Hydrological Simulation for Predicting the Future Water Quality of Adyar River, Chennai, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model Setup and Data Used
2.3. Model Setup
3. Results
3.1. Precipitation Pattern
3.2. Population Growth
3.3. Water Quality
3.3.1. Model Performance Evaluation
3.3.2. Scenario Analyses
4. Conclusions and Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Heinemann, A.B.; Hoogenboom, G.; Faria, R.T. Determination of spatial water requirements at county and regional levels using crop models and GIS: An example for the State of Parana, Brazil. Agric. Water Manag. 2002, 52, 177–196. [Google Scholar] [CrossRef]
- FAO AQUASTAT Website. Food and Agriculture Organization of the United Nations (FAO). Available online: http://www.fao.org/aquastat/en/publications/ (accessed on 15 May 2016).
- Pink, R.M. Introduction. In Water Rights in Southeast Asia and India; Palgrave Macmillan: New York, NY, USA, 2016; pp. 1–14. [Google Scholar]
- Kumar, P. Simulation of Gomti River (Lucknow City, India) future water quality under different mitigation strategies. Heliyon 2018, 4, e01074. [Google Scholar] [CrossRef] [PubMed]
- Huizinga, J.; de Moel, H.; Szewczyk, W. Global flood depth-damage functions. Methodology and the database with guidelines. Joint Res. Cent. (Sev. Site) 2017. [Google Scholar] [CrossRef]
- Mukate, S.; Panaskar, D.; Wagh, V.; Muley, A.; Jangam, C.; Pawar, R. Impact of anthropogenic inputs on water quality in Chincholi Industrial area of Solapur, Maharashtra, India. Groundw. Sustain. Dev. 2017. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Buurman, J.; van Ginkel, K.C. Urban water security: A review. Environ. Res. Lett. 2018, 13, 053002. [Google Scholar] [CrossRef]
- Tundisi, J.G. Water resources in the future: Problems and solutions. Estud. Avançados 2008, 22, 7–16. [Google Scholar] [CrossRef]
- Angelo Dell’, J.; Rulli, M.C.; D’Ordorico, P. The global water grabbing syndrome. Ecol. Econ. 2018, 143, 276–285. [Google Scholar] [CrossRef]
- UN Water. Waste Water: The Untapped Resources. Facts and Figure; The United Nations World Water Report 2017; UNESCO Publishing: Paris, France, 2017; p. 83. [Google Scholar]
- Ferguson, L.; Chan, S.; Santelmann, M.V.; Tilt, B. Transdisciplinary research in water sustainability: What’s in it for an engaged researcher-stakeholder community? Water Altern. 2018, 11, 1–18. [Google Scholar]
- United Nations, Department of Economic and Social Affairs. Population Division (UN DESA). 2015 World Urbanization Prospects: The 2014 Revision; (ST/ESA/SER.A/366); UN Publication: New York, NY, USA, 2014; p. 517. [Google Scholar]
- Gareth, P. Attitudes to Water in South Asia; Chatham House Report; Chatham House, The Royal Institute of International Affairs: London, UK; Vinset Advertising: New Delhi, India, 2014; p. 114. [Google Scholar]
- Downing, T.E. Views of the frontiers in climate change adaptation economics. Wiley Interdiscip. Rev. Clim. Chang. 2012, 3, 161–170. [Google Scholar] [CrossRef]
- Frija, A.; Dhehibi, B.; Chebil, A.; Villholth, K.G. Performance evaluation of groundwater management instruments: The case of irrigation sector in Tunisia. Groundw. Sustain. Dev. 2015, 1. [Google Scholar] [CrossRef]
- Blanco-Gutiérrez, I.; Varela-Ortega, C.; Purkey, D.R. Integrated assessment of policy interventions for promoting sustainable irrigation in semi-arid environments: A hydro-economic modeling approach. J. Environ. Manag. 2013, 128, 144–160. [Google Scholar] [CrossRef] [PubMed]
- Ingol-Blanco, E.; McKinney, D. Development of a Hydrological Model for the Rio Conchos Basin. J. Hydrol. Eng. 2013, 18, 340–351. [Google Scholar] [CrossRef]
- Slaughter, A.R.; Mantel, S.K.; Hughes, D.A. Investigating possible climate change and development effects on water quality within an arid catchment in South Africa: A comparison of two models. In Proceedings of the 7th International Congress on Environmental Modelling and Software, San Diego, CA, USA, 15–19 June 2014; Ames, D.P., Quinn, N.W.T., Rizzoli, A.E., Eds.; ISBN 978 88 9035 744 2. [Google Scholar]
- Kumar, P.; Masago, Y.; Mishra, B.K.; Fukushi, K. Evaluating future stress due to combined effect of climate change and rapid urbanization for Pasig-Marikina River, Manila. Groundw. Sustain. Dev. 2018, 6, 227–234. [Google Scholar] [CrossRef]
- Census of India. Office of the Registrar General and Census Commissioner, India; Ministry of Home Affairs, Government of India: New Delhi, India, 2011; p. 80.
- Gowri, V.S.; Ramachandran, S.; Ramesh, R.; Pramiladevi, I.R.; Krishnaveni, K. Application of GIS in the study of mass transport of pollutant by Adyar and Cooum Rivers in Chennai, Tamil Nadu. Environ. Monit. Assess. 2008, 138, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Chennai Metro Water Supply and Sewage Board (CMWSSB). 2017. Available online: http://en.wikipedia.org/wiki/Chennai_MetroWater_Supply_and_Sewage_Board (accessed on 17 June 2017).
- Regional Meteorological Center, Indian Meteorological Department. 2017. Available online: www.imdchennai.gov.in/ (accessed on 23 May 2017).
- Selvan, A. Public Works Department Report. 2015 Water Resources Organization; Government of Tamilnadu: Chennai, India, 2015; p. 145. [Google Scholar]
- Second Master Plan for Chennai Metropolitan Area, 2026; Chennai Metropolitan Development Authority (CMDA) Report; Chennai Metropolitan Development Authority: Chennai, India, 2015; p. 84.
- Ward Details within the Greater Chennai Corporation. 2018; Greater Chennai Corporation Webpage. Available online: www.chennaicorporation.gov.in (accessed on 3 August 2017).
- Lakshmi, V.S.; James, J.; Soundariya, S.; Vishalini, T.; Pandian, K.P. A comparison of soil texture distribution and soil moisture mapping of Chennai coast using Landsat ETM+ and IKONOS data. Aquat. Procedia 2015, 4, 1452–1460. [Google Scholar] [CrossRef]
- Ramaswamy, S.V.; Anirudhan, I.V. Experience with expansive soils and shales in and around Chennai. Indian Geotech. Soc. 2009, 2, 873–881. [Google Scholar]
- Bisht, D.K.; Sridhar, V.; Mishra, A.; Chatterjee, C.; Raghuwanshi, N.S. Drought characterization over India Under projected climate scenario. Int. J. Climatol. 2019, 39, 1889–1911. [Google Scholar] [CrossRef]
- Goyal, M.K.; Ojha, C.S.P. Evaluation of linear regression methods as downscaling tools in temperature projections over the Pichola Lake Basin in India. Hydrol. Process. 2011, 25, 1453–1465. [Google Scholar] [CrossRef]
- Endo, H.; Kitoh, A.; Ose, T.; Mizuta, R.; Kusunoki, S. Future changes and uncertainties in Asian precipitation simulated by multiphysics and multi-sea surface temperature ensemble experiments with high-resolution Meteorological Research Institute atmospheric general circulation models (MRI-AGCMs). J. Geophys. Res. 2012, 117, D16118. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report Contribution of Working Group I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Tamilnadu Pollution Control Board (TNPCB). 2017 TNPCB and You. A Ready Reckoner for Entrepreneurs; Chennai Publishing House: Madras, Tamil Nadu, India, 2017; p. 231.
- Khan, A.A.; Gaur, R.Z.; Diamantis, V.; Lew, B.; Mehrotra, I.; Kazmi, A.A. Continuous fill intermittent decant type sequencing batch reactor application to upgrade the UASB treated sewage. Bioprocess Biosyst. Eng. 2013, 36, 627–634. [Google Scholar] [CrossRef] [PubMed]
Catchment | Sub-Catchment | Ward Number | Growth@ 2.45% per Year | [email protected]% per Year | |
---|---|---|---|---|---|
2013 | 2015 | 2030 | |||
C1 | C1 | 1 to 33 | 985,073 | 1,032,520 | 1,454,353 |
C2 | C2-1 | 34 to 63 | 1,055,685 | 1,106,533 | 1,558,603 |
C2-2 | 64 to 93 | 906,639 | 950,309 | 1,338,554 | |
C3 | C3 | 94 to 126 | 717,314 | 751,864 | 1,059,035 |
C4 | C4-1 | 127 to 142 | 670,854 | 703,166 | 990,443 |
C4-2 | 143 to 157 | 860,968 | 902,438 | 1,271,125 |
Scenario | Components |
---|---|
Business as usual | Climate change + population growth +WWTP of 180 MLD |
With measures | Climate change + population growth +WWTP of 886 MLD (100% collection rate) |
Parameters | Average % Increase with Business as Usual Scenario (2015–2030) | % Contribution from Population Growth | % Contribution from Climate Change |
---|---|---|---|
BOD | 26.7 | 87 | 13 |
E. coli | 8.3 | 89 | 11 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, P.; Dasgupta, R.; Ramaiah, M.; Avtar, R.; Johnson, B.A.; Mishra, B.K. Hydrological Simulation for Predicting the Future Water Quality of Adyar River, Chennai, India. Int. J. Environ. Res. Public Health 2019, 16, 4597. https://doi.org/10.3390/ijerph16234597
Kumar P, Dasgupta R, Ramaiah M, Avtar R, Johnson BA, Mishra BK. Hydrological Simulation for Predicting the Future Water Quality of Adyar River, Chennai, India. International Journal of Environmental Research and Public Health. 2019; 16(23):4597. https://doi.org/10.3390/ijerph16234597
Chicago/Turabian StyleKumar, Pankaj, Rajarshi Dasgupta, Manish Ramaiah, Ram Avtar, Brian Alan Johnson, and Binaya Kumar Mishra. 2019. "Hydrological Simulation for Predicting the Future Water Quality of Adyar River, Chennai, India" International Journal of Environmental Research and Public Health 16, no. 23: 4597. https://doi.org/10.3390/ijerph16234597
APA StyleKumar, P., Dasgupta, R., Ramaiah, M., Avtar, R., Johnson, B. A., & Mishra, B. K. (2019). Hydrological Simulation for Predicting the Future Water Quality of Adyar River, Chennai, India. International Journal of Environmental Research and Public Health, 16(23), 4597. https://doi.org/10.3390/ijerph16234597