Sources and Characteristics of Polycyclic Aromatic Hydrocarbons in Ambient Total Suspended Particles in Ulaanbaatar City, Mongolia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Conditions and Study Area
2.2. Sampling Design and Analysis
2.2.1. Sampling Methods
2.2.2. Sample Pretreatments
2.2.3. Analysis by High-Performance Liquid Chromatography (HPLC)
2.3. Data Analysis
2.3.1. PAH Source Identification
2.3.2. Health Risk Assessment
3. Results and Discussion
3.1. Meteorological Condtions and Seasonal Variation
3.2. Characteristics of Atmospheric PAHs Concentrations in Ulaanbaatar City
3.3. Composition and Primary PAH Sources
3.4. Health Risk Assessment
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ganbat, G.; Han, J.Y.; Ryu, Y.H.; Baik, J.J. Characteristics of the Urban Heat Island in a High-Altitude Metropolitan City, Ulaanbaatar, Mongolia. Asia-Pac. J. Atmos. Sci. 2013, 49, 535–541. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- The World Bank Group. MONGOLIA: Heating Stove Market Trends in Poor, Peri-Urban ger Areas of Ulaanbaatar and Selected Markets outside Ulaanbaatar; With Generous support from the Australian Government; The World Bank Group: Washington, DC, USA, 2011; 87052p. [Google Scholar]
- Guttikunda, S. Urban Air Pollution Analysis for Ulaanbaatar; The World Bank Consultant Report: Washington, DC, USA, 2007. [Google Scholar]
- Huang, Y.K.; Luvsan, M.E.; Gombojav, E.; Ochir, C.; Bulgan, J.; Chan, C.C. Land use patterns and SO2 and NO2 pollution in Ulaanbaatar, Mongolia. Environ. Res. 2013, 124, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Yang, D. Levels, sources and potential risks of polycyclic aromatic hydrocarbons (PAHs) in multimedia environment along the Jinjiang River mainstream to Quanzhou Bay, China. Mar. Pollut. Bull. 2013, 76, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Minnesota Department of Health. Guidance for Evaluating the Cancer Potency of Polycyclic Aromatic Hydrocarbon (PAH) Mixtures in Environmental Samples; Minnesota Department of Health: Saint Paul, MI, USA, 2016.
- U.S. Environmental Protection Agency. Supplementary Guidance for Conducting Health Risk Assessment of Chemical Mixtures; Risk Assessment Forum Technical Panel EPA/630/R-00/002; U.S. Environmental Protection Agency: Washington, DC, USA, 2000.
- Tsapakis, M.; Stephanou, E.G. Occurrence of gaseous and particulate polycyclic aromatic hydrocarbons in the urban atmosphere: Study of sources and ambient temperature effect on the gas/particle concentration and distribution. Environ. Pollut. 2005, 133, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Sin, D.W.; Wong, Y.C.; Choi, Y.Y.; Lam, C.H.; Louie, P.K. Distribution of polycyclic aromatic hydrocarbons in the atmosphere of Hong Kong. J. Environ. Monit. 2003, 5, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, T.; Jørgensen, H.E.; Larsen, J.C.; Poulsen, M. City air pollution of polycyclic aromatic hydrocarbons and other mutagens: Occurrence, sources and health effects. Sci. Total Environ. 1996, 180, 41–49. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. IARC Monographs on the Evaluation of the Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2014; Volume 100. [Google Scholar]
- Hayakawa, K. Environmental Behaviors and Toxicities of Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons. Chem. Pharm. Bull. 2016, 64, 83–94. [Google Scholar] [CrossRef]
- Hayakawa, K.; Tang, N.; Kameda, T.; Toriba, A. Atmospheric Behaviors of Polycyclic aromatic hydrocarbons in East Asia. Genes Environ. 2014, 36, 152–159. [Google Scholar] [CrossRef]
- Kong, S.; Ding, X.; Bai, Z.; Han, B.; Chen, L.; Shi, J.; Li, Z. A seasonal study of polycyclic aromatic hydrocarbons in PM2.5 and PM2.5-10 in five typical cities of Liaoning Province, China. J. Hazard. Mater. 2010, 183, 70–80. [Google Scholar] [CrossRef]
- Hayakawa, K. Polycyclic Aromatic Hydrocarbons Environmental Behavior and Toxicity in East Asia; Springer: Berlin, Germany, 2018. [Google Scholar]
- Hirose, T.; Morito, K.; Kizu, R.; Toriba, A.; Hayakawa, K.; Ogawa, S.; Inoue, S.; Muramatsu, M.; Masamune, Y. Estrogenic/Antiestrogenic Activities of Benzo[a]pyrene Monohydroxy Derivatives. J. Health Sci. 2011, 47, 552–558. [Google Scholar] [CrossRef]
- Hayakawa, K.; Onoda, Y.; Tachikawa, C.; Hosoi, S.; Yoshita, M.; Chung, S.W.; Kizu, R.; Toriba, A.; Kameda, T.; Tang, N. Strogenic/antiestrogenic activities of Polycyclic aromatic hydrocarbons and their monohydroxylated derivatives by yeast two-hybrid assay. J. Health Sci. 2007, 53, 562–570. [Google Scholar] [CrossRef]
- Motoyama, Y.; Bekki, K.; Chung, S.W.; Tang, N.; Kameda, T.; Toriba, A.; Taguchi, K.; Hayakawa, K. Oxidative Stress More Strongly Induced by ortho- Than para-quinoid Polycyclic Aromatic Hydrocarbons in A549 Cells. J. Health Sci. 2009, 55, 845–850. [Google Scholar] [CrossRef]
- Kumagai, Y.; Koide, S.; Taguchi, K.; Endo, A.; Nakai, Y.; Yoshikawa, T.; Shimojo, N. Oxidation of Proximal Protein Sulfhydryls by Phenanthraquinone, a Component of Diesel Exhaust Particles. Chem. Res. Toxicol. 2002, 15, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Khalili, N.R.; Scheff, P.A.; Holsen, T.M. PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmos. Environ. 1995, 29, 533–542. [Google Scholar] [CrossRef]
- Nishikawa, M.; Matsui, I.; Batdorj, D.; Jugder, D.; Mori, I.; Shimizu, A.; Sugimoto, N.; Takahashi, K. Chemical composition of urban airborne particulate matter in Ulaanbaatar. Atmos. Environ. 2011, 45, 5710–5715. [Google Scholar] [CrossRef]
- Tobiszewski, M.; Namieśnik, J. PAH diagnostic ratios for the identification of pollution emission sources. Environ. Pollut. 2012, 162, 110–119. [Google Scholar] [CrossRef]
- Hayakawa, K.; Tang, N.; Morisaki, H.; Toriba, A.; Akutagawa, T.; Sakai, S. Atmospheric Polycyclic and Nitropolycyclic Aromatic Hydrocarbons in an Iron-manufacturing City. Asian J. Atmos. Environ. 2016, 10, 90–98. [Google Scholar] [CrossRef]
- Tang, N.; Tabata, M.; Mishukov, V.F.; Sergineko, V.; Toriba, A.; Kizu, R.; Hayakawa, K. Comparison of atmospheric polycyclic aromatic hydrocarbons in Vladivostok, Toyama and Kanazawa. J. Health Sci. 2002, 48, 30–36. [Google Scholar] [CrossRef]
- Tang, N.; Hattori, T.; Taga, R.; Igarashi, K.; Yang, X.; Tamura, K.; Kakimoto, H.; Mishukov, V.F.; Toriba, A.; Kizu, R.; et al. Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in urban air particulates and their relationship to emission sources in the Pan–Japan Sea countries. Atmos. Environ. 2005, 9, 5817–5826. [Google Scholar] [CrossRef]
- Loibner, A.P.; Szolar, O.H.; Braun, R.; Hirmann, D. Toxicity testing of 16 priority polycyclic aromatic hydrocarbons using lumistox. Environ. Toxicol. Chem. 2004, 23, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Ravindra, K.; Sokhi, R.; Van Grieken, R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmos. Environ. 2008, 42, 2895–2921. [Google Scholar] [CrossRef]
- Liu, J.; Man, R.; Ma, S.; Li, J.; Wu, Q.; Peng, J. Atmospheric levels and health risk of polycyclic aromatic hydrocarbons (PAHs) bound to PM2.5 in Guangzhou, China. Mar. Pollut. Bull. 2015, 100, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Kong, S.; Yin, Y.; Li, L.; Yuan, L.; Li, Q.; Xiao, H.; Chen, K. Polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM2.5 around 2013 Asian Youth Games period in Nanjing. Atmos. Res. 2016, 174–175, 85–96. [Google Scholar] [CrossRef]
- Rogge, W.F.; Hildemann, L.M.; Mazurek, M.A.; Cass, G.R.; Simoneit, B.R. Sources of Fine Organic Aerosol. 2. Noncatalyst and Catalyst-Equipped Automobiles and Heavy-Duty Diesel Trucks. Environ. Sci. Technol. 1993, 27, 636–651. [Google Scholar] [CrossRef]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Implementation of Social Governance Agency. Economic and Social Status of the Capital City of Mongolian, 2016; Ulaanbaatar City, Statistical State Report; Implementation of Social Governance Agency: Ulaanbaatar City, Mongolian, 2016.
- Bartoš, T.; Čupr, P.; Klánová, J.; Holoubek, I. Which compounds contribute most to elevated airborne exposure and corresponding health risks in the Western Balkans. Environ. Int. 2009, 35, 1066–1071. [Google Scholar] [CrossRef]
- De Pieri, S.; Arruti, A.; Huremovic, J.; Sulejmanovic, J.; Selovic, A.; Ðorđević, D.; Fernández-Olmo, I.; Gambaro, A. PAHs in the urban air of Sarajevo: Levels, sources, day/night variation, and human inhalation risk. Environ. Monit. Assess. 2014, 186, 1409–1419. [Google Scholar] [CrossRef]
- Shi, G.L.; Feng, Y.C.; Wu, J.H.; Li, X.; Wang, Y.Q.; Xue, Y.H.; Zhu, T. Source Identification of Polycyclic Aromatic Hydrocarbons in Urban Particulate Matter of Tangshan, China. Aerosol. Air Qual. Res. 2009, 9, 309–315. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, J.Y.; Kim, Y.P.; Lee, S.B.; Jin, H.C.; Bae, G.N. Seasonal characteristics of the gaseous and particulate PAHs at a roadside station in Seoul, Korea. Atmos. Res. 2012, 116, 142–150. [Google Scholar] [CrossRef]
- Wang, M.; Kai, K.; Jin, Y.; Sugimoto, N.; Dashdondog, B. Air Particulate Pollution in Ulaanbaatar, Mongolia: Variation in Atmospheric Conditions from autumn to winter. SOLA 2017, 13, 90–95. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, L.; Zheng, X.; Zhang, S.; Song, S.; Li, J.; Hao, J. Characterization and source apportionment of particulate PAHs in the roadside environment in Beijing. Sci. Total Environ. 2014, 470, 76–83. [Google Scholar] [CrossRef]
- Liu, S.; Tao, S.; Liu, W.; Liu, Y.; Dou, H.; Zhao, J.; Wang, L.; Wang, J.; Tian, Z.; Gao, Y. Atmospheric Polycyclic Aromatic Hydrocarbons in North China: A Winter-Time Study. Environ. Sci. Technol. 2007, 41, 8256–8261. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Y.; Guo, X.; Wang, Y. Seasonal variation and source apportionment of organic and inorganic compounds in PM 2.5 and PM10 particulates in Beijing, China. J. Environ. Sci. 2013, 25, 741–750. [Google Scholar] [CrossRef]
- Sicre, M.A.; Marty, J.C.; Saliot, A.; Aparicio, X.; Grimalt, J.; Albaiges, J. Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: Occurrence and origin. Atmos. Environ. 1987, 21, 2247–2259. [Google Scholar] [CrossRef]
- Ravindra, K.; Wauters, E.; Van Grieken, R. Variation in particulate PAHs levels and their relations with the transboundary movement of the air masses. Sci. Total Environ. 2008, 396, 100–110. [Google Scholar] [CrossRef]
- Li, C.K.; Kamens, R.M. The use of polycyclic aromatic hydrocarbons as source signatures in receptor modeling. Atmos. Environ. Gen. Top. 1993, 27, 523–532. [Google Scholar] [CrossRef]
Parameters | Sample Code | Sampling Station Name and Types | Station Coordinates | |
---|---|---|---|---|
Polycyclic aromatic hydrocarbons (PAHs) | PAH1 | City center | 47°55′21.8″ N | 106°55′13.5″ E |
PAH2 | Ger area | 47°58′1.2″ N | 106°54′28.8″ E | |
PAH3 | Residential area | 47°54′51.9″ N | 106°49′37.3″ E | |
PAH4 | Industrial area | 47°55′34.6″ N | 106°58′18.7″ E | |
PAH5 | Townhouse area | 47°53′2.5″ N | 106°53′49.9″ E | |
Particulate matter | PM1 | Amgalan (industrial area) | 47°54′19.1″ N | 106°59′32.8″ E |
PM2 | 13th district (city center area) | 47°54′14.2″ N | 106°55′59.1″ E | |
PM3 | Baruun 4 zam (city center area) | 47°54′19.0″ N | 106°53′16.7″ E | |
PM4 | MNB (ger area) | 47°55′6.5″ N | 106°52′56.2″ E | |
PM5 | Mon laa (ger area) | 47°56′48.9″ N | 106°48′57.5″E | |
PM6 | 65th school (residential area) | 47°54′33.3″ N | 106°47′20.3″ E | |
PM7 | Eco khotkhon (apartment) | 47°51′10.0″ N | 106°46′0.2″ E | |
Meteorological Parameters | MP1 | Ulaanbaatar station | 47 55′8.6″ N | 106 50′51.9″ E |
MP2 | Buyant Ukhaa station | 47 50′29.4″ N | 106 45′52.9″ E | |
MP3 | Amgalan station | 47 54′40.0″ N | 106 59′5.0″ E |
Sampling Sites | Day, Month, Year | Temperature, °C | Wind Speed, m·s−1 | Wind Direction | Relative Humidity, % | Precipitation, mm | Pressure, hPa | PM2.5 Concentration, µg·m−3 | PAH Concentration, ng·m−3 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Max | Min | Mean | Max | mean | Direction | Angle | |||||||
City center | 17, 01, 2017 | −21.2 | −28 | −24.9 | 5 | 0.8 | - | 0 | 73 | 0.3 | 872.9 | 172 a | 161.6 |
Ger area | 21, 01, 2017 | −16.9 | −27.1 | −23.1 | 4 | 0.9 | - | 0 | 74 | 0 | 875.9 | 252 b | 773.0 |
Residential area | 22, 01, 2017 | −16.8 | −27.4 | −22.6 | 6 | 1 | EEN | 84 | 67 | 0 | 874.7 | 235 c | 412.3 |
Industrial area | 24, 01, 2017 | −8.9 | −21.5 | −16.3 | 6 | 1.9 | EES | 113 | 65 | 0 | 873.1 | 68 d | 131.0 |
City center | 15, 03, 2017 | 4.6 | −9.8 | −3.2 | 7 | 1.4 | E | 101 | 45 | 0 | 871.9 | 54.5 a | 22.2 |
Ger area | 16, 03, 2017 | 6.4 | −7 | −0.7 | 7 | 1.3 | EES | 113 | 36 | 0 | 866.5 | 87 b | 530.6 |
Residential area | 19, 03, 2017 | 0.9 | −11.9 | −5.8 | 9 | 1.5 | - | 0 | 53 | 0 | 876.7 | 27 c | 247.5 |
Industrial area | 20, 03, 2017 | 4.6 | −10.7 | −3.8 | 8 | 1.4 | - | 0 | 42 | 0 | 876.3 | 22 d | 191.4 |
City center | 12, 09, 2017 | 23 | 6 | 14 | 7 | 2 | ES | 135 | 50 | 0 | 871.0 | 19 a | 2.2 |
Ger area | 14, 09, 2017 | 21.7 | 12 | 16.5 | 14 | 3.5 | NEN | 17 | 44 | 0 | 868.6 | 20 b | 14.4 |
Residential area | 19, 09, 2017 | 21.2 | 1.5 | 10.9 | 9 | 1.6 | SWS | 208 | 48 | 0 | 869.2 | 57 c | 53.1 |
Industrial area | 21, 09, 2017 | 17.5 | 1.4 | 6.2 | 13 | 4.1 | W | 343 | 72 | 0 | 856.4 | 13 d | 7.8 |
Town house | 23, 09, 2017 | 12.1 | 5.9 | 7.3 | 11 | 1.9 | W | 343 | 74 | 0 | 860.2 | 8 e | 1.4 |
PAHs Species | Abbreviation | Chemical Formula | MW, g/mol | Rings | MW Groups | IUR, (µg m−3)−1 ᵃ |
---|---|---|---|---|---|---|
Naphthalene | Nap | C10H8 | 128.2 | 2 | LMW | 3.4 × 10−5 |
Acenaphthene | Ace | C12H10 | 154.2 | 3 | LMW | 1.1 × 10−6 |
Fluorene | Fle | C13H10 | 166.2 | 3 | LMW | 1.1 × 10−6 |
Phenanthrene | Phe | C14H10 | 178.2 | 3 | LMW | 1.1 × 10−6 |
Anthracene | Ant | C14H10 | 178.2 | 3 | LMW | 1.1 × 10−5 |
Fluoranthene | Flu | C16H10 | 202.3 | 4 | MMW | 1.1 × 10−6 |
Pyrene | Pyr | C16H10 | 202.3 | 4 | MMW | 1.1 × 10−6 |
Benz[a]anthracene | BaA | C18H12 | 228.3 | 4 | MMW | 1.1 × 10−4 |
Chrysene | Chr | C18H12 | 228.3 | 4 | MMW | 1.1 × 10−5 |
Benzo[b]fluoranthene | BbF | C20H12 | 252.3 | 5 | HMW | 1.1 × 10−4 |
Benzo[k]fluoranthene | BkF | C20H12 | 252.3 | 5 | HMW | 1.1 × 10−4 |
Benzo[a]pyrene | BaP | C20H12 | 252.3 | 5 | HMW | 1.1 × 10−3 |
Dibenz[a,h]anthracene | DBA | C22H14 | 278.4 | 5 | HMW | 1.2 × 10−3 |
Benzo[ghi]perylene | BPe | C22H12 | 276.3 | 6 | HMW | 1.1 × 10−5 |
Indeno[1,2,3-cd] pyrene | IDP | C22H12 | 276.3 | 6 | HMW | 1.1 × 10−4 |
Sampling Sites | Sampling Period | PAHs Concentrations, ng·m−3 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nap | Ace | Fle | Phe | Ant | Flu | Pyr | BaA | Chr | BbF | BkF | BaP | DBA | BPe | IDP | ΣPAHs | ||
City center | 17, 01, 2017 | 5.8 | 0.05 | 4.1 | 30.7 | 1.9 | 35.1 | 30.6 | 6 | 5.8 | 5.6 | 2.8 | 3.6 | 14.2 | 12.8 | 2.4 | 161.6 |
Ger area | 21, 01, 2017 | 5.3 | 1.8 | 134.9 | 175.5 | 42.6 | 143.5 | 106.1 | 30.3 | 18.7 | 26.2 | 9.9 | 22 | 0.5 | 44.8 | 11 | 773 |
Residential area | 22, 01, 2017 | 5.2 | 0.2 | 21.9 | 109.4 | 9.1 | 99.4 | 67.4 | 16.5 | 13.7 | 15.1 | 6.1 | 13.8 | 0.5 | 25.6 | 8.5 | 412.3 |
Industrial area | 24, 01, 2017 | 5.6 | 0.1 | 6.2 | 31.1 | 4.6 | 23.5 | 23.7 | 7.7 | 4 | 5.7 | 2 | 4.4 | 0 | 9.9 | 2.3 | 131 |
City center | 15, 03, 2017 | 3.2 | 0.04 | 0.4 | 11.6 | 0.1 | 1 | 1.2 | 0.3 | 0.4 | 0.8 | 0.3 | 0.5 | 0.1 | 1.4 | 0.7 | 22.2 |
Ger area | 16, 03, 2017 | 19.4 | 1.8 | 38.9 | 177.9 | 39.4 | 53.8 | 58.4 | 20.2 | 11 | 24.4 | 9.5 | 21.2 | 0.5 | 43.3 | 10.9 | 530.6 |
Residential area | 19, 03, 2017 | 17 | 0.1 | 20.5 | 47 | 9.8 | 46 | 47.2 | 17 | 8.7 | 8.2 | 2.8 | 6.2 | 0.3 | 14.2 | 2.6 | 247.5 |
Industrial area | 20, 03, 2017 | 13.4 | 2.3 | 104.2 | 17.5 | 1.3 | 10.8 | 12.3 | 2.4 | 1.2 | 6.4 | 1.3 | 3.5 | 0.3 | 14 | 0.4 | 191.4 |
City center | 12, 09, 2017 | 0.3 | 0.003 | 0.04 | 0.9 | 0.01 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.04 | 0.1 | 0.04 | 0.2 | 0.1 | 2.2 |
Ger area | 14, 09, 2017 | 0.6 | 0.02 | 0.5 | 1 | 0.02 | 2.5 | 0.3 | 1.2 | 1.1 | 1.6 | 0.7 | 1.4 | 0.02 | 2.5 | 0.9 | 14.4 |
Residential area | 19, 09, 2017 | 0.8 | 0.04 | 1.8 | 4 | 0.4 | 3 | 8.6 | 7.6 | 6.4 | 4.9 | 2 | 4.3 | 0.01 | 7.9 | 2.7 | 54.6 |
Industrial area | 21, 09, 2017 | 0.6 | 0.02 | 0.4 | 0.8 | 0.03 | 0.2 | 0.6 | 0.6 | 0.5 | 0.9 | 0.3 | 0.9 | 0.0003 | 1.3 | 0.8 | 7.8 |
Town house | 23, 09, 2017 | 0.4 | 0.001 | 0.03 | 0.6 | 0.01 | 0.04 | 0.1 | 0.03 | 0.04 | 0.03 | 0.03 | 0.1 | 0.001 | 0.1 | 0.002 | 1.4 |
IUR | 3.4 × 10−5 | 1.1 × 10−6 | 1.1 × 10−6 | 1.1 × 10−6 | 1.1 × 10−5 | 1.1 × 10−6 | 1.1 × 10−6 | 1.1 × 10−4 | 1.1 × 10−5 | 1.1 × 10−4 | 1.1 × 10−4 | 1.1 × 10−3 | 1.2 × 10−3 | 1.1 × 10−5 | 1.1 × 10−4 |
No. | City, Country | Type | Temperature, °C | Fraction | ΣPAHs Concentrations Range, ng·m−3 | Author(s) | ||
---|---|---|---|---|---|---|---|---|
Summer | Winter | Summer | Winter | |||||
1 | Tangshan, China | Industrial and Commercial | 27.3 | −2.7 | PM10 | 26.5–313.6 | 142.4–672.4 | Shi et al. (2009) [36] |
2 | Beijing, China | Commercial | 23.7 | 1.5 | PM2.5 | 1.8–21.2 | 20.7–141.3 | Wu et al. (2014) [39] |
3 | Seoul, South Korea | Commercial | 24.5 | −3.4 | PM10 | 5.8–7.2 | 23.4–28.8 | Kim et al. (2012) [37] |
4 | Kanazawa, Japan | Commercial | 25.1 | 3.7 | TSPs | 0.28–0.44 | 0.75–1.25 | Hayakawa et al. (2018) [16] |
5 | Tokyo, Japan | Commercial | 25.9 | 6.6 | TSPs | 0.12–0.24 | 0.95–1.45 | |
6 | Ulaanbaatar, Mongolia | Commercial and Industrial | 14 | −24.9 | TSPs | 1.4–53.1 | 131.0–773.0 | This study |
Parameters | ΣPAHs | PM2.5 | Temp | WS | RH | Pre | Press | 2-ring | 3-ring | 4-ring | 5-ring | 6-ring |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ΣPAHs | 1 | |||||||||||
PM2.5 | 0.85 | 1 | ||||||||||
Temp | −0.97 | −0.95 | 1 | |||||||||
WS | −0.98 | −0.74 | 0.91 | 1 | ||||||||
RH | 0.31 | 0.77 | −0.53 | −0.13 | 1 | |||||||
Pre | 0.76 | 0.99 | −0.90 | −0.63 | 0.85 | 1 | ||||||
Press | 0.98 | 0.72 | −0.90 | −1.00 | 0.10 | 0.61 | 1 | |||||
2-ring | 0.54 | 0.01 | −0.32 | −0.69 | −0.63 | −0.13 | 0.71 | 1 | ||||
3-ring | 0.98 | 0.74 | −0.91 | −1.00 | 0.14 | 0.64 | 1.00 | 0.68 | 1 | |||
4-ring | 0.97 | 0.95 | −1.00 | −0.91 | 0.53 | 0.90 | 0.90 | 0.32 | 0.91 | 1 | ||
5-ring | 1.00 | 0.87 | −0.98 | −0.97 | 0.36 | 0.80 | 0.97 | 0.50 | 0.97 | 0.98 | 1 | |
6-ring | 1.00 | 0.81 | −0.95 | −0.99 | 0.25 | 0.72 | 0.99 | 0.60 | 0.99 | 0.95 | 0.99 | 1 |
Diagnostic Ratio (DR) | Ant/(Ant+Phe) | Flu/(Flu+Pyr) | BaA/(BaA+Chr) |
---|---|---|---|
Petroleum | <0.1 [30] a | <0.4 [30] a | - |
Gasoline engine | - | 0.4–0.5 [30] a | 0.22–0.55 [42] b |
Diesel engine | - | >0.5 [43] c | 0.38–0.64 [42] b |
Coal combustion | 0.24 [15] d | 0.57 [15] a | 0.5–0.55 [15] e |
Wood combustion | - | - | 0.43 [44] f |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byambaa, B.; Yang, L.; Matsuki, A.; Nagato, E.G.; Gankhuyag, K.; Chuluunpurev, B.; Banzragch, L.; Chonokhuu, S.; Tang, N.; Hayakawa, K. Sources and Characteristics of Polycyclic Aromatic Hydrocarbons in Ambient Total Suspended Particles in Ulaanbaatar City, Mongolia. Int. J. Environ. Res. Public Health 2019, 16, 442. https://doi.org/10.3390/ijerph16030442
Byambaa B, Yang L, Matsuki A, Nagato EG, Gankhuyag K, Chuluunpurev B, Banzragch L, Chonokhuu S, Tang N, Hayakawa K. Sources and Characteristics of Polycyclic Aromatic Hydrocarbons in Ambient Total Suspended Particles in Ulaanbaatar City, Mongolia. International Journal of Environmental Research and Public Health. 2019; 16(3):442. https://doi.org/10.3390/ijerph16030442
Chicago/Turabian StyleByambaa, Batdelger, Lu Yang, Atsushi Matsuki, Edward G. Nagato, Khongor Gankhuyag, Byambatseren Chuluunpurev, Lkhagvajargal Banzragch, Sonomdagva Chonokhuu, Ning Tang, and Kazuichi Hayakawa. 2019. "Sources and Characteristics of Polycyclic Aromatic Hydrocarbons in Ambient Total Suspended Particles in Ulaanbaatar City, Mongolia" International Journal of Environmental Research and Public Health 16, no. 3: 442. https://doi.org/10.3390/ijerph16030442
APA StyleByambaa, B., Yang, L., Matsuki, A., Nagato, E. G., Gankhuyag, K., Chuluunpurev, B., Banzragch, L., Chonokhuu, S., Tang, N., & Hayakawa, K. (2019). Sources and Characteristics of Polycyclic Aromatic Hydrocarbons in Ambient Total Suspended Particles in Ulaanbaatar City, Mongolia. International Journal of Environmental Research and Public Health, 16(3), 442. https://doi.org/10.3390/ijerph16030442