Associated Factors of Hypertension in Women and Men in Vietnam: A Cross-Sectional Study
Abstract
:1. Introduction
2. Research Methods
2.1. Study Design and Settings
2.2. Sampling and Sample Size
2.3. Measurements
2.3.1. Participants’ Characteristics
2.3.2. Health Behaviors
2.3.3. Blood Pressure
2.3.4. Anthropometrics
2.4. Data Collection Procedure
2.5. Ethical Consideration
2.6. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roth, G.A.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [Google Scholar] [CrossRef]
- Nhung, N.T.T.; Long, T.K.; Linh, B.N.; Vos, T.; Huong, N.T.; Anh, N.D. Estimation of Vietnam national burden of disease 2008. Asia Pac. J. Public Health 2014, 26, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Hoa, N.P.; Rao, C.; Hoy, D.G.; Hinh, N.D.; Chuc, N.T.K.; Ngo, D.A. Mortality measures from sample-based surveillance: Evidence of the epidemiological transition in Viet Nam. Bull. World Health Organ. 2012, 90, 764–772. [Google Scholar] [PubMed]
- Nguyen, T.-P.-L.; Nguyen, T.B.Y.; Nguyen, T.T.; Vinh Hac, V.; Le, H.H.; Schuiling-Veninga, C.C.M.; Postma, M.J. Direct costs of hypertensive patients admitted to hospital in Vietnam’ a bottom-up micro-costing analysis. BMC Health Serv. Res. 2014, 14, 514. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.-P.-L.; Wright, E.P.; Nguyen, T.-T.; Schuiling-Veninga, C.C.M.; Bijlsma, M.J.; Nguyen, T.-B.-Y.; Postma, M.J. Cost-Effectiveness Analysis of Screening for and Managing Identified Hypertension for Cardiovascular Disease Prevention in Vietnam. PLoS ONE 2016, 11, e0155699. [Google Scholar] [CrossRef]
- Olsen, M.H.; Angell, S.Y.; Asma, S.; Boutouyrie, P.; Burger, D.; Chirinos, J.A.; Damasceno, A.; Delles, C.; Gimenez-Roqueplo, A.-P.; Hering, D.; et al. A call to action and a lifecourse strategy to address the global burden of raised blood pressure on current and future generations: The Lancet Commission on hypertension. Lancet 2016, 388, 2665–2712. [Google Scholar] [CrossRef]
- Yusuf, S.; Joseph, P.; Rangarajan, S.; Islam, S.; Mente, A.; Hystad, P.; Brauer, M.; Kutty, V.R.; Gupta, R.; Wielgosz, A.; et al. Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): A prospective cohort study. Lancet 2019. [Google Scholar] [CrossRef]
- Nugent, R.; Bertram, M.Y.; Jan, S.; Niessen, L.W.; Sassi, F.; Jamison, D.T.; Pier, E.G.; Beaglehole, R. Investing in non-communicable disease prevention and management to advance the Sustainable Development Goals. Lancet 2018, 391, 2029–2035. [Google Scholar] [CrossRef]
- Niessen, L.W.; Mohan, D.; Akuoku, J.K.; Mirelman, A.J.; Ahmed, S.; Koehlmoos, T.P.; Trujillo, A.; Khan, J.; Peters, D.H. Tackling socioeconomic inequalities and non-communicable diseases in low-income and middle-income countries under the Sustainable Development agenda. Lancet 2018, 391, 2036–2046. [Google Scholar] [CrossRef]
- Mills Katherine, T.; Bundy Joshua, D.; Kelly Tanika, N.; Reed Jennifer, E.; Kearney Patricia, M.; Reynolds, K.; Chen, J.; He, J. Global Disparities of Hypertension Prevalence and Control: A Systematic Analysis of Population-Based Studies From 90 Countries. Circulation 2016, 134, 441–450. [Google Scholar] [CrossRef]
- Lloyd-Sherlock, P.; Beard, J.; Minicuci, N.; Ebrahim, S.; Chatterji, S. Hypertension among older adults in low- and middle-income countries: Prevalence, awareness and control. Int. J. Epidemiol. 2014, 43, 116–128. [Google Scholar] [CrossRef] [PubMed]
- Chow, C.K.; Teo, K.K.; Rangarajan, S.; Islam, S.; Gupta, R.; Avezum, A.; Bahonar, A.; Chifamba, J.; Dagenais, G.; Diaz, R.; et al. Prevalence, Awareness, Treatment, and Control of Hypertension in Rural and Urban Communities in High-, Middle-, and Low-Income Countries. JAMA 2013, 310, 959–968. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.N.; Pham, S.T.; Nguyen, V.L.; Weinehall, L.; Bonita, R.; Byass, P.; Wall, S. Time Trends in Blood Pressure, Body Mass Index and Smoking in the Vietnamese Population: A Meta-Analysis from Multiple Cross-Sectional Surveys. PLoS ONE 2012, 7, e42825. [Google Scholar] [CrossRef] [PubMed]
- Meiqari, L.; Essink, D.; Wright, P.; Scheele, F. Prevalence of Hypertension in Vietnam: A Systematic Review and Meta-Analysis. Asia Pac. J. Public Health 2019, 31, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Do, H.T.P.; Geleijnse, J.M.; Le, M.B.; Kok, F.J.; Feskens, E.J.M. National Prevalence and Associated Risk Factors of Hypertension and Prehypertension Among Vietnamese Adults. Am. J. Hypertens. 2014, 28, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.-P.-L.; Schuiling-Veninga, C.C.M.; Nguyen, T.B.Y.; Vu, T.-H.; Wright, E.P.; Postma, M.J. Adherence to hypertension medication: Quantitative and qualitative investigations in a rural Northern Vietnamese community. PLoS ONE 2017, 12, e0171203. [Google Scholar] [CrossRef]
- Son, P.T.; Quang, N.N.; Viet, N.L.; Khai, P.G.; Wall, S.; Weinehall, L.; Bonita, R.; Byass, P. Prevalence, awareness, treatment and control of hypertension in Vietnam—Results from a national survey. J. Hum. Hypertens. 2012, 26, 268. [Google Scholar] [CrossRef]
- The World Bank. Country Profile: Vietnam; World Bank Group: Washington, DC, USA, 2018. [Google Scholar]
- Rosengren, A.; Smyth, A.; Rangarajan, S.; Ramasundarahettige, C.; Bangdiwala, S.I.; AlHabib, K.F.; Avezum, A.; Bengtsson Boström, K.; Chifamba, J.; Gulec, S.; et al. Socioeconomic status and risk of cardiovascular disease in 20 low-income, middle-income, and high-income countries: The Prospective Urban Rural Epidemiologic (PURE) study. Lancet Glob. Health 2019, 7, e748–e760. [Google Scholar] [CrossRef]
- Tabrizi, J.S.; Sadeghi-Bazargani, H.; Farahbakhsh, M.; Nikniaz, L.; Nikniaz, Z. Prevalence and Associated Factors of Prehypertension and Hypertension in Iranian Population: The Lifestyle Promotion Project (LPP). PLoS ONE 2016, 11, e0165264. [Google Scholar] [CrossRef]
- Peltzer, K.; Pengpid, S.; Sychareun, V.; Ferrer, A.J.G.; Low, W.Y.; Huu, T.N.; Win, H.H.; Rochmawati, E.; Turnbull, N. Prehypertension and psychosocial risk factors among university students in ASEAN countries. BMC Cardiovasc. Disord. 2017, 17, 230. [Google Scholar] [CrossRef]
- Daniel, W.W.; Cross, C.L. Biostatistics: A Foundation for Analysis in the Health Sciences, 10th ed.; John Wiley & Sons: New York, NY, USA, 2013; p. 960. [Google Scholar]
- Pourhoseingholi, M.A.; Vahedi, M.; Rahimzadeh, M. Sample size calculation in medical studies. Gastroenterol. Hepatol. Bed Bench 2013, 6, 14–17. [Google Scholar] [PubMed]
- World Health Organization. Noncommunicable Diseases and Their Risk Factors: STEPwise Approach to Surveillance (STEPS); World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Ho Chi Minh City People’s Committee. Decision No. 58/2015/QĐ-UBND Promulgating Poverty Levels Applicable during 2016–2020; Lawsoft: Ho Chi Minh City, Vietnam, 31 December 2015. [Google Scholar]
- Ho Chi Minh City People’s Committee. Amended Decision No. 07/2019/QĐ-UBND Promulgating Poverty Levels Applicable during 2016–2020; Lawsoft: Ho Chi Minh City, Vietnam, 15 March 2019. [Google Scholar]
- World Health Organization. Global Status Report on Noncommunicable Diseases 2014; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- World Health Organization-International Society of Hypertension Writing Group, 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension. J. Hypertens. 2003, 21, 1983–1992. [CrossRef] [PubMed]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.; Joseph, L.; Jones, D.W.; Materson, B.J.; Oparil, S.; et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood PressureThe JNC 7 Report. JAMA 2003, 289, 2560–2571. [Google Scholar] [CrossRef] [PubMed]
- WHO Consultation on Obesity & World Health Organization. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- World Health Organization. Regional Office for the Western Pacific. Overweight and Obesity in the Western Pacific Region: An Equity Perspective; World Health Organization: Manila, Philippines, 2017. [Google Scholar]
- World Health Organization. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation, GENEVA, 8–11 December 2008; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Maldonado, G.; Greenland, S. Simulation Study of Confounder-Selection Strategies. Am. J. Epidemiol. 1993, 138, 923–936. [Google Scholar] [CrossRef]
- IBM SPSS. IBM SPSS Statistics for Windows, Version 20.0; IBM Corp.: New York, NY, USA, 2011. [Google Scholar]
- Zhou, B.; Bentham, J.; Di Cesare, M.; Bixby, H.; Danaei, G.; Cowan, M.J.; Paciorek, C.J.; Singh, G.; Hajifathalian, K.; Bennett, J.E.; et al. Worldwide trends in blood pressure from 1975 to 2015: A pooled analysis of 1479 population-based measurement studies with 19·1 million participants. Lancet 2017, 389, 37–55. [Google Scholar] [CrossRef]
- Bui Van, N.; Vo Hoang, L.; Bui Van, T.; Anh, H.N.S.; Minh, H.T.; Do Nam, K.; Tri, T.N.; Show, P.L.; Nga, V.T.; Thimiri Govinda Raj, D.B.; et al. Prevalence and Risk Factors of Hypertension in the Vietnamese Elderly. High Blood Press. Cardiovasc. Prev. 2019, 26, 239–246. [Google Scholar] [CrossRef]
- Lemogoum, D.; Ngatchou, W.; Bika Lele, C.; Okalla, C.; Leeman, M.; Degaute, J.-P.; van de Borne, P. Association of urinary sodium excretion with blood pressure and risk factors associated with hypertension among Cameroonian pygmies and bantus: A cross-sectional study. BMC Cardiovasc. Disord. 2018, 18, 49. [Google Scholar] [CrossRef]
- Hien, H.A.; Tam, N.M.; Tam, V.; Derese, A.; Devroey, D. Prevalence, Awareness, Treatment, and Control of Hypertension and Its Risk Factors in (Central) Vietnam. Int. J. Hypertens. 2018, 2018, 12. [Google Scholar] [CrossRef]
- Bui Van, N.; Pham Van, Q.; Vo Hoang, L.; Bui Van, T.; Nguyen Hoang, N.; Do Nam, K.; Chu, D.-T. Prevalence and Risk Factors of Hypertension in Two Communes in the Vietnam Northern Mountainous, 2017. Biomed. Res. Int. 2018, 2018, 7. [Google Scholar] [CrossRef]
- Jayawardana, N.W.I.A.; Jayalath, W.A.T.A.; Madhujith, W.M.T.; Ralapanawa, U.; Jayasekera, R.S.; Alagiyawanna, S.A.S.B.; Bandara, A.M.K.R.; Kalupahana, N.S. Aging and obesity are associated with undiagnosed hypertension in a cohort of males in the Central Province of Sri Lanka: A cross-sectional descriptive study. BMC Cardiovasc. Disord. 2017, 17, 165. [Google Scholar] [CrossRef]
- Echouffo-Tcheugui, J.B.; Batty, G.D.; Kivimäki, M.; Kengne, A.P. Risk Models to Predict Hypertension: A Systematic Review. PLoS ONE 2013, 8, e67370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basu, S.; Millett, C. Social Epidemiology of Hypertension in Middle-Income Countries: Determinants of Prevalence, Diagnosis, Treatment, and Control in the WHO SAGE Study. Hypertension 2013, 62, 18–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucumi, D.I.; Schulz, A.J.; Roux, A.V.D.; Grogan-Kaylor, A. Income inequality and high blood pressure in Colombia: A multilevel analysis. Cad. Saude Publica 2017, 33, e00172316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leng, B.; Jin, Y.; Li, G.; Chen, L.; Jin, N. Socioeconomic status and hypertension: A meta-analysis. J. Hypertens. 2015, 33, 221–229. [Google Scholar] [CrossRef]
- Su, M.; Si, Y.; Zhou, Z.; Shen, C.; Dong, W.; Fan, X.; Wang, X.; Wei, X. Comparing the income-related inequity of tested prevalence and self-reported prevalence of hypertension in China. Int. J. Equity Health 2018, 17, 82. [Google Scholar] [CrossRef]
- Huang, X.-B.; Chen, F.; Dai, W.; Song, L.; Tu, J.; Xu, J.-B.; Liu, J.-X.; Yi, Y.-J.; Liu, Y.; Chen, Y.; et al. Prevalence and risk factors associated with hypertension in the Chinese Qiang population. Clin. Exp. Hypertens. 2018, 40, 427–433. [Google Scholar] [CrossRef]
- Palafox, B.; McKee, M.; Balabanova, D.; AlHabib, K.F.; Avezum, A., Jr.; Bahonar, A.; Ismail, N.; Chifamba, J.; Chow, C.K.; Corsi, D.J.; et al. Wealth and cardiovascular health: A cross-sectional study of wealth-related inequalities in the awareness, treatment and control of hypertension in high-, middle- and low-income countries. Int. J. Equity Health 2016, 15, 199. [Google Scholar] [CrossRef] [Green Version]
- Oktay, A.A.; Akturk, H.K.; Jahangir, E. Diabetes mellitus and hypertension: A dual threat. Curr. Opin. Cardiol. 2016, 31, 402–409. [Google Scholar] [CrossRef]
- Tąpolska, M.; Spałek, M.; Szybowicz, U.; Domin, R.; Owsik, K.; Sochacka, K.; Skrypnik, D.; Bogdański, P.; Owecki, M. Arterial Stiffness Parameters Correlate with Estimated Cardiovascular Risk in Humans: A Clinical Study. Int. J. Environ. Res. Public Health 2019, 16, 2547. [Google Scholar] [CrossRef] [Green Version]
- Skrypnik, D.; Bogdański, P.; Zawiejska, A.; Wender-Ożegowska, E. Role of gestational weight gain, gestational diabetes, breastfeeding, and hypertension in mother-to-child obesity transmission. Pol. Arch. Intern. Med. 2019, 129, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Cryer, M.J.; Horani, T.; DiPette, D.J. Diabetes and Hypertension: A Comparative Review of Current Guidelines. J. Clin. Hypertens. (Greenwich) 2016, 18, 95–100. [Google Scholar] [CrossRef]
- Suliburska, J.; Skrypnik, K.; Szulińska, M.; Kupsz, J.; Markuszewski, L.; Bogdański, P. Diuretics, Ca-Antagonists, and Angiotensin-Converting Enzyme Inhibitors Affect Zinc Status in Hypertensive Patients on Monotherapy: A Randomized Trial. Nutrients 2018, 10, 1284. [Google Scholar] [CrossRef] [Green Version]
- Suliburska, J.; Skrypnik, K.; Szulińska, M.; Kupsz, J.; Bogdański, P. Effect of hypotensive therapy combined with modified diet or zinc supplementation on biochemical parameters and mineral status in hypertensive patients. J. Trace Elem. Med. Biol. 2018, 47, 140–148. [Google Scholar] [CrossRef]
- Endres, M.; Heuschmann, P.U.; Laufs, U.; Hakim, A.M. Primary prevention of stroke: Blood pressure, lipids, and heart failure. Eur. Heart J. 2011, 32, 545–552. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Hakim, A.M. The Management of Hypertension for Primary Stroke Prevention: A Proposed Approach. Int. J. Stroke 2011, 6, 144–149. [Google Scholar] [CrossRef]
- Phillips, R.A.; Xu, J.; Peterson, L.E.; Arnold, R.M.; Diamond, J.A.; Schussheim, A.E. Impact of Cardiovascular Risk on the Relative Benefit and Harm of Intensive Treatment of Hypertension. J. Am. Coll. Cardiol. 2018, 71, 1601–1610. [Google Scholar] [CrossRef]
- Virdis, A.; Giannarelli, C.; Fritsch Neves, M.; Taddei, S.; Ghiadoni, L. Cigarette Smoking and Hypertension. Curr. Pharm. Des. 2010, 16, 2518–2525. [Google Scholar] [CrossRef]
- Wu, L.; Yang, S.; He, Y.; Liu, M.; Wang, Y.; Wang, J.; Jiang, B. Association between passive smoking and hypertension in Chinese non-smoking elderly women. Hypertens. Res. 2017, 40, 399–404. [Google Scholar] [CrossRef]
- Polónia, J.; Barbosa, L.; Silva, J.A.; Rosas, M. Improvement of aortic reflection wave responses 6 months after stopping smoking: A prospective study. Blood Press. Monit. 2009, 14, 69–75. [Google Scholar] [CrossRef]
- Mills Edward, J.; Thorlund, K.; Eapen, S.; Wu, P.; Prochaska Judith, J. Cardiovascular Events Associated With Smoking Cessation Pharmacotherapies: A Network Meta-Analysis. Circulation 2014, 129, 28–41. [Google Scholar] [CrossRef]
- Jensen, P.N.; Bao, T.Q.; Huong, T.T.T.; Heckbert, S.R.; Fitzpatrick, A.L.; LoGerfo, J.P.; Ngoc, T.L.V.; Mokdad, A.H. The association of estimated salt intake with blood pressure in a Viet Nam national survey. PLoS ONE 2018, 13, e0191437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, S.L.; Souza Júnior, P.R.; Pimentel, E.B.; Baldo, M.P.; Malta, D.C.; Mill, J.G.; Szwarcwald, C.L. Relationship between salt consumption measured by 24-h urine collection and blood pressure in the adult population of Vitória (Brazil). Braz. J. Med. Biol. Res. 2015, 48, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Chen, X.; Ge, Z.; Liang, H.; Yan, L.; Guo, X.; Zhang, Y.; Wang, L.; Ma, J. Associations of Usual 24-Hour Sodium and Potassium Intakes with Blood Pressure and Risk of Hypertension among Adults in China’s Shandong and Jiangsu Provinces. Kidney Blood Press. Res. 2017, 42, 188–200. [Google Scholar] [CrossRef]
- He, F.J.; Li, J.; MacGregor, G.A. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ 2013, 346, f1325. [Google Scholar] [CrossRef] [Green Version]
- Graudal, N.A.; Hubeck-Graudal, T.; Jurgens, G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst. Rev. 2017. [Google Scholar] [CrossRef]
- He, F.J.; Li, J.; MacGregor, G.A. Effect of longer-term modest salt reduction on blood pressure. Cochrane Database Syst. Rev. 2013. [Google Scholar] [CrossRef]
- Wu, X.; Li, B.; Lin, W.-Q.; Huang, L.-L.; Wang, X.-X.; Fu, L.-Y.; Li, B.-B.; Wang, P.-X. The association between obesity indices and hypertension: Which index is the most notable indicator of hypertension in different age groups stratified by sex? Clin. Exp. Hypertens. 2019, 41, 373–380. [Google Scholar] [CrossRef]
- Zhang, Q.; Mahapatra, T.; Huang, F.; Tang, W.; Guo, Y.; Tang, S.; Lei, Y.; Feng, L.; Wang, A.; Zhang, L.; et al. Association between Anthropometric Measures and Indicators for Hypertension Control among Kazakh-Chinese Hypertension Patients in Xinjiang, China: Results from a Cross-sectional Study. PLoS ONE 2017, 12, e0170959. [Google Scholar] [CrossRef]
- Taing, K.Y.; Farkouh, M.E.; Moineddin, R.; Tu, J.V.; Jha, P. Age and sex-specific associations of anthropometric measures of adiposity with blood pressure and hypertension in India: A cross-sectional study. BMC Cardiovasc. Disord. 2016, 16, 247. [Google Scholar] [CrossRef] [Green Version]
- Luz, R.H.; Barbosa, A.R.; d’Orsi, E. Waist circumference, body mass index and waist-height ratio: Are two indices better than one for identifying hypertension risk in older adults? Prev. Med. 2016, 93, 76–81. [Google Scholar] [CrossRef]
Variables | Total (N = 2203) | Non-HTN (N = 1668) | HTN (N = 535) | p-Value * |
---|---|---|---|---|
Age groups | <0.001 | |||
18–44 | 957 (43.4) | 867 (52.0) | 90 (16.8) | |
45–59 | 820 (37.3) | 572 (34.3) | 248 (46.4) | |
60–69 | 426 (19.3) | 229 (13.7) | 197 (36.8) | |
Gender | <0.001 | |||
Women | 1285 (58.3) | 1017 (61.0) | 268 (50.1) | |
Men | 918 (41.7) | 651 (39.0) | 267 (49.9) | |
Marital status | <0.001 | |||
Never married | 313 (14.2) | 283 (17.0) | 30 (5.6) | |
Ever married | 1890 (85.8) | 1385 (83.0) | 505 (94.4) | |
Education | <0.001 | |||
Elementary school or below | 368 (16.7) | 263 (15.8) | 105 (19.6) | |
Secondary school | 675 (30.6) | 483 (29.0) | 192 (35.9) | |
High school and above | 1160 (52.7) | 922 (55.2) | 238 (44.5) | |
Occupation | <0.001 | |||
Retirement | 421 (19.1) | 240 (14.4) | 181 (33.8) | |
Officers/Workers/Traders | 910 (41.3) | 776 (46.5) | 134 (25.0) | |
Others | 872 (39.6) | 652 (39.1) | 220 (41.1) | |
Monthly income | <0.001 | |||
Below poverty line | 488 (22.2) | 337 (20.2) | 151 (28.2) | |
Above poverty line | 1715 (77.8) | 1331 (79.8) | 384 (71.8) | |
Comorbidities | ||||
Diabetes mellitus | <0.001 | |||
No | 2064 (93.7) | 1611 (96.6) | 453 (84.7) | |
Yes | 139 (6.3) | 57 (3.4) | 82 (15.3) | |
Hypercholesterolemia | <0.001 | |||
No | 1920 (87.2) | 1529 (91.7) | 391 (73.1) | |
Yes | 283 (12.8) | 139 (8.3) | 144 (26.9) | |
Health behaviors | ||||
Smoking tobacco | <0.001 | |||
No | 1805 (81.9) | 1404 (84.2) | 401 (75.0) | |
Yes | 398 (18.1) | 264 (15.8) | 134 (25.0) | |
Drinking alcohol | 0.003 | |||
No | 1694 (76.9) | 1308 (78.4) | 386 (72.1) | |
Yes | 509 (23.1) | 360 (21.6) | 149 (27.9) | |
Consuming added salts | 0.046 | |||
No | 1095 (49.7) | 858 (51.4) | 237 (44.3) | |
Yes | 1108 (50.3) | 810 (48.6) | 298 (55.7) | |
Daily intake of fruits and vegetables † | 0.831 | |||
<5 servings/day | 1937 (87.9) | 1468 (88.0) | 469 (87.7) | |
≥5 servings/day | 266 (12.1) | 200 (12.0) | 66 (12.3) | |
Exercise | 0.246 | |||
No | 883 (40.1) | 680 (40.8) | 203 (37.9) | |
Yes | 1320 (59.9) | 988 (59.2) | 332 (62.1) | |
Anthropometrics | ||||
Height, cm, mean ± SD | 159.5 ± 7.2 | 159.4 ± 7.1 | 159.9 ± 7.4 | 0.229 |
Weight, kg, mean ± SD | 58.5 ± 14.2 | 57.3 ± 9.0 | 62.2 ± 23.7 | <0.001 |
BMI, kg/m2, mean ± SD | 22.9 ± 5.1 | 22.5 ± 2.9 | 24.3 ± 9.0 | <0.001 |
BMI groups | <0.001 | |||
Normal (<25.0 kg/m2) | 1758 (79.5) | 1390 (83.3) | 368 (68.8) | |
Overweight/obesity (≥25.0 kg/m2) | 445 (20.2) | 278 (16.7) | 167 (31.2) | |
WC, cm, mean ± SD | 78.5 ± 10.9 | 76.6 ± 10.2 | 84.4 ± 10.7 | <0.001 |
HC, cm, mean ± SD | 90.3 ± 8.7 | 89.4 ± 8.7 | 93.0 ± 8.4 | <0.001 |
WHR, %, mean ± SD | 87.0 ± 9.3 | 85.8 ± 9.3 | 90.7 ± 8.1 | <0.001 |
Abdominal Obesity ‡ | <0.001 | |||
Normal | 1114 (50.6) | 917 (55.0) | 197 (36.8) | |
Abdominal obesity | 1089 (49.4) | 751 (45.0) | 338 (63.2) | |
SBP, mmHg, mean ± SD | 123.3 ± 15.8 | 117.6 ± 10.3 | 140.9 ± 17.0 | <0.001 |
DBP, mmHg, mean ± SD | 77.2 ± 10.1 | 74.2 ± 7.5 | 86.7 ± 11.0 | <0.001 |
Variables | Overall (N = 2203) | Women (N = 1285) | Men (N = 918) | |||
---|---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Age groups | ||||||
18–44 | Reference | Reference | Reference | |||
45–59 | 4.18 (3.21–5.44) | <0.001 | 8.88 (5.39–14.63) | <0.001 | 3.21 (2.28–4.51) | <0.001 |
60–69 | 8.29 (6.21–11.06) | <0.001 | 16.89 (10.08–28.28) | <0.001 | 7.75 (5.09–11.81) | <0.001 |
Gender | ||||||
Women | Reference | |||||
Men | 1.56 (1.28–1.89) | <0.001 | ||||
Marital status | ||||||
Never married | Reference | Reference | Reference | |||
Ever married | 3.44 (2.33–5.08) | <0.001 | 3.18 (1.73–5.84) | <0.001 | 4.18 (2.50–6.97) | <0.001 |
Education | ||||||
Elementary school or below | Reference | Reference | Reference | |||
Secondary school | 1.00 (0.75–1.32) | 0.976 | 0.94 (0.66–1.34) | 0.743 | 0.95 (0.59–1.54) | 0.848 |
High school and above | 0.65 (0.50–0.85) | 0.001 | 0.54 (0.38–0.77) | 0.001 | 0.63 (0.40–0.99) | 0.043 |
Occupation | ||||||
Retirement | Reference | Reference | Reference | |||
Officers/Workers/Traders | 0.23 (0.18–0.30) | <0.001 | 0.20 (0.14–0.28) | <0.001 | 0.21 (0.14–0.32) | <0.001 |
Others | 0.45 (0.35–0.57) | <0.001 | 0.46 (0.34–0.64) | <0.001 | 0.34 (0.23–0.52) | <0.001 |
Monthly income | ||||||
Below poverty line | Reference | Reference | Reference | |||
Above poverty line | 0.64 (0.52–0.81) | <0.001 | 0.52 (0.39–0.69) | <0.001 | 0.79 (0.55–1.13) | 0.195 |
Comorbidities | ||||||
Diabetes | ||||||
No | Reference | Reference | Reference | |||
Yes | 5.12 (3.59–7.29) | <0.001 | 6.28 (3.97–9.92) | <0.001 | 4.03 (2.30–7.06) | <0.001 |
Hypercholesterolemia | ||||||
No | Reference | Reference | Reference | |||
Yes | 4.05 (3.13–5.24) | <0.001 | 5.18 (3.67–7.32) | <0.001 | 3.03 (2.04–4.48) | <0.001 |
Health behaviors | ||||||
Smoking tobacco | ||||||
No | Reference | Reference | ||||
Yes | 1.78 (1.40–2.25) | <0.001 | 1.52 (1.14–2.03) | 0.004 | ||
Drinking alcohol | ||||||
No | Reference | Reference | ||||
Yes | 1.40 (1.12–1.75) | 0.003 | 1.20 (0.90–1.60) | 0.208 | ||
Consuming added salts | ||||||
No | Reference | Reference | Reference | |||
Yes | 1.33 (1.10–1.62) | 0.004 | 1.54 (1.17–2.02) | 0.002 | 1.18 (0.89–1.57) | 0.253 |
Daily intake of fruits and vegetables * | ||||||
<5 servings/day | Reference | Reference | Reference | |||
≥5 servings/day | 1.03 (0.77–1.39) | 0.831 | 0.80 (0.51–1.26) | 0.336 | 1.26 (0.84–1.89) | 0.272 |
Exercise | ||||||
No | Reference | Reference | Reference | |||
Yes | 1.13 (0.92–1.38) | 0.246 | 1.10 (0.84–1.44) | 0.507 | 1.07 (0.79–1.45) | 0.654 |
Anthropometrics | ||||||
BMI groups | ||||||
Normal (<25.0 kg/m2) | Reference | Reference | Reference | |||
Overweight/obesity (≥25.0 kg/m2) | 2.269 (1.814–2.838) | <0.001 | 2.37 (1.73–3.24) | <0.001 | 2.08 (1.50–2.86) | <0.001 |
Abdominal Obesity † | ||||||
Normal | Reference | Reference | Reference | |||
Abdominal obesity | 2.10 (1.71–2.56) | <0.001 | 2.53 (1.89–3.38) | <0.001 | 1.92 (1.44–2.56) | <0.001 |
Variables | Overall (N = 2203) | Women (N = 1285) | Men (N = 918) | |||
---|---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Age groups | ||||||
18–44 | Reference | Reference | Reference | |||
45–59 | 3.99 (3.01–5.30) | <0.001 | 6.80 (4.02–11.49) | <0.001 | 2.67 (1.85–3.87) | <0.001 |
60–69 | 8.37 (6.06–11.55) | <0.001 | 12.41 (7.16–21.52) | <0.001 | 5.92 (3.41–10.28) | <0.001 |
Gender | ||||||
Women | Reference | |||||
Men | 2.32 (1.85–2.91) | <0.001 | ||||
Marital status | ||||||
Never married | Reference | |||||
Ever married | 1.05 (0.52–2.12) | 0.893 | ||||
Education | ||||||
Elementary school or below | Reference | Reference | ||||
Secondary school | 1.26 (0.92–1.72) | 0.147 | 1.09 (0.65–1.84) | 0.734 | ||
High school and above | 1.06 (0.78–1.44) | 0.700 | 0.92 (0.55–1.52) | 0.738 | ||
Occupation | ||||||
Retirement | Reference | |||||
Officers/Workers/Traders | 0.69 (0.39–1.21) | 0.191 | ||||
Others | 0.88 (0.52–1.48) | 0.620 | ||||
Monthly income | ||||||
Below poverty line | Reference | Reference | Reference | |||
Above poverty line | 0.80 (0.62–1.03) | 0.080 | 0.64 (0.46–0.89) | 0.008 | 1.17 (0.77–1.77) | 0.459 |
Diabetes comorbidity | ||||||
No | Reference | Reference | Reference | |||
Yes | 2.72 (1.85–4.00) | <0.001 | 2.98 (1.81–4.91) | <0.001 | 2.25 (1.21–4.18) | 0.010 |
Health behaviors | ||||||
Smoking tobacco | ||||||
No | Reference | |||||
Yes | 1.38 (1.01–1.90) | 0.046 | ||||
Consuming added salts | ||||||
No | Reference | Reference | ||||
Yes | 1.66 (1.33–2.07) | <0.001 | 1.80 (1.32–2.45) | <0.001 | ||
Anthropometrics | ||||||
BMI groups | ||||||
Normal (<25.0 kg/m2) | Reference | Reference | Reference | |||
Overweight/obesity (≥25.0 kg/m2) | 1.90 (1.48–2.44) | <0.001 | 1.64 (1.16–2.33) | 0.005 | 2.18 (1.52–3.13) | <0.001 |
Abdominal Obesity * | ||||||
Normal | Reference | Reference | Reference | |||
Abdominal obesity | 1.71 (1.36–2.15) | <0.001 | 2.07 (1.49–2.87) | <0.001 | 1.27 (0.92–1.76) | 0.142 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quoc Cuong, T.; Van Bao, L.; Anh Tuan, N.; Van Thang, V.; Minh Quan, N.; Yang, S.-H.; Duong, T.V. Associated Factors of Hypertension in Women and Men in Vietnam: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2019, 16, 4714. https://doi.org/10.3390/ijerph16234714
Quoc Cuong T, Van Bao L, Anh Tuan N, Van Thang V, Minh Quan N, Yang S-H, Duong TV. Associated Factors of Hypertension in Women and Men in Vietnam: A Cross-Sectional Study. International Journal of Environmental Research and Public Health. 2019; 16(23):4714. https://doi.org/10.3390/ijerph16234714
Chicago/Turabian StyleQuoc Cuong, Tran, Le Van Bao, Nguyen Anh Tuan, Vo Van Thang, Nguyen Minh Quan, Shwu-Huey Yang, and Tuyen Van Duong. 2019. "Associated Factors of Hypertension in Women and Men in Vietnam: A Cross-Sectional Study" International Journal of Environmental Research and Public Health 16, no. 23: 4714. https://doi.org/10.3390/ijerph16234714
APA StyleQuoc Cuong, T., Van Bao, L., Anh Tuan, N., Van Thang, V., Minh Quan, N., Yang, S. -H., & Duong, T. V. (2019). Associated Factors of Hypertension in Women and Men in Vietnam: A Cross-Sectional Study. International Journal of Environmental Research and Public Health, 16(23), 4714. https://doi.org/10.3390/ijerph16234714