Work-Related Stress, Physio-Pathological Mechanisms, and the Influence of Environmental Genetic Factors
Abstract
:1. Introduction
2. Materials and Methods
3. Neuroendocrine Control of the Stress Response
4. The Immune System’s Role in the Stress Response
5. Role of Genetic and Epigenetic Factors in the Stress Response
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- McEwen, B.S. Protective and damaging effects of stress mediators: Central role of the brain Dialogues. Clin. Neurosci. 2006, 8, 367–381. [Google Scholar]
- Uchida, S.; Hara, K.; Kobayashi, A.; Otsuki, K.; Yamagata, H.; Hobara, T.; Suzuki, T.; Miyata, N.; Watanabe, Y. Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron 2011, 69, 359–372. [Google Scholar] [CrossRef] [PubMed]
- Landolt, K.; Maruff, P.; Horan, B.; Kingsley, M.; Kinsella, G.; O’Halloran, P.D.; Hale, M.W.; Wright, B.J. Chronic work stress and decreased vagal tone impairs decision making and reaction time in jockeys. Psychoneuroendocrinology 2017, 84, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Ostroumova, O.D.; Kochetkov, A.I. Worksite hypertension as a model of stress-induced arterial hypertension. Ter Arkh. 2018, 90, 123–132. [Google Scholar] [CrossRef]
- Bergomi, M.; Modenese, A.; Ferretti, E.; Ferrari, A.; Licitra, G.; Vivoli, R.; Gobba, F.; Aggazzotti, G. Work-related stress and role of personality in a sample of Italian bus drivers. Work 2017, 57, 433–440. [Google Scholar] [CrossRef] [Green Version]
- Hettema, J.M.; Neale, M.C.; Kendler, K.S. A review and meta-analysis of the genetic epidemiology of anxiety disorders. Am. J. Psychiatry 2011, 158, 1568–1578. [Google Scholar] [CrossRef]
- Smoller, J.W. The genetics of stress-related disorders: PTSD, depression, and anxiety disorders. Psychoneuroendocrinology 2016, 41, 297–319. [Google Scholar] [CrossRef]
- Selye, H. The general adaptation syndrome and the diseases of adaptation. J. Allergy 1946, 17, 231–247. [Google Scholar] [CrossRef]
- Selye, H. Stress and the general adaptation syndrome. Br. Med. J. 1950, 1, 1383–1392. [Google Scholar] [CrossRef]
- Kalmbach, D.A.; Pillai, V.; Chen, P.; Arnedt, J.T.; Drake, C.L. Shift work disorder, depression, and anxiety in the transition to rotating shifts: The role of sleep reactivity. Sleep Med. 2015, 16, 1532–1538. [Google Scholar] [CrossRef]
- Cannizzaro, E.; Cannizzaro, C.; Martorana, D.; Moscadini, S.; Coco, D.L. Effects of shift work on cardiovascular activity, serum cortisol and white blood cell count in a group of Italian fishermen. EMBJ 2012, 109–113. [Google Scholar] [CrossRef]
- Lee, H.G.; Khummuang, S.; Youn, H.H.; Park, J.W.; Choi, J.Y.; Shin, T.S.; Cho, S.K.; Kim, B.W.; Seo, J.; Kim, M.; et al. The effect of heat stress on frame switch splicing of X-box binding protein 1 gene in horse. Asian-Australas. J. Anim. Sci. 2019. [Google Scholar] [CrossRef] [PubMed]
- Cannizzaro, E.; Cannizzaro, C.; Plescia, F.; Martines, F.; Soleo, L.; Pira, E.; Coco, D.L. Exposure to ototoxic agents and hearing loss: A review of current knowledge. Hear. Balance Commun. 2014, 12, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Consales, C.; Cirotti, C.; Filomeni, G.; Panatta, M.; Butera, A.; Merla, C.; Lopresto, V.; Pinto, R.; Marino, C.; Benassi, B. Fifty-Hertz Magnetic Field Affects the Epigenetic Modulation of the miR-34b/c in Neuronal Cells. Mol. Neurobiol. 2018, 55, 5698–5714. [Google Scholar] [CrossRef]
- Walker, E.D.; Brammer, A.; Cherniack, M.G.; Laden, F.; Cavallari, J.M. Cardiovascular and stress responses to short-term noise exposures—A panel study in healthy males. Environ. Res. 2016, 150, 391–397. [Google Scholar] [CrossRef]
- Ritsher, J.E.B.; Warner, V.; Johnson, J.G.; Dohrenwend, B.P. Inter-generational longitudinal study of social class and depression: A test of social causation and social selection models. Br. J. Psychiatry 2001, 178, s84–s90. [Google Scholar] [CrossRef] [Green Version]
- Kavikondala, S.; Stewart, S.M.; Ni, M.Y.; Chan, B.H.; Lee, P.H.; Li, K.K.; McDowell, I.; Johnston, J.M.; Chan, S.S.; Lam, T.H.; et al. Structure and validity of Family Harmony Scale: An instrument for measuring harmony. Psychol. Assess. 2015. [Google Scholar] [CrossRef]
- Pesonen, A.K.; Räikkönen, K.; Heinonen, K.; Kajantie, E.; Forsén, T.; Eriksson, J.G. Depressive symptoms in adults separated from their parents as children: A natural experiment during World War II. Am. J. Epidemiol. 2007, 166, 1126–1133. [Google Scholar] [CrossRef]
- Ni, M.Y.; Jiang, C.; Cheng, K.K.; Zhang, W.; Gilman, S.E.; Lam, T.H.; Leung, G.M.; Schooling, C.M. Stress across the life course and depression in a rapidly developing population: The Guangzhou Biobank Cohort Study. Int. J. Geriatr. Psychiatry 2016, 31, 629–637. [Google Scholar] [CrossRef]
- Gili, M.; Roca, M.; Basu, S.; McKee, M.; Stuckler, D. The mental health risks of economic crisis in Spain: Evidence from primary care centres, 2006 and 2010. Eur. J. Public Health 2013, 23, 103–108. [Google Scholar] [CrossRef]
- Katikireddi, S.V.; Niedzwiedz, C.L.; Popham, F. Trends in population mental health before and after the 2008 recession: A repeat cross-sectional analysis of the 1991–2010 Health Surveys of England. BMJ Open 2012, 2, e001790. [Google Scholar] [CrossRef] [PubMed]
- Evans-Lacko, S.; Knapp, M.; McCrone, P.; Thornicroft, G.; Mojtabai, R. The mental health conse-quences of the recession: Economic hardship and employment of people with mental health problemsin 27 European countries. PLoS ONE 2013, 8, e69792. [Google Scholar] [CrossRef] [PubMed]
- Suhrcke, M.; Stuckler, D. Will the recession be bad for our health? It depends. Soc. Sci. Med. 2012, 75, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Reeves, A.; McKee, M.; Stuckler, D. Economic suicides in the Great Recession in Europe and NorthAmerica. Br. J. Psychiatry 2014, 205, 246–247. [Google Scholar] [CrossRef]
- Ballacchino, A.; Salvago, P.; Cannizzaro, E.; Costanzo, R.; Di Marzo, M.; Ferrara, S.; La Mattina, E.; Messina, G.; Mucia, M.; Mulé, A.; et al. Association between sleep-disordered breathing and hearing disorders: Clinical observation in Sicilian patients. Acta Med. Mediterr. 2015, 31, 607–614. [Google Scholar]
- Karanikolos, M.; Mladovsky, P.; Cylus, J.; Thomson, S.; Basu, S.; Stuckler, D.; Mackenbach, J.P.; McKee, M. Financial crisis, austerity, andhealth in Europe. Lancet 2013, 381, 1323–1331. [Google Scholar] [CrossRef]
- Lopez Bernal, J.A.; Gasparrini, A.; Artundo, C.M.; McKee, M. The effect of the late 2000s financial cri-sis on suicides in Spain: An interrupted time-series analysis. Eur. J. Public Health 2013, 23, 732–736. [Google Scholar] [CrossRef]
- Barr, B.; Taylor-Robinson, D.; Scott-Samuel, A.; McKee, M.; Stuckler, D. Suicides associated with the 2008–10 economic recession in England: Time trend analysis. BMJ 2012, 345, e5142. [Google Scholar] [CrossRef]
- Giorgi, G.; Arcangeli, G.; Mucci, N.; Cupelli, V. Economic stress in workplace: The impact of fear the crisis on mental health. Work 2015, 51, 135–142. [Google Scholar] [CrossRef]
- Mucci, N.; Giorgi, G.; Cupelli, V.; Gioffrè, P.A.; Rosati, M.V.; Tomei, F.; Tomei, G.; Breso-Esteve, E.; Arcangeli, G. Work-related stress assessment in a population of Italian workers. The stress Questionnaire. Sci. Total Environ. 2015, 502, 673–679. [Google Scholar] [CrossRef]
- Mucci, N.; Giorgi, G.; Fiz Perez, J.; Iavicoli, I.; Arcangeli, G. Predictors of trauma in bank employee robbery victims. Neuropsychiatr. Dis. Treat. 2015, 2015, 2605–2612. [Google Scholar] [CrossRef] [PubMed]
- Mucci, N.; Giorgi, G.; Cupelli, V.; Arcangeli, G. Future health care workers mental health problems and correlates. World Appl. Sci. J. 2014, 30, 710–715. [Google Scholar]
- Giorgi, G.; Leon-Perez, J.M.; Cupelli, V.; Mucci, N.; Arcangeli, G. Do I just look stressed or am I stressed? Work-related stress in a sample of Italian employees. Ind. Health 2014, 52, 43–53. [Google Scholar] [CrossRef]
- Parmar, D.; Stavropoulou, C.; Ioannidi, J.P.A. Health outcomes during the 2008 financial crisis in Europe: Systematic literature review. BMJ 2016, 354, i4588. [Google Scholar] [CrossRef] [PubMed]
- Mucci, N.; Giorgi, G.; Roncaioli, M.; Fiz Perez, J.; Arcangeli, G. The correlation between stress and economic crisis: A systematic review. Neuropsychiatr. Dis. Treat. 2016, 12, 983–993. [Google Scholar] [CrossRef] [PubMed]
- Ketchesin, K.D.; Stinnett, G.S.; Seasholtz, A.F. Corticotropin-releasing hormone-binding protein and stress: From invertebrates to humans. Stress 2017, 20, 449–464. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.B.; O’Callaghan, J.P. Neuroendocrine aspects of the response to stress. Metabolism 2002, 51, 5–10. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S.; Stellar, E. Stress and the individual. Mechanisms leading to disease. Arch. Intern. Med. 1993, 153, 2093–2101. [Google Scholar] [CrossRef]
- Sapolsky, R.M.; Romero, L.M.; Munck, A.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 2000, 21, 55–89. [Google Scholar]
- Vitlic, A.; Lord, J.M.; Phillips, A.C. Stress, ageing and their influence on functional, cellular and molecular aspects of the immune system. AGE 2014, 36, 9631. [Google Scholar] [CrossRef]
- McEwen, B.S. Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiol. Rev. 2007, 87, 873–904. [Google Scholar] [CrossRef] [PubMed]
- Chrousos, G.P.; Gold, P.W. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 1992, 267, 1244–1252. [Google Scholar] [CrossRef] [PubMed]
- Martines, F.; Salvago, P.; Ferrara, S.; Messina, G.; Mucia, M.; Plescia, F.; Sireci, F. Factors influencing the development of otitis media among Sicilian children affected by upper respiratory tract infections. Braz. J. Otorhinolaryngol. 2016, 82, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Ortolani, D.; Garcia, M.C.; Melo-Thomas, L.; Spadari-Bratfisch, R.C. Stress-induced endocrine response and anxiety: The effects of comfort food in rats. Stress 2014, 17, 211–218. [Google Scholar] [CrossRef]
- Cannizzaro, C.; Plescia, F.; Martire, M.; Gagliano, M.; Cannizzaro, G.; Mantia, G.; Cannizzaro, E. Single, intense prenatal stress decreases emotionality and enhances learning performance in the adolescent rat offspring: Interaction with a brief, daily maternal separation. Behav. Brain Res. 2006, 169, 128–136. [Google Scholar] [CrossRef]
- Martines, F.; Sireci, F.; Cannizzaro, E.; Costanzo, R.; Martines, E.; Mucia, M.; Plescia, F.; Salvago, P. Clinical observations and risk factors for tinnitus in a Sicilian cohort. Eur. Arch. Otorhinolaryngol. 2015, 272, 2719–2729. [Google Scholar] [CrossRef]
- Eskildsen, A.; Fentz, H.N.; Andersen, L.P.; Pedersen, A.D.; Kristensen, S.B.; Andersen, J.H. Perceived stress, disturbed sleep, and cognitive impairments in patients with work-related stress complaints: A longitudinal study. Stress 2017, 20, 371–378. [Google Scholar] [CrossRef]
- Bains, J.S.; Cusulin, J.I.W.; Inoue, W. Stress-related synaptic plasticity in the hypothalamus. Nat. Rev. Neurosci. 2015, 16, 377–388. [Google Scholar] [CrossRef]
- Ulrich-Lai, Y.M.; Herman, J.P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 2009, 10, 397–409. [Google Scholar] [CrossRef] [Green Version]
- Russo, S.J.; Nestler, E.J. The brain reward circuitry in mood disorders. Nat. Rev. Neurosci. 2013, 14, 609–625. [Google Scholar] [CrossRef] [Green Version]
- Godoy, L.D.; Rossignoli, M.T.; Delfino-Pereira, P.; Garcia-Cairasco, N.; de Lima Umeoka, E.H. A Comprehensive Overview on Stress Neurobiology: Basic Concepts and Clinical Implications. Front. Behav. Neurosci. 2018, 12, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gyires, K.; Feher, A. Stress, Neuropeptides and Gastric Mucosa. Curr. Pharm. Des. 2017, 23, 3928–3940. [Google Scholar] [CrossRef] [PubMed]
- Klenerova, V.; Kvetnansky, R.; Hynie, S. The Effect of Acute and Repeated Stress on CRH-R1 and CRH-R2 mRNA Expression in Pituitaries of Wild Type and CRH Knock-Out Mice. Cell Mol. Neurobiol. 2018, 38, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Contarino, A.; Dellu, F.; Koob, G.F.; Smith, G.W.; Lee, K.F.; Vale, W.W.; Gold, L.H. Dissociation of locomotor activation and suppression of food intake induced by CRF in CRFR1-deficient mice. Endocrinology 2000, 141, 2698–2702. [Google Scholar] [CrossRef]
- Bale, T.L.; Contarino, A.; Smith, G.W.; Chan, R.; Gold, L.H.; Sawchenko, P.E.; Koob, G.F.; Vale, W.W.; Lee, K.F. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat. Genet. 2002, 24, 410–414. [Google Scholar] [CrossRef]
- Cannizzaro, C.; La Barbera, M.; Plescia, F.; Cacace, S.; Tringali, G. Ethanol modulates corticotropin releasing hormone release from the rat hypothalamus: Does acetaldehyde play a role? Alcohol. Clin. Exp. Res. 2010, 34, 588–593. [Google Scholar] [CrossRef]
- Zelena, D.; Pintér, O.; Balázsfi, D.G.; Langnaese, K.; Richter, K.; Landgraf, R.; Makara, G.B.; Engelmann, M. Vasopressin signaling at brain level controls stress hormone release: The vasopressin-deficient Brattleboro rat as a model. Amino Acids 2015, 47, 2245–2253. [Google Scholar] [CrossRef]
- Reul, J.M.; de Kloet, E.R. Two receptor systems for corticosterone in rat brain: Microdistribution and differential occupation. Endocrinology 1985, 117, 2505–2511. [Google Scholar] [CrossRef]
- Reul, J.M.; de Kloet, E.R. Anatomical resolution of two types of corticosterone receptor sites in rat brain with in vitro autoradiography and computerized image analysis. J. Steroid Biochem. 1986, 24, 269–272. [Google Scholar] [CrossRef]
- De Kloet, E.R.; Sibug, R.M.; Helmerhorst, F.M.; Schmidt, M. Stress, genes and the mechanism of programming the brain for later life. Neurosci. Biobehav. Rev. 2005, 29, 271–281. [Google Scholar] [CrossRef]
- De Kloet, E.R.; Sarabdjitsingh, R.A. Everything has rhythm: Focus on glucocorticoid pulsatility. Endocrinology 2008, 149, 3241–3243. [Google Scholar] [CrossRef] [PubMed]
- Joëls, M.; Pasricha, N.; Karst, H. The interplay between rapid and slow corticosteroid actions in brain. Eur. J. Pharmacol. 2013, 719, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Young, E.A.; Abelson, J.; Lightman, S.L. Cortisol pulsatility and its role in stress regulation and health. Front. Neuroendocrinol. 2004, 25, 69–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhe, D.; Fang, H.; Yuxiu, S. Expressions of hippocampal mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) in the single-prolonged stress-rats. Acta Histochem. ET Cytochem. 2008, 41, 89–95. [Google Scholar] [CrossRef]
- McEwen, B.S.; Sapolsky, R.M. Stress and cognitive function. Curr. Opin. Neurobiol. 1995, 5, 205–216. [Google Scholar] [CrossRef]
- Lupien, S.J.; Lepage, M. Stress, memory, and the hippocampus: can’t live with it, can’t live without it. Behav. Brain Res. 2001, 127, 137–158. [Google Scholar] [CrossRef]
- Donley, M.P.; Schulkin, J.; Rosen, J.B. Glucocorticoid receptor antagonism in the basolateral amygdala and ventral hippocampus interferes with long-term memory of contextual fear. Behav. Brain Res. 2005, 164, 197–205. [Google Scholar] [CrossRef]
- Khaksari, M.; Rashidy-Pour, A.; Vafaei, A.A. Central mineralocorticoid receptors are indispensable for corticosterone-induced impairment of memory retrieval in rats. Neuroscience 2007, 149, 729–738. [Google Scholar] [CrossRef]
- Lowery-Gionta, E.G.; Crowley, N.A.; Bukalo, O.; Silverstein, S.; Holmes, A.; Kash, T.L. Chronic stress dysregulates amygdalar output to the prefrontal cortex. Psychoneuroendocrinology 2018, 139, 68–75. [Google Scholar] [CrossRef]
- Zaletel, I.; Filipović, D.; Puškaš, N. Hippocampal BDNF in physiological conditions and social isolation. Rev. Neurosci. 2017, 28, 675–692. [Google Scholar] [CrossRef]
- Jeanneteau, F.; Borie, A.; Chao, M.; Garabedian, M. Bridging the gap between BDNF and glucocorticoid effects on brain networks. Psychoneuroendocrinology 2018. [Google Scholar] [CrossRef]
- Osborne, D.M.; Pearson-Leary, J.; McNay, E.C. The neuroenergetics of stress hormones in the hippocampus and implications for memory. Front. Neurosci. 2015, 9, 164. [Google Scholar] [CrossRef] [PubMed]
- Winklewski, P.J.; Radkowski, M.; Wszedybyl-Winklewska, M.; Demkow, U. Stress Response, Brain Noradrenergic System and Cognition. Adv. Exp. Med. Biol. 2017, 980, 67–74. [Google Scholar] [PubMed]
- Wong, D.L.; Tai, T.C.; Wong-Faull, D.C.; Claycomb, R.; Meloni, E.G.; Myers, K.M.; Carlezon, W.A., Jr.; Kvetnansky, R. Epinephrine: A short- and long-term regulator of stress and development of illness: A potential new role for epinephrine in stress. Cell Mol. Neurobiol. 2012, 32, 737–748. [Google Scholar] [CrossRef]
- Womble, J.R.; Larson, D.F.; Copeland, J.G.; Brown, B.R.; Haddox, M.K.; Russell, D.H. Adrenal medulla denervation prevents stress-induced epinephrine plasma elevation and cardiac hypertrophy. Life Sci. 1980, 27, 2417–2420. [Google Scholar] [CrossRef]
- Sorrells, S.F.; Sapolsky, R.M. An inflammatory review ofglucocorticoid actions in the CNS. Brain Behav. Immun. 2007, 21, 259–272. [Google Scholar] [CrossRef]
- Panerai, A.E.; Sacerdote, P.; Bianchi, M.; Manfredi, B. Intermittent but not continuous inescapable footshock stressand intracerebroventricular interleukin-1 similarly affect im-mune responses and immunocyte b-endorphin concentrationsin the rat. Int. J. Clin. Pharmacol. Res. 1997, 17, 115–116. [Google Scholar]
- Moynihan, J.A. Mechanisms of stress-induced modulation ofimmunity. Brain Behav. Immun. 2003, 17, S11–S16. [Google Scholar] [CrossRef]
- Borges, S.; Gayer-Anderson, C.; Mondelli, V. A systematic review of the activity of the hypothalamic-pituitary-adrenal axis in first episode psychosis. Psychoneuroendocrinology 2013, 38, 603–611. [Google Scholar] [CrossRef]
- Wolf, O.T. Stress and memory in humans: Twelve years of progress? Brain Res. 2009, 1293, 142–154. [Google Scholar] [CrossRef]
- Aguilera, G. HPA axis responsiveness to stress: Implications for healthy aging. Exp. Gerontol. 2011, 46, 90–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Noori, S.; Cimpan, A.; Maltzer, Z.; Kaiyala, K.J.; Ramsay, D.S. Plasma corticosterone, epinephrine, and norepinephrine levels increase during administration of nitrous oxide in rats. Stress 2018, 21, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Steckl, A.J.; Ray, P. Stress Biomarkers in Biological Fluids and Their Point-of-Use Detection. ACS Sens. 2018, 3, 2025–2044. [Google Scholar] [CrossRef] [PubMed]
- Flak, J.N.; Myers, B.; Solomon, M.B.; McKlveen, J.M.; Krause, E.G.; Herman, J.P. Role of paraventricular nucleus-projecting norepinephrine/epinephrine neurons in acute and chronic stress. Eur. J. Neurosci. 2014, 39, 1903–1911. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M.; Vale, W.W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci. 2006, 8, 383–395. [Google Scholar]
- Gądek-Michalska, A.; Tadeusz, J.; Rachwalska, P.; Bugajski, J. Cytokines, prostaglandins and nitric oxide in the regulation of stress-response systems. Pharmacol. Rep. 2013, 65, 1655–1662. [Google Scholar] [CrossRef]
- Mohn, C.E.; Fernandez-Solari, J.; De Laurentiis, A.; Born-stein, S.R.; Ehrhart-Bornstein, M.; Rettori, V. Adrenal glandresponses to lipopolysaccharide after stress and ethanoladministration in male rats. Stress 2011, 14, 216–226. [Google Scholar] [CrossRef]
- Deak, T.; Bordner, K.A.; McElderry, N.K.; Barnum, C.J.; Blandino, P., Jr.; Deak, M.M.; Tammariello, S.P. Stress-induced increases in hypothalamic IL-1: A systematic analysis of multiple stressor paradigms. Brain Res. Bull. 2005, 64, 541–556. [Google Scholar] [CrossRef]
- Gądek-Michalska, A.; Bugajski, J. Interleukin-1 (IL-1) instress-induced activation of limbic-hypothalamic-pituitaryadrenal axis. Pharmacol. Rep. 2010, 62, 969–982. [Google Scholar] [CrossRef]
- Suderman, M.; McGowan, P.O.; Sasaki, A.; Huang, T.C.; Hallett, M.T.; Meaney, M.J.; Turecki, G.; Szyf, M. Conserved epigenetic sensitivity to early life experience in the rat and human hippocampus. Proc. Natl. Acad. Sci. USA 2012, 109, 17266–17272. [Google Scholar] [CrossRef] [Green Version]
- Klengel, T.; Binder, E.B. Epigenetics of Stress-Related Psychiatric Disorders and Gene × Environment Interactions. Neuron 2015, 86, 1343–1357. [Google Scholar] [CrossRef] [PubMed]
- Polli, A.; Ickmans, K.; Godderis, L.; Nijs, J. When Environment Meets Genetics: A Clinical Review of the Epigenetics of Pain, Psychological Factors, and Physical Activity. Arch. Phys. Med. Rehabil. 2019, 100, 1153–1161. [Google Scholar] [CrossRef] [PubMed]
- Bielawski, T.; Misiak, B.; Moustafa, A.; Frydecka, D. Epigenetic mechanisms, trauma, and psychopathology: Targeting chromatin remodeling complexes. Rev. Neurosci. 2019, 30, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Wolf, E.J.; Maniates, H.; Nugent, N.; Maihofer, A.X.; Armstrong, D.; Ratanatharathorn, A.; Ashley-Koch, A.E.; Garrett, M.; Kimbrel, N.A.; Lori, A.; et al. Traumatic stress and accelerated DNA methylation age: A meta-analysis. Psychoneuroendocrinology 2018, 92, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Van Os, J.; Kenis, G.; Rutten, B.P. The environment and schizophrenia. Nature 2010, 468, 203–212. [Google Scholar] [CrossRef]
- Moreau, J.L.M.; Kesteven, S.; Martin, E.M.M.A.; Lau, K.S.; Yam, M.X.; O’Reilly, V.C.; Del Monte-Nieto, G.; Baldini, A.; Feneley, M.P.; Moon, A.M.; et al. Gene-environment interaction impacts on heart development and embryo survival. Development 2019, 146. [Google Scholar] [CrossRef]
- Hunter, D.J. Gene-environment interactions in human diseases. Nat. Rev. Genet. 2005, 6, 287–289. [Google Scholar] [CrossRef]
- Weinstock, M. Does prenatal stress impair coping and regulation of hypothalamic-pituitary-adrenal axis? Neurosci. Biobehav. Rev. 1997, 21, 1–10. [Google Scholar] [CrossRef]
- Bosch, O.J.; Müsch, W.; Bredewold, R.; Slattery, D.A.; Neumann, I.D. Prenatal stress increases HPA axis activity and impairs maternal care in lactating female offspring: Implications for postpartum mood disorder. Psychoneuroendocrinology 2007, 32, 267–278. [Google Scholar] [CrossRef]
- Zagron, G.; Weinstock, M. Maternal adrenal hormone secretion mediates behavioural alterations induced by prenatal stress in male and female rats. Behav. Brain Res. 2006, 175, 323–328. [Google Scholar] [CrossRef]
- Fagiolini, M.; Jensen, C.L.; Champagne, F.A. Epigenetic influences on brain development and plasticity. Curr. Opin. Neurobiol. 2009, 19, 207–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sale, A.; Berardi, N.; Maffei, L. Environment and brain plasticity: Towards an endogenous pharmacotherapy. Physiol. Rev. 2014, 94, 189–234. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, T.G.; Carrell, D.T. The sperm epigenome and potential implications for the developing embryo. Reproduction 2012, 143, 727–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braun, J.M.; Messerlian, C.; Hauser, R. Fathers Matter: Why It’s Time to Consider the Impact of Paternal Environmental Exposures on Children’s Health. Curr. Epidemiol. Rep. 2017, 4, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Van den Bergh, B.R.; Van Calster, B.; Smits, T.; Van Huffel, S.; Lagae, L. Antenatal maternal anxiety is related to HPA-axis dysregulation and self-reported depressive symptoms in adolescence: A prospective study on the fetal origins of depressed mood. Psychoneuroendocrinology 2008, 33, 536–545. [Google Scholar]
- Rodgers, A.B.; Morgan, C.P.; Bronson, S.L.; Revello, S.; Bale, T.L. Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J. Neurosci. 2013, 33, 9003–9012. [Google Scholar] [CrossRef]
- Yehuda, R.; Daskalakis, N.P.; Lehrner, A.; Desarnaud, F.; Bader, H.N.; Makotkine, I.; Flory, J.D.; Bierer, L.M.; Meaney, M.J. Influences of maternal and paternal PTSD on epigenetic regulation of the glucocorticoid receptor gene in Holocaust survivor offspring. Am. J. Psychiatry. 2014, 171, 872–880. [Google Scholar] [CrossRef]
- Grant, M.J.; Booth, A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Inf. Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cannizzaro, E.; Ramaci, T.; Cirrincione, L.; Plescia, F. Work-Related Stress, Physio-Pathological Mechanisms, and the Influence of Environmental Genetic Factors. Int. J. Environ. Res. Public Health 2019, 16, 4031. https://doi.org/10.3390/ijerph16204031
Cannizzaro E, Ramaci T, Cirrincione L, Plescia F. Work-Related Stress, Physio-Pathological Mechanisms, and the Influence of Environmental Genetic Factors. International Journal of Environmental Research and Public Health. 2019; 16(20):4031. https://doi.org/10.3390/ijerph16204031
Chicago/Turabian StyleCannizzaro, Emanuele, Tiziana Ramaci, Luigi Cirrincione, and Fulvio Plescia. 2019. "Work-Related Stress, Physio-Pathological Mechanisms, and the Influence of Environmental Genetic Factors" International Journal of Environmental Research and Public Health 16, no. 20: 4031. https://doi.org/10.3390/ijerph16204031
APA StyleCannizzaro, E., Ramaci, T., Cirrincione, L., & Plescia, F. (2019). Work-Related Stress, Physio-Pathological Mechanisms, and the Influence of Environmental Genetic Factors. International Journal of Environmental Research and Public Health, 16(20), 4031. https://doi.org/10.3390/ijerph16204031