Control of Contaminant Transport Caused by Open-Air Heavy Metal Slag in Zhehai, Southwest China
Abstract
:1. Introduction
2. Background of the Study Area
2.1. Description of the Study Area
2.2. Stratigraphic Configuration and Hydrogeological Characteristics
2.3. Piezometric Surface and Hydraulic Properties
2.4. Groundwater and soil pollution
3. Materials and Methods
3.1. Mathematical Model and Software
3.2. Model Conceptualization and Discretization
3.3. Model Input Parameters
3.4. Flow Model Calibration
4. Results and Discussion
4.1. Modeling Heavy Metal Pollutant Transport from the Tailings Pond
4.2. Water Budget for the Slag Heap
4.3. Concerning an Integrated Pollution Control System
4.4. In Situ Treatment Forecasting and Bottom Liner Design
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Caritat, P.; Danilova, S.; Jaeger, O.; Reimann, C.; Storro, G. Groundwater composition near the nickel-copper smelting industry on the Kola Peninsula, central Barents Region (NW Russia and NE Norway). J. Hydrol. 1998, 208, 92–107. [Google Scholar] [CrossRef]
- Wurl, J.; Mendez-Rodriguez, L.; Acosta-Vargas, B. Arsenic content in groundwater from the southern part of the San Antonio-El Triunfo mining district, Baja California Sur, Mexico. J. Hydrol. 2014, 518, 447–459. [Google Scholar] [CrossRef]
- Gong, X.; Chen, Z.H.; Luo, Z.H. Spatial distribution, temporal variation, and sources of heavy metal pollution in groundwater of a century-old nonferrous metal mining and smelting area in China. Environ. Monit. Assess. 2014, 186, 9101–9116. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.N.; Hou, D.Y.; Zhang, J.L.; O’Connor, D.; Li, G.H.; Cu, Q.B.; Li, S.P.; Liu, P. Environmental and socio-economic sustainability appraisal of contaminated land remediation strategies: A case study at a mega-site in China. Sci. Total Environ. 2018, 610, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Hesham, A.E.L.; Qiao, M.; Rehman, S.; He, J.Z. Effects of Cd and Pb on soil microbial community structure and activities. Environ. Sci. Pollut. Res. 2010, 17, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Tosco, T.; Papini, M.P.; Viggi, C.C.; Sethi, R. Nanoscale zerovalent iron particles for groundwater remediation: A review. J. Clean. Prod. 2014, 77, 10–21. [Google Scholar] [CrossRef]
- Tedoldi, D.; Chebbo, G.; Pierlot, D.; Branchu, P.; Kovacs, Y.; Gromaire, M.C. Spatial distribution of heavy metals in the surface soil of source-control stormwater infiltration devices—Inter-site comparison. Sci. Total Environ. 2017, 579, 881–892. [Google Scholar] [CrossRef] [PubMed]
- ElFadel, M.; Findikakis, A.N.; Leckie, J.O. Environmental impacts of solid waste landfilling. J. Environ. Manag. 1997, 50, 1–25. [Google Scholar] [CrossRef]
- Monna, F.; Petit, C.; Guillaumet, J.P.; Jouffroy-Bapicot, I.; Blanchot, C.; Dominik, J.; Losno, R.; Richard, H.; Leveque, J.; Chateau, C. History and environmental impact of mining activity in Celtic Aeduan territory recorded in a peat bog (Morvan, France). Environ. Sci. Technol 2004, 38, 665–673. [Google Scholar] [CrossRef]
- Al Yaqout, A.F. Assessment and analysis of industrial liquid waste and sludge disposal at unlined landfill sites in arid climate. Waste Manag. 2003, 23, 817–824. [Google Scholar] [CrossRef]
- Blake, W.H.; Walsh, R.P.D.; Barnsley, M.J.; Palmer, G.; Dyrynda, P.; James, J.G. Heavy metal concentrations during storm events in a rehabilitated industrialized catchment. Hydrol. Process. 2003, 17, 1923–1939. [Google Scholar] [CrossRef]
- Roychowdhury, T.; Tokunaga, H.; Ando, M. Survey of arsenic and other heavy metals in food composites and drinking water and estimation of dietary intake by the villagers from an arsenic-affected area of West Bengal, India. Sci. Total Environ. 2003, 308, 15–35. [Google Scholar] [CrossRef]
- Coynel, A.; Schafer, J.; Dabrin, A.; Girardot, N.; Blanc, G. Groundwater contributions to metal transport in a small river affected by mining and smelting waste. Water Res. 2007, 41, 3420–3428. [Google Scholar] [CrossRef] [PubMed]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of heavy metal(loid)s contaminated soils—To mobilize or to immobilize? J. Hazard. Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef] [PubMed]
- Wojcik, M.; Sugier, P.; Siebielec, G. Metal accumulation strategies in plants spontaneously inhabiting Zn-Pb waste deposits. Sci. Total Environ. 2014, 487, 313–322. [Google Scholar] [CrossRef]
- Gomes, H.I.; Dias-Ferreira, C.; Ribeiro, A.B. Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. Sci. Total Environ. 2013, 445, 237–260. [Google Scholar] [CrossRef] [PubMed]
- Khalid, S.; Shahid, M.; Niazi, N.K.; Murtaza, B.; Bibi, I.; Dumat, C. A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor. 2017, 182, 247–268. [Google Scholar] [CrossRef] [Green Version]
- Beames, A.; Broekx, S.; Lookman, R.; Touchant, K.; Seuntjens, P. Sustainability appraisal tools for soil and groundwater remediation: How is the choice of remediation alternative influenced by different sets of sustainability indicators and tool structures? Sci. Total Environ. 2014, 470, 954–966. [Google Scholar] [CrossRef]
- Yeung, A.T. Geochemical Processes Affecting Electrochemical Remediation. In Electrochemical Remediation Technologies for Polluted Soils, Sediments and Groundwater; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 65–94. [Google Scholar]
- O’Connor, D.; Peng, T.Y.; Zhang, J.L.; Tsang, D.C.W.; Alessi, D.S.; Shen, Z.T.; Bolan, N.S.; Hou, D.Y. Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Sci. Total Environ. 2018, 619, 815–826. [Google Scholar] [CrossRef]
- Moraci, N.; Calabro, P.S. Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers. J. Environ. Manag. 2010, 91, 2336–2341. [Google Scholar] [CrossRef]
- Wang, S.; Mulligan, C.N. Occurrence of arsenic contamination in Canada: Sources, behavior and distribution. Sci. Total Environ. 2006, 366, 701–721. [Google Scholar] [CrossRef] [PubMed]
- Soga, K.; Page, J.W.E.; Illangasekare, T.H. A review of NAPL source zone remediation efficiency and the mass flux approach. J. Hazard. Mater. 2004, 110, 13–27. [Google Scholar] [CrossRef]
- Fu, F.L.; Dionysiou, D.D.; Liu, H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J. Hazard. Mater. 2014, 267, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, E.; Jones, J.P.; Petitta, M.; Rudolph, D.L. Assessing the impact of large-scale dewatering on fault-controlled aquifer systems: A case study in the Acque Albule basin (Tivoli, central Italy). Hydrogeol. J. 2013, 21, 401–423. [Google Scholar] [CrossRef]
- Zheng, C.; Bennett, G.D. Applied Contaminant Transport Modeling; Wiley-Interscience: New York, NY, USA, 2002. [Google Scholar]
- Trefry, M.G.; Muffels, C. Feflow: A finite-element ground water flow and transport modeling tool. Ground Water 2007, 45, 525–528. [Google Scholar] [CrossRef]
- Uddin, M.K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 2017, 308, 438–462. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.S. Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Sci. Total Environ. 2015, 532, 112–126. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.; Xue, Q.; Niu, Z.R.; Zhang, Y.K.; Liu, F.; Chen, H.H. Investigation of Zn2+ and Cd2+ Adsorption Performance by Different Weathering Basalts. Water Air Soil Pollut. 2016, 227, 126. [Google Scholar] [CrossRef]
- Heath, R.C. Basic Ground-Water Hydrology; US Geological Survey: Reston, VA, USA, 1983; Volume 2220.
- Gelhar, L.W.; Welty, C.; Rehfeldt, K.R. A Critical-Review of Data on Field-Scale Dispersion in Aquifers. Water Resour. Res. 1992, 28, 1955–1974. [Google Scholar] [CrossRef]
Stratum | Zn | Cd | ||||
---|---|---|---|---|---|---|
m1 | m2 | R | m1 | m2 | R | |
Deluvial material | 66.0 | 0.004 | 28.340 | 2830.0 | 755.017 | 1.006 |
Eluvial deposit | 49.0 | 0.003 | 21.250 | 2257.0 | 0.507 | 1457.430 |
Elements | Scenarios | Horizontal Direction (m) | Vertical Direction (m) | |||
---|---|---|---|---|---|---|
South | Southeast | Southwest | DM Layer | ED Layer | ||
Zn | Current situation | 161.00 | 84.86 | 56.30 | 17.92 | 0.00 |
Scenario A after 100 years | 284.64 | 191.00 | 83.98 | 17.92 | 3.73 | |
Scenario B after 100 years | 284.00 | 78.71 | 64.14 | 17.92 | 3.73 | |
Cd | Current situation | 172.48 | 94.72 | 61.59 | 15.35 | 0.00 |
Scenario A after 100 years | 326.76 | 177.60 | 80.39 | 17.92 | 0.00 | |
Scenario B after 100 years | 264.80 | 0.00 | 56.92 | 17.92 | 0.00 |
Upper Bound of the Pollutant Concentration | Material Type | Material Name | Materia Properties | ||
---|---|---|---|---|---|
Vertical Hydraulic Conductivity (m/s) | Thickness (m) | Retardation Factor | |||
CZn ≤ 400 mg/L | DM + ED | DM | 6.56 × 10−7 | <1.00 m | R ≥ 28.340 |
ED | 7.75 × 10−11 | 3.73 | R ≥ 21.250 | ||
Equivalent material | EMZn-1 a | 7.75 × 10−11 | 10.37 | R ≥ 1.0 | |
EMZn-2 | 1.55 × 10−10 | 10.84 | |||
EMZn-3 | 3.88 × 10−10 | 11.62 | |||
EMZn-4 | 3.88 × 10−9 | 18.30 | |||
EMZn-5 | 3.88 × 10−8 | >20.00 | |||
CCd ≤ 1.5 mg/L | DM + ED | DM | 6.56 × 10−7 | 2.57 | R ≥ 1.006 |
ED | 7.75 × 10−11 | <1.00 m | R ≥ 1457.430 | ||
Equivalent material | EMCd-1 | 7.75 × 10−11 | 2.41 | R ≥ 1.0 | |
EMCd-2 | 1.55 × 10−10 | 2.73 | |||
EMCd-3 | 3.88 × 10−10 | 3.84 | |||
EMCd-4 | 3.88 × 10−9 | 11.83 | |||
EMCd-5 | 3.88 × 10−8 | >20.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Chen, Z.; Wang, T.; Xiang, C.; Luo, M.; Yuan, H. Control of Contaminant Transport Caused by Open-Air Heavy Metal Slag in Zhehai, Southwest China. Int. J. Environ. Res. Public Health 2019, 16, 443. https://doi.org/10.3390/ijerph16030443
Zhao J, Chen Z, Wang T, Xiang C, Luo M, Yuan H. Control of Contaminant Transport Caused by Open-Air Heavy Metal Slag in Zhehai, Southwest China. International Journal of Environmental Research and Public Health. 2019; 16(3):443. https://doi.org/10.3390/ijerph16030443
Chicago/Turabian StyleZhao, Jiang, Zhihua Chen, Tao Wang, Caijuan Xiang, Mingming Luo, and Hongxin Yuan. 2019. "Control of Contaminant Transport Caused by Open-Air Heavy Metal Slag in Zhehai, Southwest China" International Journal of Environmental Research and Public Health 16, no. 3: 443. https://doi.org/10.3390/ijerph16030443
APA StyleZhao, J., Chen, Z., Wang, T., Xiang, C., Luo, M., & Yuan, H. (2019). Control of Contaminant Transport Caused by Open-Air Heavy Metal Slag in Zhehai, Southwest China. International Journal of Environmental Research and Public Health, 16(3), 443. https://doi.org/10.3390/ijerph16030443