Mosquitoes, Infectious Diseases, and Cancer: A Connection to Study?
Abstract
:1. Introduction
2. Hypothesis 1: Infection of Mosquito-Vectored Parasites May Lead to Cancer
3. Hypothesis 2: Cancer Cells May Be Spread Directly through Mosquito Bites
4. Hypothesis 3: Mosquito Bites May Lead to Hypersensitivity, Resulting in Cancer
5. Hypothesis 4: Pathogens Transmitted by Mosquitoes May Be Carcinogenic
6. Conclusions
Perspectives for Future Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Neafsey, D.E.; Waterhouse, R.M.; Abai, M.R.; Aganezov, S.S.; Alekseyev, M.A.; Allen, J.E.; Amon, J.; Arcà, B.; Arensburger, P.; Artemov, G.; et al. Highly evolvable malaria vectors: The genomes of 16 Anopheles mosquitoes. Science 2015, 347, 1258522. [Google Scholar] [CrossRef] [Green Version]
- Duong, V.; Lambrechts, L.; Paul, R.E.; Ly, S.; Lay, R.S.; Long, K.C.; Huy, R.; Tarantola, A.; Scott, T.W.; Sakuntabhai, A.; et al. Asymptomatic humans transmit dengue virus to mosquitoes. Proc. Natl. Acad. Sci. USA 2015, 112, 14688–14693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benelli, G.; Romano, D. Mosquito vectors of Zika virus. Entomol. Gen. 2017, 36, 309–318. [Google Scholar] [CrossRef]
- Pingen, M.; Bryden, S.R.; Pondeville, E.; Schnettler, E.; Kohl, A.; Merits, A.; Fazakerley, J.K.; Graham, G.J.; McKimmie, C.S. Host inflammatory response to mosquito bites enhances the severity of arbovirus infection. Immunity 2016, 44, 1455–1469. [Google Scholar] [CrossRef] [Green Version]
- Ward, M.; Ward, A.; Johansson, O. Does the mosquito have more of a role in certain cancers a than is currently appreciated? The mosquito cocktail hypothesis. Med. Hypotheses 2016, 86, 85–91. [Google Scholar] [CrossRef]
- Benelli, G.; Lo Iacono, A.; Canale, A.; Mehlhorn, H. Mosquito vectors and the spread of cancer: An overlooked connection? Parasitol. Res. 2016, 115, 2131–2137. [Google Scholar] [CrossRef] [Green Version]
- Ward, M.; Benelli, G. Avian and simian malaria: Do they have a cancer connection? Parasitol. Res. 2017, 116, 839–845. [Google Scholar] [CrossRef]
- Ward, M.; Benelli, G. Culiseta annulata—Just a biting nuisance or a deadly foe? Pathog. Glob. Health 2018, 112, 96–100. [Google Scholar] [CrossRef]
- Machicado, C.; Marcos, L.A. Carcinogenesis associated with parasites other than Schistosoma, Opisthorchis and Clonorchis: A systematic review. Int. J. Cancer 2016, 138, 2915–2921. [Google Scholar] [CrossRef]
- Van Tong, H.; Brindley, P.J.; Meyer, C.G.; Velavan, T.P. Parasite infection, carcinogenesis and human malignancy. EBioMedicine 2017, 15, 12–23. [Google Scholar] [CrossRef]
- Faure, E. Puzzling and ambivalent roles of malarial infections in cancer development and progression. Parasitology 2016, 143, 1811–1823. [Google Scholar] [CrossRef] [PubMed]
- Rainey, J.J.; Mwanda, W.O.; Wairiumu, P.; Moormann, A.M.; Wilson, M.L.; Rochford, R. Spatial distribution of Burkitt’s lymphoma in Kenya and association with malaria risk. Trop. Med. Int. Health 2007, 12, 936–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carpenter, L.M.; Newton, R.; Casabonne, D.; Ziegler, J.; Mbulaiteye, S.; Mbidde, E.; Wabinga, H.; Jaffe, H.; Beral, V. Antibodies against malaria and Epstein-Barr virus in childhood Burkitt lymphoma: A case-control study in Uganda. Int. J. Cancer 2008, 122, 1319–1323. [Google Scholar] [CrossRef] [PubMed]
- Mutalima, N.; Molyneux, E.; Jaffe, H.; Kamiza, S.; Borgstein, E.; Mkandawire, N.; Liomba, G.; Batumba, M.; Lagos, D.; Gratrix, F.; et al. Associations between Burkitt lymphoma among children in Malawi and infection with HIV, EBV and malaria: Results from a case-control study. PLoS ONE 2008, 3, e2505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouvard, V.; Baan, R.A.; Grosse, Y.; Lauby-Secretan, B.; El Ghissassi, F.; Benbrahim-Tallaa, L. Carcinogenicity of malaria and of some polyomaviruses. Lancet Oncol. 2012, 13, 339–340. [Google Scholar] [CrossRef]
- Moormann, A.M.; Chelimo, K.; Sumba, O.P.; Lutzke, M.L.; Ploutz-Snyder, R.; Newton, D.; Kazura, J.; Rochford, R. Exposure to holoendemic malaria results in elevated Epstein-Barr virus loads in children. J. Infect. Dis. 2005, 191, 1233–1238. [Google Scholar] [CrossRef] [Green Version]
- Rasti, N.; Falk, K.I.; Donati, D.; Gyan, B.A.; Goka, B.Q.; Troye-Blomberg, M.; Akanmori, B.D.; Kurtzhals, J.A.L.; Dodoo, D.; Consolini, R.; et al. Circulating Epstein-Barr virus in children living in malaria-endemic areas. Scand. J. Immunol. 2005, 61, 461–465. [Google Scholar] [CrossRef]
- Donati, D.; Mok, B.; Chêne, A.; Xu, H.; Thangarajh, M.; Glas, R.; Chen, Q.; Wahlgren, M.; Bejarano, M.T. Increased B cell survival and preferential activation of the memory compartment by a malaria polyclonal B cell activator. J. Immunol. 2006, 177, 3035–3044. [Google Scholar] [CrossRef]
- Moormann, A.M.; Chelimo, K.; Sumba, P.O.; Tisch, D.J.; Rochford, R.; Kazura, J.W. Exposure to holoendemic malaria results in suppression of Epstein-Barr virus-specific T cell immunosurveillance in Kenyan children. J. Infect. Dis. 2007, 195, 799–808. [Google Scholar] [CrossRef] [Green Version]
- Chêne, A.; Donati, D.; Guerreiro-Cacais, A.O.; Levitsky, V.; Chen, Q.; Falk, K.I.; Orem, J.; Kironde, F.; Wahlgren, M.; Bejarano, M.T. A molecular link between malaria and Epstein-Barr virus reactivation. PLoS Pathog. 2007, 3, e80. [Google Scholar] [CrossRef]
- Bouvard, V.; Baan, R.; Straif, K.; Grosse, Y.; Secretan, B.; El Ghissassi, F. A review of human carcinogens—Part B: Biological agents. Lancet Oncol. 2009, 10, 321–322. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. A review of human carcinogens: Biological agents. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; World Health Organization: Lyon, France, 2012; Volume 100, p. 79. [Google Scholar]
- Lehrer, S. Association between malaria incidence and all cancer mortality in fifty U.S. states and the district of Columbia. Anticancer Res. 2010, 30, 1371–1373. [Google Scholar] [PubMed]
- Banfield, W.G.; Woke, P.A.; MacKay, C.M.; Cooper, H.L. Mosquito transmission of a reticulum cell sarcoma of hamsters. Science 1965, 148, 1239–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banfield, W.G.; Woke, P.A.; Mackay, C.M. Mosquito transmission of lymphomas. Cancer 1966, 19, 1333–1336. [Google Scholar] [CrossRef]
- Park, S.; Bahng, S.; Eun, K.K.; Park, S.B.; Sung, Y.K.; Kim, S.J.; Kim, W.S.; Ko, Y.H. Hodgkin’s lymphoma arising in a patient with hypersensitivity to mosquito bites: A case report. J. Clin. Oncol. 2010, 28, e148–e150. [Google Scholar] [CrossRef]
- Asada, H. Hypersensitivity to mosquito bites: A unique pathogenic mechanism linking Epstein-Barr virus infection, allergy and oncogenesis. J. Dermatol. Sci. 2007, 45, 153–160. [Google Scholar] [CrossRef]
- Espina, L.M.; Valero, N.J.; Hernández, J.M.; Mosquera, J.A. Increased apoptosis and expression of tumor necrosis factor-alpha caused by infection of cultured human monocytes with dengue virus. Am. J. Trop. Med. Hyg. 2003, 68, 48–53. [Google Scholar] [CrossRef]
- Yen, Y.T.; Chen, H.C.; Lin, Y.D.; Shieh, C.C.; Wu-Hsieh, B.A. Enhancement by tumor necrosis factor alpha of dengue virus-induced endothelial cell production of reactive nitrogen and oxygen species is key to hemorrhage development. J. Virol. 2008, 82, 12312–12314. [Google Scholar] [CrossRef] [Green Version]
- Kunitomi, A.; Konaka, Y.; Yagita, M. Hypersensitivity to mosquito bites as a potential sign of mantle cell lymphoma. Intern. Med. 2005, 44, 1097–1099. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Manadhar, U.; Zheng, K.P.; Liu, P.; Song, J.Q. A case of nodal marginal zone lymphoma with hypersensitivity to mosquito bites as initial symptom. J. Cutan. Pathol. 2019, 46, 769–774. [Google Scholar] [CrossRef]
- Lehrer, S. Anopheles mosquito transmission of brain tumor. Med. Hypoth. 2010, 74, 167–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, O.; Ward, M. The human immune system’s response to carcinogenic and other infectious agents transmitted by mosquito vectors. Parasitol. Res. 2017, 116, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cholleti, H.; Berg, M.; Hayer, J.; Blomström, A.L. Vector-borne viruses and their detection by viral metagenomics. Infect. Ecol. Epidemiol. 2018, 8, 1553465. [Google Scholar] [CrossRef]
- Wilke, A.B.B.; Beier, J.C.; Benelli, G. Complexity of the relationship between global warming and urbanization—An obscure future for predicting increases in vector-borne infectious diseases. Curr. Opin. Insect Sci. 2019, 35, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Duggan, M.F. Management of arthropod vector data—Social and ecological dynamics facing the One Health perspective. Acta Trop. 2018, 182, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Dantas-Torres, F.; Chomel, B.B.; Otranto, D. Ticks and tick-borne diseases: A One Health perspective. Trends Parasitol. 2012, 28, 437–446. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brisola Marcondes, C.; Benelli, G. Mosquitoes, Infectious Diseases, and Cancer: A Connection to Study? Int. J. Environ. Res. Public Health 2019, 16, 4859. https://doi.org/10.3390/ijerph16234859
Brisola Marcondes C, Benelli G. Mosquitoes, Infectious Diseases, and Cancer: A Connection to Study? International Journal of Environmental Research and Public Health. 2019; 16(23):4859. https://doi.org/10.3390/ijerph16234859
Chicago/Turabian StyleBrisola Marcondes, Carlos, and Giovanni Benelli. 2019. "Mosquitoes, Infectious Diseases, and Cancer: A Connection to Study?" International Journal of Environmental Research and Public Health 16, no. 23: 4859. https://doi.org/10.3390/ijerph16234859
APA StyleBrisola Marcondes, C., & Benelli, G. (2019). Mosquitoes, Infectious Diseases, and Cancer: A Connection to Study? International Journal of Environmental Research and Public Health, 16(23), 4859. https://doi.org/10.3390/ijerph16234859