Effect of Native and Acetylated Dietary Resistant Starches on Intestinal Fermentative Capacity of Normal and Stunted Children in Southern India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Study Protocol
2.3. Target Sample Size and Rationale
2.4. Dietary Composition Analysis
2.5. HAMS and HAMSA Consumption
2.6. Measurement of pH and SCFA
2.7. Ethics
2.8. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Fecal pH
3.3. Fecal Acetate
3.4. Fecal Propionate
3.5. Fecal Butyrate
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Preidis, G.A.; Hill, C.; Guerrant, R.L.; Ramakrishna, B.S.; Tannock, G.W.; Versalovic, J. Probiotics, enteric and diarrheal diseases, and global health. Gastroenterology 2011, 140, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Prendergast, A.J.; Kelly, P. Interactions between intestinal pathogens, enteropathy and malnutrition in developing countries. Curr. Opin. Infect. Dis. 2016, 29, 229–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cummings, J.H.; Stephen, A.M. Carbohydrate terminology and classification. Eur. J. Clin. Nutr. 2007, 61, S5. [Google Scholar] [CrossRef] [PubMed]
- Le Leu, R.K.; Hu, Y.; Brown, I.L.; Young, G.P. Effect of high amylose maize starches on colonic fermentation and apoptotic response to DNA-damage in the colon of rats. Nutr. Metab. (Lond.) 2009, 6, 1743–7075. [Google Scholar] [CrossRef]
- Higgins, J.A.; Brown, I.L. Resistant starch: A promising dietary agent for the prevention/treatment of inflammatory bowel disease and bowel cancer. Curr. Opin. Gastroenterol. 2013, 29, 190–194. [Google Scholar] [CrossRef]
- Scheiwiller, J.; Arrigoni, E.; Brouns, F.; Amado, R. Human faecal microbiota develops the ability to degrade type 3 resistant starch during weaning. J. Pediatr. Gastroenterol. Nutr. 2006, 43, 584–591. [Google Scholar] [CrossRef]
- Duncan, S.H.; Louis, P.; Flint, H.J. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl. Environ. Microbiol. 2004, 70, 5810–5817. [Google Scholar] [CrossRef]
- Lesmes, U.; Beards, E.J.; Gibson, G.R.; Tuohy, K.M.; Shimoni, E. Effects of resistant starch type III polymorphs on human colon microbiota and short chain fatty acids in human gut models. J. Nutr. Food Chem. 2008, 56, 5415–5421. [Google Scholar] [CrossRef]
- Bird, A.R.; Conlon, M.A.; Christophersen, C.T.; Topping, D.L. Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics. Benef. Microbes 2010, 1, 423–431. [Google Scholar] [CrossRef]
- Birt, D.F.; Boylston, T.; Hendrich, S.; Jane, J.L.; Hollis, J.; Li, L.; McClelland, J.; Moore, S.; Phillips, G.J.; Rowling, M.; et al. Resistant starch: Promise for improving human health. Adv. Nutr. 2013, 4, 587–601. [Google Scholar] [CrossRef]
- Bird, A.R.; Brown, I.L.; Topping, D.L. Starches, resistant starches, the gut microflora and human health. Curr. Issues Intest. Microbiol. 2000, 1, 25–37. [Google Scholar]
- Goldring, J.M. Resistant starch: Safe intakes and legal status. J. AOAC Int. 2004, 87, 733–739. [Google Scholar] [PubMed]
- Topping, D.L.; Fukushima, M.; Bird, A.R. Resistant starch as a prebiotic and synbiotic: State of the art. Proc. Nutr. Soc. 2003, 62, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Binder, H.J.; Brown, I.; Ramakrishna, B.S.; Young, G.P. Oral rehydration therapy in the second decade of the twenty-first century. Curr. Gastroenterol. Rep. 2014, 16, 376. [Google Scholar] [CrossRef] [PubMed]
- Christian, M.T.; Edwards, C.A.; Preston, T.; Johnston, L.; Varley, R.; Weaver, L.T. Starch fermentation by faecal bacteria of infants, toddlers and adults: Importance for energy salvage. Eur. J. Clin. Nutr. 2003, 57, 1486–1491. [Google Scholar] [CrossRef]
- Hu, Y.; Le Leu, R.K.; Christophersen, C.T.; Somashekar, R.; Conlon, M.A.; Meng, X.Q.; Winter, J.M.; Woodman, R.J.; McKinnon, R.; Young, G.P. Manipulation of the gut microbiota using resistant starch is associated with protection against colitis-associated colorectal cancer in rats. Carcinogenesis 2016, 37, 366–375. [Google Scholar] [CrossRef]
- Muir, J.G.; Walker, K.Z.; Kaimakamis, M.A.; Cameron, M.A.; Govers, M.J.; Lu, Z.X.; Young, G.P.; O’Dea, K. Modulation of fecal markers relevant to colon cancer risk: A high-starch Chinese diet did not generate expected beneficial changes relative to a Western-type diet. Am. J. Clin. Nutr. 1998, 68, 372–379. [Google Scholar] [CrossRef]
- Annison, G.; Illman, R.J.; Topping, D.L. Acetylated, propionylated or butyrylated starches raise large bowel short-chain fatty acids preferentially when fed to rats. J. Nutr. 2003, 133, 3523–3528. [Google Scholar] [CrossRef]
- Fukuda, S.; Toh, H.; Hase, K.; Oshima, K.; Nakanishi, Y.; Yoshimura, K.; Tobe, T.; Clarke, J.M.; Topping, D.L.; Suzuki, T.; et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011, 469, 543–547. [Google Scholar] [CrossRef]
- Owino, V.; Ahmed, T.; Freemark, M.; Kelly, P.; Loy, A.; Manary, M.; Loechl, C. Environmental Enteric Dysfunction and Growth Failure/Stunting in Global Child Health. Pediatrics 2016, 138. [Google Scholar] [CrossRef]
- Morita, T.; Kasaoka, S.; Kiriyama, S.; Brown, I.L.; Topping, D.L. Comparative Effects of Acetylated and Unmodified High-Amylose Maize Starch in Rats. Starch/Starke 2005, 57, 246–253. [Google Scholar] [CrossRef]
- Bird, A.R.; Brown, I.L.; Topping, D.L. Low and high amylose maize starches acetylated by a commercial or a laboratory process both deliver acetate to the large bowel of rats. Food Hydrocoll. 2006, 20, 1135–1140. [Google Scholar] [CrossRef]
- Martinez, I.; Kim, J.; Duffy, P.R.; Schlegel, V.L.; Walter, J. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS ONE 2010, 5, e15046. [Google Scholar] [CrossRef]
- WHO/UNICEF. WHO Child Growth Standards and the Identification of Severe Acute Malnutrition in Infants and Children; A Joint Statement of the World Health Organization and the United Nations Children’s Fund; World Health Organization and UNICEF: Geneva, Switzerland, 2009. [Google Scholar]
- Gopalan, C.; Rama Sastri, B.V.; Balasubramanian, S.C. Nutritive Values of Indian Foods; Indian Council of Medical Research: New Delhi, India, 2004. [Google Scholar]
- Walker, A.R.P.; Walker, B.F.; Walker, A.J. Faecal pH dietary fibre intake and proneness to colon cancer in four South African populations. Br. J. Cancer 1986, 53, 489–495. [Google Scholar] [CrossRef]
- Topping, D.L.; Clifton, P.M. Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 2001, 81, 1031–1064. [Google Scholar] [CrossRef] [PubMed]
- Chacko, A.; Begum, A.; Mathan, V.I. Absorption of nutrient energy in southern Indian control subjects and patients with tropical sprue. Am. J. Clin. Nutr. 1984, 40, 771–775. [Google Scholar] [CrossRef]
- Crane, R.J.; Jones, K.D.; Berkley, J.A. Environmental enteric dysfunction: An overview. Food Nutr. Bull. 2015, 36, S76–S87. [Google Scholar] [CrossRef]
- Keusch, G.T.; Rosenberg, I.H.; Denno, D.M.; Duggan, C.; Guerrant, R.L.; Lavery, J.V.; Tarr, P.I.; Ward, H.D.; Black, R.E.; Nataro, J.P.; et al. Implications of acquired environmental enteric dysfunction for growth and stunting in infants and children living in low-and middle-income countries. Food Nutr. Bull. 2013, 34, 357–365. [Google Scholar] [CrossRef]
- Monachese, M.; Cunningham-Rundles, S.; Diaz, M.; Guerrant, R.; Hummelen, R.; Kemperman, R.; Kerac, M.; Kort, R.; Merenstein, D.J.; Panigrahi, P.; et al. Probiotics and prebiotics to combat enteric infections and HIV in the developing world: A consensus report. Gut Microbes 2011, 2, 198–207. [Google Scholar] [CrossRef]
- Ahmed, T.; Auble, D.; Berkley, J.A.; Black, R.; Ahern, P.P.; Hossain, M.; Hsieh, A.; Ireen, S.; Arabi, M.; Gordon, J.I.; et al. An evolving perspective about the origins of childhood undernutrition and nutritional interventions that includes the gut microbiome. Ann. Sci. 2014, 1332, 22–38. [Google Scholar] [CrossRef] [Green Version]
- Aryana, K.; Greenway, F.; Dhurandhar, N.; Tulley, R.; Finley, J.; Keenan, M.; Martin, R.; Pelkman, C.; Olson, D.; Zheng, J. A resistant-starch enriched yogurt: Fermentability, sensory characteristics, and a pilot study in children. F1000Res 2015, 4, 139. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishna, B.S.; Roediger, W.E. Bacterial short chain fatty acids: Their role in gastrointestinal disease. Dig. Dis. 1990, 8, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Prizont, R.; Whitehead, J.S.; Kim, Y.S. Short chain fatty acids in rats with jejunal blind loops. I. Analysis of SCFA in small intestine, cecum, feces, and plasma. Gastroenterology 1975, 69, 1254–1264. [Google Scholar] [CrossRef]
- Dinh, D.M.; Ramadass, B.; Kattula, D.; Sarkar, R.; Braunstein, P.; Tai, A.; Wanke, C.A.; Hassoun, S.; Kane, A.V.; Naumova, E.N.; et al. Longitudinal Analysis of the Intestinal Microbiota in Persistently Stunted Young Children in South India. PLoS ONE 2016, 11, e0155405. [Google Scholar] [CrossRef] [PubMed]
- Vonaesch, P.; Morien, E.; Andrianonimiadana, L.; Sanke, H.; Mbecko, J.R.; Huus, K.E.; Naharimanananirina, T.; Gondje, B.P.; Nigatoloum, S.N.; Vondo, S.S.; et al. Stunted childhood growth is associated with decompartmentalization of the gastrointestinal tract and overgrowth of oropharyngeal taxa. Proc. Natl. Acad. Sci. USA 2018, 115, E8489–E8498. [Google Scholar] [CrossRef]
- Rogawski, E.T.; Liu, J.; Platts-Mills, J.A.; Kabir, F.; Lertsethtakarn, P.; Siguas, M.; Khan, S.S.; Praharaj, I.; Murei, A.; Nshama, R.; et al. Use of quantitative molecular diagnostic methods to investigate the effect of enteropathogen infections on linear growth in children in low-resource settings: Longitudinal analysis of results from the MAL-ED cohort study. Lancet Glob. Health 2018, 6, e1319–e1328. [Google Scholar] [CrossRef]
- Black, R.E.; Brown, K.H.; Becker, S. Effects of diarrhea associated with specific enteropathogens on the growth of children in rural Bangladesh. Pediatrics 1984, 73, 799–805. [Google Scholar]
- Moy, R.J.; de C Marshall, T.F.; Choto, R.G.; McNeish, A.S.; Booth, I.W. Diarrhoea and growth faltering in rural Zimbabwe. Eur. J. Clin. Nutr. 1994, 48, 810–821. [Google Scholar]
Healthy (n = 10) | Stunted (n = 10) | p-Value 1 | |
---|---|---|---|
Age in month, mean (SD) | 40.0 (7.6) | 41.9 (13.3) | 0.93 |
Male (%) | 40% | 60% | 0.37 |
HAMS intake in g/day, mean (SD) | 8.78 (1.88) | 9.44 (0.86) | 0.33 |
HAMSA intake in g/day, mean (SD) | 8.88 (1.81) | 10.14 (1.65) | 0.09 |
Fecal parameters | |||
Day 0 pH | 6.6 (0.7) | 6.5 (0.7) | 0.78 |
Day 0 acetate (mmol/Kg) | 70.0 (15.9) | 51.4 (9.8) | 0.007 |
Day 0 propionate (mmol/Kg) | 19.3 (6.5) | 13.2 (5.7) | 0.02 |
Day 0 butyrate (mmol/Kg) | 11.8 (5.1) | 6.5 (2.0) | 0.004 |
Day 0(Commencement) | Day 7–15 (2nd Week of HAMS) | Days 22–29 (2nd Week of Washout) | Days 36–44 (2nd Week of HAMSA) | Difference 1 (HAMSA versus HAMS) | p-Value 1 | |
---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SE) | ||
Overall (n = 20) | ||||||
Fecal pH | 6.5 (0.7) | 6.0 (0.8)b | 6.7 (0.9) | 6.1 (0.9)a | 0.11 (0.14) | 0.41 |
Acetate | 61.2 (16.1) | 79.1 (27.5)b | 68.5 (21.2) | 81.9 (32.5)b | 2.84 (4.46) | 0.52 |
Propionate | 16.4 (6.7) | 28.1 (16.4)c | 18.5 (8.8) | 23.9 (15.5)a | −3.98 (2.34) | 0.09 |
Butyrate | 9.3 (4.7) | 18.4 (13.3)c | 12.3 (6.9) | 16.2 (10.2)a | −1.97 (1.70) | 0.24 |
Healthy (n = 10) | ||||||
Fecal pH | 6.6 (0.7) | 5.8 (0.7)b | 6.3 (0.8) | 5.8 (0.8)b | 0.11 (0.20) | 0.58 |
Acetate | 70.0 (15.9) | 81.7 (30.7) | 75.3 (23.6) | 95.1 (32.4)c | 13.3 (6.4) | 0.04 |
Propionate | 19.3 (6.5) | 27.3 (18.5) | 19.2 (8.5) | 26.7 (16.4)a | −0.54 (3.28) | 0.87 |
Butyrate | 11.8 (5.1) | 18.5 (15.4)a | 13.0 (6.7) | 21.8 (11.6)b | 2.91 (2.37) | 0.22 |
Stunted (n = 10) | ||||||
Fecal pH | 6.5 (0.7) | 6.1 (0.9) | 7.0 (0.8)b | 6.3 (1.0)c | 0.12 (0.20) | 0.54 |
Acetate | 51.4 (9.8) | 76.4 (24.3)b | 62.2 (16.8) | 70.1 (28.2) | −6.24 (6.21) | 0.32 |
Propionate | 13.2 (5.7) | 28.9 (14.1)b | 17.9 (9.2)a | 21.5 (14.5) | −7.51 (3.35) | 0.025 |
Butyrate | 6.5 (2.0) | 18.3 (10.9)b | 11.6 (7.0)a | 11.2 (5.1) | −6.82 (2.43) | 0.005 |
Healthy versus Stunted (Mean Difference ± SE) | Healthy versus Stunted (Mean Difference ± SE) | |||
---|---|---|---|---|
Parameter | Day 7–15 (HAMS Period) | p-Value 1 | Days 36–44 (HAMSA Period) | p-Value 1 |
Fecal pH | −0.24 ± 0.20 | 0.23 | −0.25 ± 0.20 | 0.21 |
Acetate | 5.42 ± 6.58 | 0.41 | 24.95 ± 6.75 | <0.001 |
Propionate | −1.69 ± 3.77 | 0.65 | 5.27 ± 3.85 | 0.17 |
Butyrate | 0.52 ± 2.80 | 0.85 | 10.25 ± 2.86) | <0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balamurugan, R.; Pugazhendhi, S.; Balachander, G.M.; Dharmalingam, T.; Mortimer, E.K.; Gopalsamy, G.L.; Woodman, R.J.; Meng, R.; Alpers, D.H.; Manary, M.; et al. Effect of Native and Acetylated Dietary Resistant Starches on Intestinal Fermentative Capacity of Normal and Stunted Children in Southern India. Int. J. Environ. Res. Public Health 2019, 16, 3922. https://doi.org/10.3390/ijerph16203922
Balamurugan R, Pugazhendhi S, Balachander GM, Dharmalingam T, Mortimer EK, Gopalsamy GL, Woodman RJ, Meng R, Alpers DH, Manary M, et al. Effect of Native and Acetylated Dietary Resistant Starches on Intestinal Fermentative Capacity of Normal and Stunted Children in Southern India. International Journal of Environmental Research and Public Health. 2019; 16(20):3922. https://doi.org/10.3390/ijerph16203922
Chicago/Turabian StyleBalamurugan, Ramadass, Srinivasan Pugazhendhi, Gowri M. Balachander, Tamilselvan Dharmalingam, Elissa K Mortimer, Geetha L. Gopalsamy, Richard J. Woodman, Rosie Meng, David H. Alpers, Mark Manary, and et al. 2019. "Effect of Native and Acetylated Dietary Resistant Starches on Intestinal Fermentative Capacity of Normal and Stunted Children in Southern India" International Journal of Environmental Research and Public Health 16, no. 20: 3922. https://doi.org/10.3390/ijerph16203922
APA StyleBalamurugan, R., Pugazhendhi, S., Balachander, G. M., Dharmalingam, T., Mortimer, E. K., Gopalsamy, G. L., Woodman, R. J., Meng, R., Alpers, D. H., Manary, M., Binder, H. J., Brown, I. L., Young, G. P., & Ramakrishna, B. S. (2019). Effect of Native and Acetylated Dietary Resistant Starches on Intestinal Fermentative Capacity of Normal and Stunted Children in Southern India. International Journal of Environmental Research and Public Health, 16(20), 3922. https://doi.org/10.3390/ijerph16203922