The State-of-the Art of Environmental Toxicogenomics: Challenges and Perspectives of “Omics” Approaches Directed to Toxicant Mixtures
Abstract
:1. Introduction
2. What Are “Omics”?
3. Genomics and Epigenomics
4. Transcriptomics
5. Proteomics
6. Metabolomics and Lipidomics
7. Multi-Omics
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
2DE | Two-dimensional gel electrophoresis |
Ahr | Aryl hydrocarbon receptor |
AOP | Adverse outcome pathway |
DEG | Differentially expressed gene |
EDA | Effects-direct analysis |
EDC | Endocrine disruptor compound |
ERA | Environmental risk assessment |
GC-MS | Gas-chromatography mass spectrometry |
GWAS | Genome-wide association studies |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
MOA | Mode-of-action |
MS | Mass spectrometry |
NGS | Next-generation sequencing |
NMR | Nuclear magnetic resonance |
PAH | Polycyclic aromatic hydrocarbon |
PCB | Polychlorinated biphenyl |
qRT-PCR | Quantitative (real time) reverse-transcription polymerase chain reaction |
RNA-Seq | Next-generation whole-transcriptome RNA sequencing |
SNP | Single-nucleotide polymorphism. |
References
- Harada, M. Minamata disease: Methylmercury poisoning in Japan caused by environmental pollution. Crit. Rev. Toxicol. 1995, 25, 1–24. [Google Scholar] [CrossRef]
- Doll, R. Mortality from lung cancer in asbestos workers. Br. J. Ind. Med. 1955, 12, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Hernández, A.F.; Gil, F.; Lacasaña, M. Toxicological interactions of pesticide mixtures: An update. Arch. Toxicol. 2017, 91, 3211–3223. [Google Scholar] [CrossRef] [PubMed]
- Allan, S.E.; Smith, B.W.; Tanguay, R.L.; Anderson, K.A. Bridging environmental mixtures and toxic effects. Environ. Toxicol. Chem. 2012, 31, 2877–2887. [Google Scholar] [CrossRef] [PubMed]
- Perkins, J.T.; Petriello, M.C.; Xu, L.; Stromberg, A.; Hennig, B. An open-sourced statistical application for identifying complex toxicological interactions of environmental pollutants. Rev. Environ. Health 2017, 32, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Kar, S.; Leszczynski, J. Exploration of computational approaches to predict the toxicity of chemical mixtures. Toxics 2019, 7, 15. [Google Scholar] [CrossRef]
- Macdonald, D.D.; Carr, R.S.; Calder, F.D.; Long, E.R.; Ingersoll, C.G. Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology 1996, 5, 253–278. [Google Scholar] [CrossRef]
- Franzellitti, S.; Buratti, S.; Valbonesi, P.; Fabbri, E. The mode of action MOA approach reveals interactive effects of environmental pharmaceuticals on Mytilus galloprovincialis. Aquat. Toxicol. 2013, 140–141, 249–256. [Google Scholar] [CrossRef]
- Kienzler, A.; Bopp, S.K.; van der Linden, S.; Berggren, E.; Worth, A. Regulatory assessment of chemical mixtures: Requirements, current approaches and future perspectives. Regul. Toxicol. Pharmacol. 2016, 80, 321–334. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, M.; Borlak, J.; Tong, W. A decade of toxicogenomic research and its contribution to toxicological science. Toxicol. Sci. 2012, 130, 217–228. [Google Scholar] [CrossRef]
- Schmidt, C.W. Toxicogenomics: An emerging discipline. Environ. Health Perspect. 2002, 110, A750–A755. [Google Scholar] [CrossRef] [PubMed]
- Hood, L.; Heath, J.R.; Phelps, M.E.; Lin, B. Systems biology and new technologies enable predictive and preventative medicine. Science 2004, 306, 640–643. [Google Scholar] [CrossRef] [PubMed]
- Ankley, G.T.; Bennett, R.S.; Erickson, R.J.; Hoff, D.J.; Hornung, M.W.; Johnson, R.D.; Mount, D.R.; Nichols, J.W.; Russom, C.L.; Schmieder, P.K.; et al. Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment. Environ. Toxicol. Chem. 2010, 29, 730–741. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.M.; Fadeel, B. Emerging systems biology approaches in nanotoxicology: Towards a mechanism-based understanding of nanomaterial hazard and risk. Toxicol. Appl. Pharmacol. 2016, 299, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Oziolor, E.M.; Bickham, J.W.; Matson, C.W. Evolutionary toxicology in an omics world. Evol. Appl. 2017, 10, 752–761. [Google Scholar] [CrossRef]
- Altenburger, R.; Scholz, S.; Schmitt-Jansen, M.; Busch, W.; Escher, B.I. Mixture toxicity revisited from a toxicogenomic perspective. Environ. Sci. Technol. 2012, 46, 2508–2522. [Google Scholar] [CrossRef]
- Simbürger, J.M.B.; Dettmer, K.; Oefner, P.J.; Reinders, J. Optimizing the SWATH-MS-workflow for label-free proteomics. J. Proteomics 2016, 145, 137–140. [Google Scholar] [CrossRef]
- Vidova, V.; Spacil, Z. A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition. Anal. Chim. Acta 2017, 964, 7–23. [Google Scholar] [CrossRef]
- Kernaleguen, M.; Daviaud, C.; Shen, Y.; Bonnet, E.; Renault, V.; Deleuze, J.-F.; Mauger, F.; Tost, J. Whole-genome bisulfite sequencing for the analysis of genome-wide DNA methylation and hydroxymethylation patterns at single-nucleotide resolution. In Epigenome Editing: Methods and Protocols, Methods in Molecular Biology 1767; Jeltsch, A., Rots, M.G., Eds.; Humana Press: Totowa, NJ, USA, 2018; pp. 311–350. [Google Scholar] [CrossRef]
- Basu, A.K. DNA damage, mutagenesis and cancer. Int. J. Mol. Sci. 2018, 19, 970. [Google Scholar] [CrossRef]
- Giacomini, K.M.; Yee, S.W.; Mushiroda, T.; Weinshilboum, R.M.; Ratain, M.J.; Kubo, M. Genome-wide association studies of drug response and toxicity: An oportunity for genome medicine. Nat. Rev. Drug Discov. 2017, 16, 1–8. [Google Scholar] [CrossRef]
- Olden, K.; Guthrie, J. Genomics: Implications for toxicology. Mutat. Res. 2001, 473, 3–10. [Google Scholar] [CrossRef]
- Prokopec, S.D.; Lu, A.; Lee, S.C.S.; Yao, C.Q.; Sun, R.X.; Watson, J.D.; Soliymani, R.; de Borja, R.; Wong, A.; Sam, M.; et al. Comparative toxicoproteogenomics of mouse and rat liver identifies TCDD-resistance genes. Arch. Toxicol. 2019, 93, 2961–2978. [Google Scholar] [CrossRef] [PubMed]
- Maslov, A.Y.; Quispe-Tintaya, W.; Gorbacheva, T.; White, R.R.; Vijg, J. High-throughput sequencing in mutation detection: a new generation of genotoxicity tests? Mutat. Res. 2015, 776, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Pan, B.; Chen, T. Evaluation of chemical mutagenicity using next generation sequencing: A review. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev. 2017, 35, 140–158. [Google Scholar] [CrossRef] [PubMed]
- Sloan, D.B.; Broz, A.K.; Sharbrough, J.; Wu, Z. Detecting rare mutations and DNA damage with sequencing-based methods. Trends Biotechnol. 2018, 36, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Wamucho, A.; Unrine, J.M.; Kieran, T.J.; Glenn, T.C.; Schultz, C.L.; Farman, M.; Svendsen, C.; Spurgeon, D.J.; Tsyusko, O.V. Genomic mutations after multigenerational exposure of Caenorhabditis elegans to pristine and sulfidized silver nanoparticles. Environ. Pollut. 2019, 254, 113078. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, S.; Fujita, Y.; Yamane, M.; Morita, O.; Honda, H. A genome-wide mutation analysis method enabling high-throughput identification of chemical mutagen signatures. Sci. Rep. 2018, 8, 9583. [Google Scholar] [CrossRef]
- Duca, R.-C.; Grova, N.; Ghosh, M.; Do, J.-M.; Hoet, P.H.M.; Vanoirbeek, J.A.J.; Appenzeller, B.M.R.; Godderis, L. Exposure to polycyclic aromatic hydrocarbons leads to non-monotonic modulation of DNA and RNA hydroxymethylation in a rat model. Sci. Rep. 2018, 8, 10577. [Google Scholar] [CrossRef]
- Marczylo, E.L.; Jacobs, M.N.; Gant, T.W. Environmentally induced epigenetic toxicity: Potential public health concerns. Crit. Rev. Toxicol. 2016, 46, 676–700. [Google Scholar] [CrossRef]
- Ding, R.; Jin, Y.; Liu, X.; Zhu, Z.; Zhang, Y.; Wang, T.; Xu, Y. Characteristics of DNA methylation changes induced by traffic-related air pollution. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2016, 796, 46–53. [Google Scholar] [CrossRef]
- Desaulniers, D.; Xiao, G.-H.; Lian, H.; Feng, Y.-L.; Zhu, J.; Nakai, J.; Bowers, W.J. Effects of mixtures of polychlorinated biphenyls, methylmercury, and organochlorine pesticides on hepatic DNA methylation in prepubertal female sprague-dawley rats. Int. J. Toxicol. 2009, 28, 294–307. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.S.; Van Vleet, T.R.; Ciurlionis, R.; Buck, W.R.; Mittelstadt, S.W.; Blomme, E.A.G.; Liguori, M.J. Comparison of RNA-Seq and microarray gene expression platforms for the toxicogenomic evaluation of liver from short-term rat toxicity studies. Front. Genet. 2019, 9, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evrard, E.; Marchand, J.; Theron, M.; Pichavant-Rafini, K.; Durand, G.; Quiniou, L.; Laroche, J. Impacts of mixtures of herbicides on molecular and physiological responses of the European flounder Platichthys flesus. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2010, 152, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Søfteland, L.; Kirwan, J.A.; Hori, T.S.F.; Størseth, T.R.; Sommer, U.; Berntssen, M.H.G.; Viant, M.R.; Rise, M.L.; Waagbø, R.; Torstensen, B.E.; et al. Toxicological effect of single contaminants and contaminant mixtures associated with plant ingredients in novel salmon feeds. Food Chem. Toxicol. 2014, 73, 157–174. [Google Scholar] [CrossRef] [PubMed]
- Tilton, S.C.; Siddens, L.K.; Krueger, S.K.; Larkin, A.J.; Löhr, C.V.; Williams, D.E.; Baird, W.M.; Waters, K.M. Mechanism-based classification of PAH mixtures to predict carcinogenic potential. Toxicol. Sci. 2015, 146, 135–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, L.K.; Halvorsen, E.; Song, Y.; Hallanger, I.G.; Hansen, E.L.; Brooks, S.J.; Hansen, B.H.; Tollefsen, K.E. Individual and molecular level effects of produced water contaminants on nauplii and adult females of Calanus finmarchicus. J. Toxicol. Environ. Health Part A 2016, 79, 585–601. [Google Scholar] [CrossRef]
- Costa, P.M.; Gosens, I.; Williams, A.; Farcal, L.; Pantano, D.; Brown, D.M.; Stone, V.; Cassee, F.R.; Halappanavar, S.; Fadeel, B. Transcriptional profiling reveals gene expression changes associated with inflammation and cell proliferation following short-term inhalation exposure to copper oxide nanoparticles. J. Appl. Toxicol. 2018, 38, 385–397. [Google Scholar] [CrossRef]
- Zare, A.; Henry, D.; Chua, G.; Gordon, P.; Habibi, H.R. Differential hepatic gene expression profile of male fathead minnows exposed to daily varying dose of environmental contaminants individually and in mixture. Front. Endocrinol. 2018, 9, 749. [Google Scholar] [CrossRef]
- Lichtensteiger, W.; Bassetti-Gaille, C.; Faass, O.; Axelstad, M.; Boberg, J.; Christiansen, S.; Rehrauer, H.; Georgijevic, J.K.; Hass, U.; Kortenkamp, A.; et al. Differential gene expression patterns in developing sexually dimorphic rat brain regions exposed to antiandrogenic, estrogenic, or complex endocrine disruptor mixtures: Glutamatergic synapses as target. Endocrinology 2015, 156, 1477–1493. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Pacheco, M.; Hidalgo-Miranda, A.; Romero-Córdoba, S.; Valverde, M.; Rojas, E. mRNA and miRNA expression patterns associated to pathways linked to metal mixture health effects. Gene 2014, 533, 508–514. [Google Scholar] [CrossRef]
- Curtis, L.R.; Bravo, C.F.; Bayne, C.J.; Tilton, F.; Arkoosh, M.R.; Lambertini, E.; Loge, F.J.; Collier, T.K.; Meador, J.P.; Tilton, S.C. Transcriptional changes in innate immunity genes in head kidneys from Aeromonas salmonicida challenged rainbow trout fed a mixture of polycyclic aromatic hydrocarbons. Ecotoxicol. Environ. Saf. 2017, 142, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Ezerskyte, M.; Paredes, J.A.; Malvezzi, S.; Burns, J.A.; Margison, G.P.; Olsson, M.; Scicchitano, D.A.; Dreij, K. O6-methylguanine-induced transcriptional mutagenesis reduces p53 tumor-suppressor function. Proc. Natl. Acad. Sci. USA 2018, 115, 4731–4736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ihaka, R.; Gentleman, R. R: A Language for Data Analysis and Graphics. J. Comput. Graph. Stat. 1996, 5, 299–314. [Google Scholar] [CrossRef]
- McCarthy, D.J.; Chen, Y.; Smyth, G.K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012, 40, 4288–4297. [Google Scholar] [CrossRef] [Green Version]
- Yadetie, F.; Zhang, X.; Hanna, E.M.; Aranguren-Abadía, L.; Eide, M.; Blaser, N.; Brun, M.; Jonassen, I.; Goksøyr, A.; Karlsen, O.A. RNA-Seq analysis of transcriptome responses in Atlantic cod Gadus morhua precision-cut liver slices exposed to benzo[a]pyrene and 17Α-ethynylestradiol. Aquat. Toxicol. 2018, 201, 174–186. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015, 43, D447–D452. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Santos, A.; Von Mering, C.; Jensen, L.J.; Bork, P.; Kuhn, M. STITCH 5: Augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 2016, 44, D380–D384. [Google Scholar] [CrossRef]
- Chen, H.; Feng, W.; Chen, K.; Qiu, X.; Xu, H.; Mao, G.; Zhao, T.; Ding, Y.; Wu, X. Transcriptomic analysis reveals potential mechanisms of toxicity in a combined exposure to dibutyl phthalate and diisobutyl phthalate in zebrafish Danio rerio ovary. Aquat. Toxicol. 2019, 216, 105290. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. Data, information, knowledge and principle: Back to metabolism in KEGG. Nucleic Acids Res. 2014, 42, D199–D205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, R.D., III; Dhammi, A.; Wallace, A.; Hodgson, E.; Roe, R.M. Impact of environmental chemicals on the transcriptome of primary human hepatocytes: Potential for Health Effects. J. Biochem. Mol. Toxicol. 2016, 30, 375–394. [Google Scholar] [CrossRef] [PubMed]
- Titz, B.; Elamin, A.; Martin, F.; Schneider, T.; Dijon, S.; Ivanov, N.V.; Hoeng, J.; Peitsch, M.C. Proteomics for systems toxicology. Comput. Struct. Biotechnol. J. 2014, 11, 73–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero-Ruiz, A.; Carrascal, M.; Alhama, J.; Gómez-Ariza, J.L.; Abian, J.; López-Barea, J. Utility of proteomics to assess pollutant response of clams from the Doñana bank of Guadalquivir Estuary SW Spain. Proteomics 2006, 6, S245–S255. [Google Scholar] [CrossRef]
- Costa, P.M.; Chicano-Gálvez, E.; Caeiro, S.; Lobo, J.; Martins, M.; Ferreira, A.M.; Caetano, M.; Vale, C.; Alhama-Carmona, J.; Lopez-Barea, J.; et al. Hepatic proteome changes in Solea senegalensis exposed to contaminated estuarine sediments: A laboratory and in situ survey. Ecotoxicology 2012, 21, 1194–1207. [Google Scholar] [CrossRef]
- Costa, P.M.; Chicano-Gálvez, E.; López Barea, J.; Delvalls, T.A.; Costa, M.H. Alterations to proteome and tissue recovery responses in fish liver caused by a short-term combination treatment with cadmium and benzo[a]pyrene. Environ. Pollut. 2010, 158, 3338–3346. [Google Scholar] [CrossRef]
- Maria, V.L.; Gomes, T.; Barreira, L.; Bebianno, M.J. Impact of benzoapyrene, Cu and their mixture on the proteomic response of Mytilus galloprovincialis. Aquat. Toxicol. 2013, 144–145, 284–295. [Google Scholar] [CrossRef]
- Galland, C.; Dupuy, C.; Loizeau, V.; Danion, M.; Auffret, M.; Quiniou, L.; Laroche, J.; Pichereau, V. Proteomic analysis of the European flounder Platichthys flesus response to experimental PAH-PCB contamination. Mar. Pollut. Bull. 2015, 95, 646–657. [Google Scholar] [CrossRef]
- Hooven, L.A.; Baird, W.M. Proteomic analysis of MCF-7 cells treated with benzo[a]pyrene, dibenzo[a,l]pyrene, coal tar extract, and diesel exhaust extract. Toxicology 2008, 249, 1–10. [Google Scholar] [CrossRef]
- Yin, X.; Wang, H.; Zhang, Y.; Dahlgren, R.A.; Zhang, H.; Shi, M.; Gao, M.; Wang, X. Toxicological assessment of trace β-diketone antibiotic mixtures on zebrafish Danio rerio by proteomic analysis. PLoS ONE 2014, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Robertson, D.G. Metabonomics in toxicology: A review. Toxicol. Sci. 2005, 85, 809–822. [Google Scholar] [CrossRef] [PubMed]
- Jordan, J.; Zare, A.; Jackson, L.J.; Habibi, H.R.; Weljie, A.M. Environmental contaminant mixtures at ambient concentrations invoke a metabolic stress response in goldfish not predicted from exposure to individual compounds alone. J. Proteome Res. 2012, 11, 1133–1143. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wang, W.X. NMR-based metabolomic studies on the toxicological effects of cadmium and copper on green mussels Perna viridis. Aquat. Toxicol. 2010, 100, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Melvin, S.D.; Habener, L.J.; Leusch, F.D.L.; Carroll, A.R. 1H NMR-based metabolomics reveals sub-lethal toxicity of a mixture of diabetic and lipid-regulating pharmaceuticals on amphibian larvae. Aquat. Toxicol. 2017, 184, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.Y.; Wang, P.; Sun, Y.J.; Wu, Y.J. Metabolomic analysis for combined hepatotoxicity of chlorpyrifos and cadmium in rats. Toxicology 2017, 384, 50–58. [Google Scholar] [CrossRef]
- David, A.; Lange, A.; Abdul-Sada, A.; Tyler, C.R.; Hill, E.M. Disruption of the prostaglandin Mmtabolome and characterization of the pharmaceutical exposome in fish exposed to wastewater treatment works effluent as revealed by nanoflow-nanospray Mass spectrometry-based metabolomics. Environ. Sci. Technol. 2017, 51, 616–624. [Google Scholar] [CrossRef]
- Tufi, S.; Wassenaar, P.N.H.; Osorio, V.; De Boer, J.; Leonards, P.E.G.; Lamoree, M.H. Pesticide mixture toxicity in surface water extracts in Snails Lymnaea stagnalis by an in vitro acetylcholinesterase inhibition assay and metabolomics. Environ. Sci. Technol. 2016, 50, 3937–3944. [Google Scholar] [CrossRef]
- Chiappini, F.; Coilly, A.; Kadar, H.; Gual, P.; Tran, A.; Desterke, C.; Samuel, D.; Duclos-Vallée, J.-C.; Touboul, D.; Bertrand-Michel, J.; et al. Metabolism dysregulation induces a specific lipid signature of nonalcoholic steatohepatitis in patients. Sci. Rep. 2017, 7, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Phillips, B.; Titz, B.; Kogel, U.; Sharma, D.; Leroy, P.; Xiang, Y.; Vuillaume, G.; Lebrun, S.; Sciuscio, D.; Ho, J.; et al. Toxicity of the main electronic cigarette components, propylene glycol, glycerin, and nicotine, in Sprague-Dawley rats in a 90-day OECD inhalation study complemented by molecular endpoints. Food Chem. Toxicol. 2017, 109, 315–332. [Google Scholar] [CrossRef]
- Borgert, C.J. Predicting interactions from mechanistic information: Can omic data validate theories? Toxicol. Appl. Pharmacol. 2007, 223, 114–120. [Google Scholar] [CrossRef]
- Song, Q.; Chen, H.; Li, Y.; Zhou, H.; Han, Q.; Diao, X. Toxicological effects of benzoapyrene, DDT and their mixture on the green mussel Perna viridis revealed by proteomic and metabolomic approaches. Chemosphere 2016, 144, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Zhou, H.; Han, Q.; Diao, X. Toxic responses of Perna viridis hepatopancreas exposed to DDT, benzoapyrene and their mixture uncovered by iTRAQ-based proteomics and NMR-based metabolomics. Aquat. Toxicol. 2017, 192, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.D.; Davies, I.M.; Wu, H.; Diab, A.M.; Webster, L.; Viant, M.R.; Chipman, J.K.; Leaver, M.J.; George, S.G.; Moffat, C.F.; et al. Molecular responses of European flounder Platichthys flesus chronically exposed to contaminated estuarine sediments. Chemosphere 2014, 108, 152–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandenbrouck, T.; Soetaert, A.; van der Ven, K.; Blust, R.; De Coen, W. Nickel and binary metal mixture responses in Daphnia magna: Molecular fingerprints and suborganismal effects. Aquat. Toxicol. 2009, 92, 18–29. [Google Scholar] [CrossRef]
- Dondero, F.; Negri, A.; Boatti, L.; Marsano, F.; Mignone, F.; Viarengo, A. Transcriptomic and proteomic effects of a neonicotinoid insecticide mixture in the marine mussel Mytilus galloprovincialis, Lam. Sci. Total Environ. 2010, 408, 3775–3786. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, K.; Deng, Y.; Zhao, Y.; Wu, B.; Xu, K.; Ren, H. Evaluation of the toxic effects of municipal wastewater effluent on mice using omic approaches. Environ. Sci. Technol. 2013, 47, 9470–9477. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, Y.; Zhao, Y.; Ren, H. Using combined bio-omics methods to evaluate the complicated toxic effects of mixed chemical wastewater and its treated effluent. J. Hazard. Mater. 2014, 272, 52–58. [Google Scholar] [CrossRef]
- Seeger, B.; Mentz, A.; Knebel, C.; Schmidt, F.; Bednarz, H.; Niehaus, K.; Albaum, S.; Kalinowski, J.; Noll, T.; Steinberg, P.; et al. Assessment of mixture toxicity of triazoles and their hepatotoxic effects in vitro by means of omics technologies. Arch. Toxicol. 2019, 93, 2321–2333. [Google Scholar] [CrossRef] [Green Version]
“Omics” | Toxicants | Model | Organ/Tissue | Exposure | Exposure Range | Molecular Alterations | Reference |
---|---|---|---|---|---|---|---|
Transcriptomics (microarray) Metabolomics (NMR, GC-MS) | Ni, Cd, Pb | Daphnia magna | Whole-body | 96 h | Ni2+ (0.5 mg/L), Pb2+ (0.5 mg/L), Cd2+ (0.05 mg/L) | Genes involved in carbohydrate catabolic processes and proteolysis; genes coding for: mannanase precursor, chymotrypsin-like serine proteases, cellulases, carboxypeptidase, amylase. | Vandenbrouck et al. [75] |
Transcriptomics (microarray) Proteomics (2DE, MS) | Imidacloprid, thiacloprid | Mytilus galloprovincialis | Digestive gland | 4 days | 0.1 mg/L; 1 mg/L; 10 mg/L | Protein polymerization; microtubule based movement, and GTPase activity. | Dondero et al. [76] |
Transcriptomics (microarray) Metabolomics (NMR) | Wastewater effluents: semi volatile organic compounds | Mus musculus | Liver, blood serum and urine | 90 days | - | Alterations of lipid, nucleotide, amino acid, and energy metabolism. Disruption of signal transduction processes, hepatotoxicity- and nephrotoxicity-related pathways. | Zhang et al. [77] |
Transcriptomics (microarray) Metabolomics (NMR) | Marine sediments: metals, PAHs, organochlorines, butyltins | Platichthys flesus | Blood, liver | 7 months | - | Xenobiotic metabolism, immune response and apoptosis. | Williams et al. [74] |
Transcriptomics (microarray) Metabolomics (NMR) Lipidomics (FT-ICR 1 MS) | Benzo(a)pyrene, phenanthrene, Chlorpyrifos, endosulfan | Hepatocytes (Salmo salar) | - | 24 h | 1 µM, 50.5 µM, 100 µM | Suppression of unsaturated fatty acids and steroid biosynthesis. Alterations in linoleic acid metabolism. | Søfteland et al. [35] |
Transcriptomics (RNA-seq) Metabolomics (NMR) | Wastewater: PAHs, PAEs, OCCs | Mus musculus | Liver and blood serum | 90 days | 0.1 to 2 ng/L | Molecular pathways related to lipid metabolism and hepatotoxicity | Zhang et al. [78] |
Proteomics (2DE, MS/MS) Metabolomics (NMR) | DDT, Benzo(a)pyrene | Perna viridis | Gills | 7 days | 10 μg/L | Impact on of proteins related to oxidative stress, cytoskeleton and cell structure, protein biosynthesis and modification, energy metabolism, cell growth and apoptosis. | Song et al. [72] |
Proteomics (RPLC 1– MS/MS) Metabolomics (NMR) | DDT, Benzo(a)pyrene | Perna viridis | Digestive gland | 7 days | 10 µg/L | Effects on proteins related to cytoskeleton, gene expression, energy balance, reproduction, development, stress response, signal transduction and apoptosis. | Song et al. [73] |
Transcriptomics (microarray) Metabolomics (GC-MS) | (Tri)azoles | Primary hepatocytes (human and rat) | - | 24 h | µM range | Activation of pathways related to drug and porphyrin metabolism, peroxisome proliferator-activated receptor (PPAR) signaling pathway and others. | Seeger et al. [79] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, C.; Dreij, K.; Costa, P.M. The State-of-the Art of Environmental Toxicogenomics: Challenges and Perspectives of “Omics” Approaches Directed to Toxicant Mixtures. Int. J. Environ. Res. Public Health 2019, 16, 4718. https://doi.org/10.3390/ijerph16234718
Martins C, Dreij K, Costa PM. The State-of-the Art of Environmental Toxicogenomics: Challenges and Perspectives of “Omics” Approaches Directed to Toxicant Mixtures. International Journal of Environmental Research and Public Health. 2019; 16(23):4718. https://doi.org/10.3390/ijerph16234718
Chicago/Turabian StyleMartins, Carla, Kristian Dreij, and Pedro M. Costa. 2019. "The State-of-the Art of Environmental Toxicogenomics: Challenges and Perspectives of “Omics” Approaches Directed to Toxicant Mixtures" International Journal of Environmental Research and Public Health 16, no. 23: 4718. https://doi.org/10.3390/ijerph16234718
APA StyleMartins, C., Dreij, K., & Costa, P. M. (2019). The State-of-the Art of Environmental Toxicogenomics: Challenges and Perspectives of “Omics” Approaches Directed to Toxicant Mixtures. International Journal of Environmental Research and Public Health, 16(23), 4718. https://doi.org/10.3390/ijerph16234718