Effects of Developmental Arsenic Exposure on the Social Behavior and Related Gene Expression in C3H Adult Male Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment 1
2.1.1. Animals
2.1.2. Social Behavior
2.1.3. Light-Dark Transition Test
2.1.4. Quantification of Social Behavior-Related Gene Expression
2.2. Experiment 2
2.2.1. Quantification of Social Behavior-Related Gene Expression
2.2.2. Quantification of Oxidative Stress and Inflammatory Markers
2.3. Statistical Analysis
3. Results
3.1. Effect of Developmental Arsenic Exposure on Social Behavior
3.2. Effect of Developmental Arsenic Exposure on Prefrontal Cortex Expression of Social Behavior-Related Genes
3.3. Effect of Developmental Arsenic Exposure on Prefrontal Cortex Expression of Oxidative Stress and Inflammatory Marker Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hughes, M.F.; Beck, B.D.; Chen, Y.; Lewis, A.S.; Thomas, D.J. Arsenic exposure and toxicology: A historical perspective. Toxicol. Sci. 2011, 123, 305–332. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.A.; Sayed, M.H.; Barua, S.; Khan, M.H.; Faruquee, M.H.; Jalil, A.; Hadi, S.A.; Talukder, H.K. Arsenic in drinking water and pregnancy outcomes. Environ. Health Perspect. 2001, 109, 629–631. [Google Scholar] [CrossRef] [PubMed]
- BBS/UNICEF. Multiple Indicator Cluster Survey 2012–2013: Final Report; Bangladesh Bureau of Statistics/UNICEF: Dhaka, Bangladesh, 2015. [Google Scholar]
- ATSDR. Toxicological Profile for Arsenic; Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services: Atlanta, GA, USA, 2007. Available online: http://www.atsdr.cdc.gov/ToxProfiles/tp2.pdf (accessed on 3 September 2018).
- Htway, S.M.; Ohnmar; Than, M.A.; Myint, K.T.; Myint, M.M. Cardiovascular Risk in People with Chronic Exposure to Low Level of Arsenic Contamination in Drinking Water. Myanmar Health Sci. Res. J. 2014, 26, 159–165. [Google Scholar]
- Naing, K.T. Effect of Chronic Arsenic Exposure on Cognitive Ability and Sensory Function in Apparently Healthy Adolescents. Ph.D. Thesis, University of Medicine 2, Yangon, Myanmar, 2017. [Google Scholar]
- Bencko, V. Carcinogenic, teratogenic, and mutagenic effects of arsenic. Environ. Health Perspect. 1977, 19, 179. [Google Scholar] [CrossRef] [PubMed]
- Saha, J.C.; Dikshit, A.K.; Bandyopadhyay, M.; Saha, K.C. A review of arsenic poisoning and its effects on human health. Environ. Sci. Technol. 1999, 29, 281–313. [Google Scholar] [CrossRef]
- Lindgren, A.; Danielsson, B.R.; Dencker, L.; Vahter, M. Embryotoxicity of arsenite and arsenate: Distribution in pregnant mice and monkeys and effects on embryonic cells in vitro. Acta Pharmacol. Toxicol. 1984, 54, 311–320. [Google Scholar] [CrossRef]
- Sánchez-Peña, L.C.; Petrosyan, P.; Morales, M.; González, N.B.; Gutiérrez-Ospina, G.; Del Razo, L.M.; Gonsebatt, M.E. Arsenic species, AS3MT amount, and AS3MT gene expression in different brain regions of mouse exposed to arsenite. Environ. Res. 2010, 110, 428–434. [Google Scholar] [CrossRef]
- Wasserman, G.A.; Liu, X.; Parvez, F.; Ahsan, H.; Factor-Litvak, P.; van Geen, A.; Slavkovich, V.; Lolacono, N.J.; Cheng, Z.; Hussain, I.; et al. Water arsenic exposure and children’s intellectual function in Araihazar, Bangladesh. Environ. Health Perspect. 2004, 112, 1329. [Google Scholar] [CrossRef]
- Hamadani, J.D.; Tofail, F.; Nermell, B.; Gardner, R.; Shiraji, S.; Bottai, M.; Arifeen, S.E.; Huda, S.N.; Vahter, M. Critical windows of exposure for arsenic-associated impairment of cognitive function in pre-school girls and boys: A population-based cohort study. Int. J. Epidemiol. 2011, 40, 1593–1604. [Google Scholar] [CrossRef]
- Tolins, M.; Ruchirawat, M.; Landrigan, P. The developmental neurotoxicity of arsenic: Cognitive and behavioral consequences of early life exposure. Ann. Glob. Health 2014, 80, 303–314. [Google Scholar] [CrossRef]
- Smith, A.H.; Marshall, G.; Yuan, Y.; Ferreccio, C.; Liaw, J.; von Ehrenstein, O.; Steinmaus, C.; Bates, M.N.; Selvin, S. Increased mortality from lung cancer and bronchiectasis in young adults after exposure to arsenic in utero and in early childhood. Environ. Health Perspect. 2006, 114, 1293–1296. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.H.; Marshall, G.; Liaw, J.; Yuan, Y.; Ferreccio, C.; Steinmaus, C. Mortality in young adults following in utero and childhood exposure to arsenic in drinking water. Environ. Health Perspect. 2012, 120, 1527–1531. [Google Scholar] [CrossRef] [PubMed]
- Steinmaus, C.; Ferreccio, C.; Acevedo, J.; Balmes, J.R.; Liaw, J.; Troncoso, P.; Dauphiné, D.C.; Nardone, A.; Smith, A.H. High risks of lung disease associated with early-life and moderate lifetime arsenic exposure in northern Chile. Toxicol. Appl. Pharmacol. 2016, 313, 10–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyler, C.R.; Allan, A.M. The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: A review. Curr. Environ. Health Rep. 2014, 1, 132–147. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, K.E.; Labrecque, M.T.; Solomon, B.R.; Ali, A.; Allan, A.M. Prenatal arsenic exposure alters the programming of the glucocorticoid signaling system during embryonic development. Neurotoxicol. Teratol. 2015, 47, 66–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrıguez, V.M.; Carrizales, L.; Mendoza, M.S.; Fajardo, O.R.; Giordano, M. Effects of sodium arsenite exposure on development and behavior in the rat. Neurotoxicol. Teratol. 2002, 24, 743–750. [Google Scholar] [CrossRef]
- Martinez, E.J.; Kolb, B.L.; Bell, A.; Savage, D.D.; Allan, A.M. Moderate perinatal arsenic exposure alters neuroendocrine markers associated with depression and increases depressive-like behaviors in adult mouse offspring. Neurotoxicology 2008, 29, 647–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyler, C.R.; Allan, A.M. Adult hippocampal neurogenesis and mRNA expression are altered by perinatal arsenic exposure in mice and restored by brief exposure to enrichment. PLoS ONE 2013, 8, e73720. [Google Scholar] [CrossRef] [PubMed]
- Aung, K.H.; Kyi-Tha-Thu, C.; Sano, K.; Nakamura, K.; Tanoue, A.; Nohara, K.; Kakeyama, M.; Tohyama, C.; Tsukahara, S.; Maekawa, F. Prenatal exposure to arsenic impairs behavioral flexibility and cortical structure in mice. Front. Neurosci. 2016, 10, 137. [Google Scholar] [CrossRef]
- Ciranna, Á. Serotonin as a modulator of glutamate- and GABA-mediated neurotransmission: Implications in physiological functions and in pathology. Curr. Neuropharmacol. 2006, 4, 101–114. [Google Scholar] [CrossRef]
- Wu, T.; Luo, Y.; Broster, L.S.; Gu, R.; Luo, Y.J. The impact of anxiety on social decision-making: Behavioral and electrodermal findings. Soc. Neurosci. 2013, 8, 11–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duronto, P.M.; Nishida, T.; Nakayama, S. Uncertainty, anxiety, and avoidance in communication with strangers. Int. J. Intercult. Relat. 2005, 29, 549–560. [Google Scholar] [CrossRef]
- Luo, J.H.; Qiu, Z.Q.; Shu, W.Q.; Zhang, Y.Y.; Zhang, L.; Chen, J.A. Effects of arsenic exposure from drinking water on spatial memory, ultra-structures and NMDAR gene expression of hippocampus in rats. Toxicol. Lett. 2009, 184, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Nelson-Mora, J.; Escobar, M.L.; Rodríguez-Durán, L.; Massieu, L.; Montiel, T.; Rodríguez, V.M.; Hernández-Mercado, K.; Gonsebatt, M.E. Gestational exposure to inorganic arsenic (iAs3+) alters glutamate disposition in the mouse hippocampus and ionotropic glutamate receptor expression leading to memory impairment. Arch. Toxicol. 2018, 92, 1037–1048. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Chávez, L.A.; Rendón-López, C.R.; Zepeda, A.; Silva-Adaya, D.; Del Razo, L.M.; Gonsebatt, M.E. Neurological effects of inorganic arsenic exposure: Altered cysteine/glutamate transport, NMDA expression and spatial memory impairment. Front. Cell. Neurosci. 2015, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Fuster, J.M. The Prefrontal Cortex, 5th ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; ISBN 978-012-407815. [Google Scholar]
- Martinowich, K.; Lu, B. Interaction between BDNF and serotonin: Role in mood disorders. Neuropsychopharmacology 2008, 33, 73. [Google Scholar] [CrossRef]
- Albert, P.R.; Vahid-Ansari, F.; Luckhart, C. Serotonin-prefrontal cortical circuitry in anxiety and depression phenotypes: Pivotal role of pre-and post-synaptic 5-HT1A receptor expression. Front. Behav. Neurosci. 2014, 8, 199. [Google Scholar] [CrossRef]
- Nohara, K.; Tateishi, Y.; Suzuki, T.; Okamura, K.; Murai, H.; Takumi, S.; Maekawa, F.; Nishimura, N.; Kobori, M.; Ito, T. Late-onset increases in oxidative stress and other tumorigenic activities and tumors with a Ha-ras mutation in the liver of adult male C3H mice gestationally exposed to arsenic. Toxicol. Sci. 2012, 129, 293–304. [Google Scholar] [CrossRef]
- Nohara, K.; Suzuki, T.; Okamura, K.; Matsushita, J.; Takumi, S. Tumor-augmenting effects of gestational arsenic exposure on F1 and F2 in mice. Genes Environ. 2017, 39, 3. [Google Scholar] [CrossRef]
- Win-Shwe, T.T.; Nway, N.C.; Imai, M.; Lwin, T.T.; Mar, O.; Watanabe, H. Social behavior, neuroimmune markers and glutamic acid decarboxylase levels in a rat model of valproic acid-induced autism. J. Toxicol. Sci. 2018, 43, 631–643. [Google Scholar] [CrossRef]
- Win-Shwe, T.T.; Ohtani, S.; Ushiyama, A.; Kunugita, N. Early exposure to intermediate-frequency magnetic fields alters brain biomarkers without histopathological changes in adult mice. Int. J. Environ. Res. Public Health 2015, 12, 4406–4421. [Google Scholar] [CrossRef] [PubMed]
- Win-Shwe, T.T.; Kunugita, N.; Yoshida, Y.; Nakajima, D.; Tsukahara, S.; Fujimaki, H. Differential mRNA expression of neuroimmune markers in the hippocampus of infant mice following toluene exposure during brain developmental period. J. Appl. Toxicol. 2012, 32, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Win-Shwe, T.T.; Yamamoto, S.; Fujitani, Y.; Hirano, S.; Fujimaki, H. Spatial learning and memory function-related gene expression in the hippocampus of mouse exposed to nanoparticle-rich diesel exhaust. Neurotoxicology 2008, 29, 940–947. [Google Scholar] [CrossRef] [PubMed]
- Win-Shwe, T.T.; Tsukahara, S.; Ahmed, S.; Fukushima, A.; Yamamoto, S.; Kakeyama, M.; Nakajima, D.; Goto, S.; Kobayashi, T.; Fujimaki, H. Athymic nude mice are insensitive to low-level toluene-induced up-regulation of memory-related gene expressions in the hippocampus. Neurotoxicology 2007, 28, 957–964. [Google Scholar] [CrossRef]
- Win-Shwe, T.T.; Yamamoto, S.; Ahmed, S.; Kakeyama, M.; Kobayashi, T.; Fujimaki, H. Brain cytokine and chemokine mRNA expression in mice induced by intranasal instillation with ultrafine carbon black. Toxicol. Lett. 2006, 163, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Cases, O.; Seif, I.; Grimsby, J.; Gaspar, P.; Chen, K.; Pournin, S.; Müller, U.; Aguet, M.; Babinet, C.; Shih, J.C. Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 1995, 268, 1763–1766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozul-Horvath, C.D.; Zandbergen, F.; Jackson, B.P.; Enelow, R.I.; Hamilton, J.W. Effects of low-dose drinking water arsenic on mouse fetal and postnatal growth and development. PLoS ONE 2012, 7, e38249. [Google Scholar] [CrossRef]
- Chaineau, E.; Binet, S.; Pol, D.; Chatellier, G.; Meininger, V. Embryotoxic effects of sodium arsenite and sodium arsenate on mouse embryos in culture. Teratology 1990, 41, 105–112. [Google Scholar] [CrossRef]
- Li, D.; Lu, C.; Wang, J.; Hu, W.; Cao, Z.; Sun, D. Developmental mechanisms of arsenite toxicity in zebrafish (Danio rerio) embryos. Aquat. Toxicol. 2009, 91, 229–237. [Google Scholar] [CrossRef]
- Rios, R.; Zarazua, S.; Santoyo, M.E.; Sepulveda-Saavedra, J.; Romero-Diaz, V.; Jimenez, V. Decreased nitric oxide markers and morphological changes in the brain of arsenic-exposed rats. Toxicology 2009, 261, 68–75. [Google Scholar] [CrossRef]
- Chandravanshi, L.P.; Shukla, R.K.; Sultana, S.; Pant, A.B.; Khanna, V.K. Early life arsenic exposure and brain dopaminergic alterations in rats. Int. J. Dev. Neurosci. 2014, 38, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Waalkes, M.P.; Ward, J.M.; Liu, J.; Diwan, B.A. Transplacental carcinogenicity of inorganic arsenic in the drinking water: Induction of hepatic, ovarian, pulmonary, and adrenal tumors in mice. Toxicol. Appl. Pharmacol. 2003, 186, 7–17. [Google Scholar] [CrossRef]
- Alfonso-Loeches, S.; Guerri, C. Molecular and behavioral aspects of the actions of alcohol on the adult and developing brain. Crit. Rev. Clin. Lab. Sci. 2011, 48, 19–47. [Google Scholar] [CrossRef] [PubMed]
- Kaidanovich-Beilin, O.; Lipina, T.; Vukobradovic, I.; Roder, J.; Woodgett, J.R. Assessment of Social Interaction Behaviors. J. Vis. Exp. 2011, 48, e2473. [Google Scholar] [CrossRef]
- Takao, K.; Miyakawa, T. Light/dark Transition Test for Mice. J. Vis. Exp. 2006, 1, e104. [Google Scholar] [CrossRef] [PubMed]
- Leiser, S.C.; Li, Y.; Pehrson, A.L.; Dale, E.; Smagin, G.; Sanchez, C. Serotonergic regulation of prefrontal cortical circuitries involved in cognitive processing: A review of individual 5-HT receptor mechanisms and concerted effects of 5-HT receptors exemplified by the multimodal antidepressant vortioxetine. ACS Chem. Neurosci. 2015, 6, 970–986. [Google Scholar] [CrossRef] [PubMed]
- Kinsey, A.M.; Wainwright, A.; Heavens, R.; Sirinathsinghji, D.J.; Oliver, K.R. Distribution of 5-HT5A, 5-HT5B, 5-HT6 and 5-HT7 receptor mRNAs in the rat brain. Mol. Brain Res. 2001, 88, 194–198. [Google Scholar] [CrossRef]
- Maekawa, T.; Kim, S.; Nakai, D.; Makino, C.; Takagi, T.; Ogura, H.; Yamada, K.; Chatton, B.; Ishii, S. Social isolation stress induces ATF-7 phosphorylation and impairs silencing of the 5-HT 5B receptor gene. EMBO J. 2010, 29, 196–208. [Google Scholar] [CrossRef]
Study | Animal | Level of Exposure | Time of Exposure | Observed Findings |
---|---|---|---|---|
Rodriguez et al., 2002 [19] | Sprague–Dawley rats | 36.7 ppm | GD15-PND120 PND1-PND120 | Increased number of errors in a delayed alternation task. |
Aung et al., 2016 [22] | C3H mice | 85 ppm | GD8-GD18 | Behavioral inflexibility. |
Present study, 2018 | C3H mice | 85 ppm | GD8-GD18 | Impaired sociability and social novelty preference. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Htway, S.-M.; Sein, M.-T.; Nohara, K.; Win-Shwe, T.-T. Effects of Developmental Arsenic Exposure on the Social Behavior and Related Gene Expression in C3H Adult Male Mice. Int. J. Environ. Res. Public Health 2019, 16, 174. https://doi.org/10.3390/ijerph16020174
Htway S-M, Sein M-T, Nohara K, Win-Shwe T-T. Effects of Developmental Arsenic Exposure on the Social Behavior and Related Gene Expression in C3H Adult Male Mice. International Journal of Environmental Research and Public Health. 2019; 16(2):174. https://doi.org/10.3390/ijerph16020174
Chicago/Turabian StyleHtway, Soe-Minn, Mya-Thanda Sein, Keiko Nohara, and Tin-Tin Win-Shwe. 2019. "Effects of Developmental Arsenic Exposure on the Social Behavior and Related Gene Expression in C3H Adult Male Mice" International Journal of Environmental Research and Public Health 16, no. 2: 174. https://doi.org/10.3390/ijerph16020174
APA StyleHtway, S. -M., Sein, M. -T., Nohara, K., & Win-Shwe, T. -T. (2019). Effects of Developmental Arsenic Exposure on the Social Behavior and Related Gene Expression in C3H Adult Male Mice. International Journal of Environmental Research and Public Health, 16(2), 174. https://doi.org/10.3390/ijerph16020174