.52 | 0.44% | 30.89 | 0.18% | 0.005–0.01 | 270.61 | 1.62% | 282.57 | 1.69% |
0.02–0.04 | 7.12 | 0.04% | 4.05 | 0.02% | 0.01–0.02 | 51.78 | 0.31% | 84.54 | 0.51% |
0.04–0.07 | 2.82 | 0.02% | 2.16 | 0.01% | 0.02–0.06 | 34.79 | 0.21% | 35.76 | 0.21% |
0.07–0.14 | 1.92 | 0.01% | 0.9 | 0.01% | 0.06–0.1 | 6.74 | 0.04% | 5.51 | 0.03% |
>0.14 | 1.17 | 0.01% | 0.54 | 0.00% | >0.1 | 11.48 | 0.07% | 7.05 | 0.04% |
Average value (Unit: 10−3 mg/m3) | 0.97 | 0.48 | 1.68 | 1.15 |
Land Scheme | Value | Area (hm2) | Value | Area (hm2) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
(mg/m3) | SO2 in 2010 | SO2 in 2020 | (mg/m3) | PM10 in 2010 | PM10 in 2020 | |||||
Newly planned rural land | <0.005 | 1103.24 | 96.63% | 1098.55 | 96.22% | <0.005 | 1132.93 | 99.23% | 1139.31 | 99.79% |
0.005–0.01 | 32.3 | 2.83% | 32.79 | 2.87% | 0.005–0.02 | 8.82 | 0.77% | 2.43 | 0.21% | |
0.01–0.02 | 3.78 | 0.33% | 4.19 | 0.37 | 0.02–0.04 | 0.00 | 0.00% | 0.00 | 0.00% | |
0.02–0.06 | 0 | 0.00% | 3.78 | 0.33 | 0.04–0.07 | 0.00 | 0.00% | 0.00 | 0.00% | |
0.06–0.1 | 0 | 0.00% | 2.33 | 0.20 | 0.07–0.14 | 0.00 | 0.00% | 0.00 | 0.00% | |
>0.1 | 2.43 | 0.21% | 0.11 | 0.01 | >0.14 | 0.00 | 0.00% | 0.00 | 0.00% | |
Newly planned urban land | <0.005 | 10,599.37 | 80.67% | 9123.03 | 69.43% | <0.005 | 12,876.68 | 98.00% | 13,083.84 | 99.57% |
0.005–0.01 | 2255.27 | 17.16% | 3223.11 | 24.53% | 0.005–0.02 | 247.46 | 1.88% | 56.12 | 0.43% | |
0.01–0.02 | 199 | 1.51% | 688.26 | 5.24% | 0.02–0.04 | 15.81 | 0.12% | 0.00 | 0.00% | |
0.02–0.06 | 82.04 | 0.62% | 100.6 | 0.77% | 0.04–0.07 | 0.00 | 0.00% | 0.00 | 0.00% | |
0.06–0.1 | 2.18 | 0.02% | 1.83 | 0.01% | 0.07–0.14 | 0.00 | 0.00% | 0.00 | 0.00% | |
>0.1 | 2.11 | 0.02% | 3.12 | 0.02% | >0.14 | 0.00 | 0.00% | 0.00 | 0.00% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Li, L.; Yang, X.; Zhang, Y.; Chen, L.; Ma, X. Assessing the Impact of Land-Use Planning on the Atmospheric Environment through Predicting the Spatial Variability of Airborne Pollutants. Int. J. Environ. Res. Public Health 2019, 16, 172. https://doi.org/10.3390/ijerph16020172
Chen L, Li L, Yang X, Zhang Y, Chen L, Ma X. Assessing the Impact of Land-Use Planning on the Atmospheric Environment through Predicting the Spatial Variability of Airborne Pollutants. International Journal of Environmental Research and Public Health. 2019; 16(2):172. https://doi.org/10.3390/ijerph16020172
Chicago/Turabian StyleChen, Longgao, Long Li, Xiaoyan Yang, Yu Zhang, Longqian Chen, and Xiaodong Ma. 2019. "Assessing the Impact of Land-Use Planning on the Atmospheric Environment through Predicting the Spatial Variability of Airborne Pollutants" International Journal of Environmental Research and Public Health 16, no. 2: 172. https://doi.org/10.3390/ijerph16020172
APA StyleChen, L., Li, L., Yang, X., Zhang, Y., Chen, L., & Ma, X. (2019). Assessing the Impact of Land-Use Planning on the Atmospheric Environment through Predicting the Spatial Variability of Airborne Pollutants. International Journal of Environmental Research and Public Health, 16(2), 172. https://doi.org/10.3390/ijerph16020172